Research Article
BibTex RIS Cite

Y VE Z KUŞAKLARININ ONLINE ALIŞVERİŞ TUTUMLARI

Year 2023, , 20 - 49, 27.03.2023
https://doi.org/10.53443/anadoluibfd.1183785

Abstract

Piyasa çevreleri, esas olarak teknolojide tanık olunan devrim niteliğindeki değişiklikler nedeniyle dönüşmektedir. Spesifik olarak, internet temelli teknolojiler, tüketici profillerinin yanı sıra piyasa koşullarını da etkilemektedir. Bu nedenle, internet tabanlı alışveriş biçimlerinin ve farklılaşan, teknoloji konusunda bilgili tüketici nesillerinin iyi anlaşılması, özellikle piyasada sürdürülebilir başarı yolunda ticari kuruluşlar için bir zorunluluktur. Bu çalışma, Y ve Z kuşaklarının online alışverişe yönelik tutumlarının e-TAM'ın alt boyutlarına göre farklılaşıp farklılaşmadığını araştırmayı amaçlamaktadır. Eldeki çalışmanın katılımcıları 1031 lisans öğrencisidir. 531 öğrenci doğum tarihlerine göre Z Kuşağı, diğer 500 kişi ise Y Kuşağı olarak adlandırılmaktadır. Kuşakların tutumlarını karşılaştırmak için bağımsız örneklem t testi ve regresyon analizi yapılmıştır. Bulgular, Y ve Z kuşaklarının çevrimiçi alışverişe yönelik tutumlarının benzer olduğunu ancak çevrimiçi alışverişi kullanma nedenlerinin farklı olduğunu göstermektedir. Ayrıca güvenlik açısından erkeklerin puan ortalamalarının, kadınların puan ortalamalarından istatiksel olarak anlamlı bir şekilde yüksek olduğu bulunmuştur (t(993)=2.631; p=.009; Ƞ2= .16).

References

  • Adriana-Camelia, B. (2015). Next generations of consumers–challenges and opportunities for brands. Вісник Киiвського нацiонального унiверситету iм. Тараса Шевченка. Серiя: Економiка, 6(171), 6-10. doi: 10.17721/17282667.2667-2015/171-6/1
  • Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391. doi: 10.1111/j.1540-5915.1999.tb01614.x
  • Akhlaq, A., & Ahmed, E. (2016). Gender differences among online shopping factors in Pakistan. Organizations and Markets in Emerging Economies, 7(1), 74-86. doi: 10.15388/omee.2016.7.1.14216
  • Aktan, C. C., & Vural, İ. Y. (2016). Bilgi toplumu, yeni temel teknolojiler ve yeni ekonomi. Yeni Türkiye, 88(1), 1-37.
  • Alch, M. L. (2000). The echo-boom generation: A growing force in American society. The Futurist, 34(5), 42-46.
  • Altuntuğ, N. (2012). Kuşaktan kuşağa tüketim olgusu ve geleceğin tüketici profili. Organizasyon ve Yönetim Bilimleri Dergisi, 4(1), 203-212.
  • Arı, E., & Yılmaz, V. (2015). Üniversite öğrencilerinin online yemek siparişi davranışlarının teknoloji kabul modeliyle araştırılması. Uluslararası Alanya İşletme Fakültesi Dergisi, 7(2), 65-84.
  • Ashraf, A. R., Thongpapanl, N., & Auh, S. (2014). The application of the technology acceptance model under different cultural contexts: The case of online shopping adoption. Journal of International Marketing, 22(3), 68-93. doi: 10.1509/jim.14.0065
  • Ayhün, S. E. (2013). Kuşaklar arasındaki farklılıklar ve örgütsel yansımaları. Muğla Sıtkı Koçman Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonomi ve Yönetim Araştırmaları Dergisi, 2(1), 93-112.
  • Barkhi, R., Belanger, F., & Hicks, J. (2008). A model of the determinants of purchasing from virtual stores. Journal of Organizational Computing and Electronic Commerce, 18(3), 177-196. doi: 10.1080/10919390802198840
  • Baydaş, A., Sezer, A., & Kanoğlu, M. F. (2021). Investigation of the effects of hedonic consumption reasons on voluntary simplicity lifestyle within the scope of consumer purchasing behavior in terms of generations x, y, z. Journal of Current Researches on Social Sciences, 11(4), 451-474. doi: 10.26579/jocress.449
  • Bejtkovský, J. (2016). The current generations: The Baby Boomers, X, Y and Z in the context of human capital management of the 21st century in selected corporations in the Czech Republic. Littera scripta, 9(2), 25-45.
  • Bencsik, A., Horváth-Csikós, G., & Juhász, T. (2016). Y and Z generations at workplaces. Journal of Competitiveness, 8(3), 89-106.
  • Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370. doi: 10.2307/3250921
  • Bhattacherjee, A., & Sanford, C. (2009). The intention–behaviour gap in technology usage: The moderating role of attitude strength. Behaviour & Information Technology, 28(4), 389-401. doi: 10.1080/01449290802121230
  • Bilgiç, H. G., Duman, D., & Seferoğlu, S. S. (2011). Dijital yerlilerin özellikleri ve çevrimiçi ortamların tasarlanmasındaki etkileri. Akademik Bilişim, 2(4), 1-7.
  • Bruner II, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld internet devices. Journal of Business Research, 58(5), 553-558. doi: 10.1016/j.jbusres.2003.08.002
  • Canavan, B. (2020). Contemporary Consumption, Consumers and Marketing: Cases from Generations Y and Z (1st Ed.). New York: Routledge.
  • Cengiz, E., & Şekerkaya, A. (2010). İnternet kullanıcılarının internetten alış-verişe yönelik satın alma karar süreçlerinin incelenmesi ve kullanım yoğunlukları açısından sınıflandırılması üzerine bir araştırma. Öneri, 9(33), 33-49. doi: 10.14783/od.v9i33.1012000147
  • Cennamo, L., & Gardner, D. (2008). Generational differences in work values, outcomes and person-organisation values fit. Journal of Managerial Psychology, 23(8), 891-906. doi: 10.1108/02683940810904385
  • Chang, W. L., & Chen, L. M. (2021). Analyzing the omni-channel shopper journey configuration of generations Y and Z. Journal of Organizational and End User Computing, 33(6), 1-18. doi: 10.4018/JOEUC.293273
  • Chau, Y., & Hu, J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach. Decision Sciences, 32(4), 699-719. doi: 10.1111/j.1540-5915.2001.tb00978.x.
  • Chen, L. D., & Tan, J. (2004). technology adaptation in e-commerce: Key determinants of virtual stores acceptance. European Management Journal, 22(1), 74-86. doi: 10.1016/j.emj.2003.11.014
  • Chiu, C. M., Lin, H. Y., Sun, S. Y., & Hsu, M. H. (2009). Understanding customers' loyalty intentions towards online shopping: An integration of technology acceptance model and fairness theory. Behaviour & Information Technology, 28(4), 347-360. doi: 10.1080/01449290801892492
  • Çakır, C. B. (2009). İnternet üzerinden satın alma davranışının incelenmesi ve bir uygulama (Unpublished Master’ Thesis). İstanbul Technical University, İstanbul.
  • Çelik, H. E. (2009). Yapısal eşitlik modellemesi ve bir uygulama: Genişletilmiş online alışveriş kabul modeli (Unpublished Doctoral Thesis). Eskişehir Osmangazi University, Eskişehir.
  • Dalcher, I., & Shine, J. (2003). Extending the new technology acceptance model to measure the end user information systems satisfaction in a mandatory environment: A bank's treasury. Technology Analysis & Strategic Management, 15(4), 441-455. doi: 10.1080/095373203000136033
  • Davis, F. D. (1986). A technology acceptance model for empirically testing new enduser information systems: Theory and results (Unpublished Doctoral Thesis). Wayne State University, Detroit, Michigan.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi: 10.2307/249008
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi: 10.1287/mnsc.35.8.982
  • Dick, S. D. (2019). A study of the generational differences in work values of generations X, Y, and Z (Unpublished Doctoral Thesis). Northcentral University, San Diego, California.
  • Ersöz, S., & Askeroğlu, E. D. (2020). Generations X, Y, Z and their perception of e-government services: Case of Turkey. Online Journal of Communication and Media Technologies, 10(1), 1-13. doi: 10.29333/ojcmt/6428
  • Faqih, K. M. S., & Jaradat, M. I. R. M. (2015). Assessing the moderating effect of gender differences and individualism-collectivism at individual-level on the adoption of mobile commerce technology: TAM3 perspective. Journal of Retailing and Consumer Services, 22, 37-52. doi: 10.1016/j.jretconser.2014.09.006
  • Fornell, C. (1992). A national customer satisfaction barometer: The Swedish experience. Journal of Marketing, 56(1), 6-21. doi: 10.1177/002224299205600103
  • Freedman, D. (2012). Web 2.0 and the death of the blockbuster economy. In C. James, N. Fenton, D. Freedman (Ed.), Misunderstanding the Internet (pp. 69-94) . London and New York: Routledge.
  • Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega, 28(6), 725-737. doi: 10.1016/S0305-0483(00)00021-9
  • Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90. doi: 10.2307/30036519
  • Gültaş, M. (2020). Teknoloji kabul modeli çerçevesinde internet üzerinden alışveriş davranışının incelenmesi (Unpublished Master’ Thesis). İnönü University, Malatya.
  • Goessling, M. (2017). Attraction and retention of generations x, y and z in the workplace. Integrated Studies. 66. Recieved from https://digitalcommons.murraystate.edu/bis437/66.
  • Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571. doi: 10.1016/j.jbusres.2008.06.016
  • Hassan, M., Kazmi, S. S. A. S., & Padlee, S. F. (2019). Technology acceptance model (TAM) and dynamics of online purchase adaptability. International Journal of Recent Technology and Engineering. 8(1), 390-402.
  • Henderson, R., & Divett, M. J. (2003). Perceived usefulness, ease of use and electronic supermarket use. International Journal of Human-Computer Studies, 59(3), 383-395. doi: 10.1016/S1071-5819(03)00079-X
  • Hernandez, B., Jimenez, J., & Martín, M. J. (2009). Adoption vs acceptance of e‐commerce: Two different decisions. European Journal of Marketing, 43(9/10), 1232-1245. doi: 10.1108/03090560910976465
  • Howe, N., & Strauss, W. (2000). Millennials rising: The next great generation. New York: Vintage Books.
  • Hsu, C. L., & Lu, H. P. (2007). Consumer behavior in online game communities: A motivational factor perspective. Computers in Human Behavior, 23(3), 1642-1659. doi: 10.1016/j.chb.2005.09.001
  • Huang, L., Lu, M. T., & Wong, B. K. (2003). The impact of power distance on email acceptance: Evidence from the PRC. Journal of Computer Information Systems, 44(1), 93-101. doi: 10.1080/08874417.2003.11647556
  • Hysa, B., Karasek, A., & Zdonek, I. (2021). Social media usage by different generations as a tool for sustainable tourism marketing in society 5.0 idea. Sustainability, 13(3), 1-27. doi: 10.3390/su13031018
  • Kalaycı, S., & Kökçel, E. (2017). Y kuşağının teknoloji ile ilişkisi: Ön lisans öğrencileri üzerinde bir araştırma. Bilge Uluslararası Sosyal Araştırmalar Dergisi, 1(1), 79-98.
  • Keisidou, E., Sarigiannidis, L., & Maditinos, D. (2011). Consumer characteristics and their effect on accepting online shopping, in the context of different product types. International Journal of Business Science & Applied Management, 6(2), 31-51.
  • Kim, D. J., Ferrin, D., & Rao, R. (2003). An ınvestigation of consumer online trust and purchase-repurchase ıntentions.In International Conference on Information Systems (pp. 353-365). Seattle, Washington: Research Collection Lee Kong Chian School of Business.
  • Kohli, A. (1989). Determinants of influence in organizational buying: A contingency approach. Journal of Marketing, 53(3), 50-65. doi: 10.1177/002224298905300307
  • Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223. doi: 10.1287/isre.13.2.205.83
  • Kutlák, J. (2019). Generations Y and Z in the workplace: Perception of teamwork. ACC journal, 25(2), 65-77. doi: 10.15240/tul/004/2019-2-005
  • Kutlák, J. (2021). Individualism and self-reliance of Generations Y and Z and their impact on working environment: An empirical study across 5 European countries. Problems and Perspectives in Management, 19(1), 39-52. doi:10.21511/ppm.19(1).2021.04
  • Kuyucu, M. (2017). Y kuşağı ve teknoloji: Y kuşağının iletişim teknolojilerini kullanım alışkanlıkları. Gümüşhane Üniversitesi İletişim Fakültesi Elektronik Dergisi, 5(2), 845-872. doi.org/10.19145/e-gifder.285714
  • Lancaster, L. C., & Stillman, D. (2002). When generations collide: Who they are. Why they clash. How to solve the generational puzzle at work. New York: HarperCollins Publishers Inc.
  • Law, M., & Ng, M. (2016). Age and gender differences: Understanding mature online users with the online purchase intention model. Journal of Global Scholars of Marketing Science, 26(3), 248-269. doi: 10.1080/21639159.2016.1174540
  • Laor, T., & Galily, Y. (2022). Who’S clicking on on-demand? Media consumption patterns of generations Y & Z. Technology in Society, 70, 1-8. doi: 10.1016/j.techsoc.2022.102016
  • Liao, Z, & Cheung, M. T. (2001). Internet-based e-shopping and consumer attitudes: An empirical study. Information & Management, 38(5), 299-306. doi: 10.1016/S0378-7206(00)00072-0
  • Martin, C. A., & Tulgan, B. (2002). Managing the generation mix: From collision to collaboration. Ahherst, Massachusetts: HRD Press Inc.
  • Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. doi: 10.1287/isre.2.3.173
  • McCrindle, M., & Wolfinger, E. (2009). The ABC of XYZ: Understanding the global Generations (1st Edition). Sydney: McCrindle Research, Bella Vista.
  • Miandari, G. A. K. D. D., Yasa, N. N. K., Wardana, M., Giantari, I. G. A. K., & Setini, M. (2021). Application of technology acceptance model to explain repurchase intention in online shopping consumers. Webology, 18(1), 247-262. doi: 10.14704/WEB/V18I1/WEB18087
  • Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. doi: 10.1287/isre.2.3.192
  • Morsümbül, Ş. (2014). Değerlerin kuşaklar arası değişimi: Ankara örneği (Unpublished Doctoral Thesis). Hacettepe University, Ankara.
  • Nazari, M., & Hafezi, H. (2013). Generational differences in purchasing decision making process: Study of buying cell phone in Tehran. International Journal of Multidisciplinary Thought, 3(3), 21–27.
  • Nuzulita, N., & Subriadi, A. P. (2020). The role of risk‐benefit and privacy analysis to understand different uses of social media by Generations X, Y, and Z in Indonesia. The Electronic Journal of Information Systems in Developing Countries, 86(3), 1-17. doi: 10.1002/isd2.12122
  • Oblinger, D., & Oblinger, J. (Ed.). (2005). Educating the Net Generation. Washington, D.C.: EDUCAUSE.
  • O’cass, A., & Fenech, T. (2003). Web retailing adoption: Exploring the nature of internet users web retailing behaviour. Journal of Retailing and Consumer services, 10(2), 81-94. doi: 10.1016/S0969-6989(02)00004-8
  • Ofori, D., & Appiah-Nimo, C. (2019). Determinants of online shopping among tertiary students in Ghana: An extended technology acceptance model. Cogent Business & Management, 6(1), 1-20. doi: 10.1080/23311975.2019.1644715
  • Oğuz, G. V. (2017). Investigation of the effect of retro marketing on brand loyalty over generations X, Y & Z. International Journal of Disciplines Economics & Administrative Sciences Studies, 3(1), 48-60.
  • Omeragić, I. (2021). Digital day in life: Differences between generations X, Y and Z in the use of social media (Unpublished Doctoral Thesis). Rochester Institute of Technology, Croatia.
  • Pallant, J. (2016). SPSS survival manual (6th Edition). Crows Nest, Australia: Allen & Unwin. Park, J., Lee, D., & Ahn, J. (2004). Risk-focused e-commerce adoption model: A cross-country study. Journal of Global Information Technology Management, 7(2), 6-30. doi: 10.1080/1097198X.2004.10856370
  • Paulienė, R., & Sedneva, K. (2019). The influence of recommendations in social media on purchase intentions of generations Y and Z. Organizations and Markets in Emerging Economies, 10(2), 227–256. doi: https://doi.org/10.15388/omee.2019.10.12
  • Pishchik, V. (2020). Features of the mentality of generations X, Y, Z. E3S Web Conferences, 210, 20007. doi: 10.1051/e3sconf/202021020007
  • Prensky, M. (2005). Listen to the natives. Educational Leadership, 63(4), 8-13.
  • Portz, K. S. (2000). The effect of webtrust on the perceived trustworthiness of a web site and the utilization of electronic commerce (Unpublished Doctoral Thesis). The Graduate College at the University of Nebraska, Lincoln, Nebraska.
  • Reeves, T. C., & Oh, E. (2008). Generational differences. In J. M. Spector, M.D. Merrill, J. V. Merrienboer & M. P. Driscoll (Ed.), Handbook of research on educational communications and technology (pp. 295-303). New York: Taylor & Francis Group, LLC.
  • Rothman, D. (2016). A Tsunami of learners called Generation Z. Retrieved from http://www. mdle. net/JoumaFA_Tsunami_of_Learners_Called_Gen_Z. pdf.
  • Sessa, V. I., Kabacoff, R. I., Deal, J., & Brown, H. (2007). Generational differences in leader values and leadership behaviors. The Psychologist-Manager Journal, 10(1), 47–74. doi: 10.1080/10887150709336612 Seyhun, S., & Kurtuldu, G. (2020). Genişletilmiş teknoloji kabul modeli bağlamında mobil alışveriş uygulamalarının benimsenmesini etkileyen faktörler. Trakya Üniversitesi Sosyal Bilimler Dergisi, 22(1), 599-627. doi: 10.26468/trakyasobed.617630
  • Shams, G., Rehman, M. A., Samad, S., & Oikarinen, E. L. (2020). Exploring customer’s mobile banking experiences and expectations among generations X, Y and Z. Journal of Financial Services Marketing, 25(1), 1-13. doi: 10.1057/s41264-020-00071-z
  • Shi, W., Wu, P., Zhou, W., & Chen, J. (2009). Gender differences in purchase intention on mobile data services. In International Joint Conference on Computational Sciences and Optimization. (pp. 773-777. IEEE.
  • Shih, H. P. (2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information & Management, 41(3), 351-368. doi: 10.1016/S0378-7206(03)00079-X
  • Smola, W. K., & Sutton, C. D. (2002). Generational differences: Revisiting generational work values for the new millennium. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 23(4), 363-382. doi.org/10.1002/job.147
  • Stobiecka, J., & Pangsy-Kania, S. (2021). Managing stress as a key element of the competition in the workplace based on the example of generations Y and Z. In 38th International Business Information Management Association Conference. International Business Information Management Association.
  • Tapscott, D. (1998). Growing up digital: the rise of the Net generation. New York: McGraw-Hill.
  • Tapscott, D. (2013). Net kids: Die digitale Generation erobert Wirtschaft und Gesellschaft. Wiesbaden: Gabler GmbH.
  • Thoumrungroje, A. (2021). Drivers of e-commerce continuance intention: A comparison across Baby Boomers, generations X, Y, and Z in Thailand. Chulalongkorn Business Review. 43(2), 168, 21-46.
  • Todorova, G. (2022). Analysis of the perceptions of Generations X, Y, and Z towards media disinformation in Bulgaria (Unpublished Master’ Thesis). Universitat Pompeu Fabra, Barcelona.
  • Tong, X. (2010). A cross-national investigation of an extended technology acceptance model in the online shopping context. International Journal of Retail & Distribution Management, 38(10), 742-759. doi: 10.1108/09590551011076524
  • Townsend, A. M., Demarie, S. M., & Hendrickson, A. R. (2001). Desktop video conferencing in virtual workgroups: Anticipation, system evaluation and performance. Information Systems Journal 11(3), 213-227. doi: 10.1111/j.1365-2575.2001.00103.x
  • Törőcsik, M., Szűcs, K., & Kehl, D. (2014). How generations think: Research on generation Z. Acta universitatis Sapientiae, communicatio, 1(1), 23-45.
  • Tulgan, B. (2013). Meet Generation Z: The second generation within the giant" Millennial" cohort. Rainmaker Thinking. 125, 1-13.
  • Tuomi, I., & Geser, H. (2005). Individual and Collective Life Options. In A. Zerdick, P. Arnold, K. Schrape, J. C. Burgelman, R. Silverstone (Ed.), E-merging media: Communication and the media economy of the future (pp. 213-214). Berlin Heidelberg: Springer-Verlag.
  • Valencia, D. C., Alejandro, V. A., Bran, L., Benjumea, M., & Valencia, J. (2019). Analysis of e-commerce acceptance using the technology acceptance model. Scientific papers of the University of Pardubice. Series D, Faculty of Economics and Administration. 45, 174-185.
  • Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. doi: 10.1287/isre.11.4.342.11872
  • Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information & Management, 41(6), 747-762. doi: 10.1016/j.im.2003.08.011
  • Yadav, R., & Mahara, T. (2019). An empirical study of consumers’ intention to purchase wooden handicraft items online: Using extended technology acceptance model. Global Business Review, 20(2), 479-497. doi: 10.1177/0972150917713899
  • Yalçın, O., Sökmen, A. B., & Kulak, H. (2013). Kuşakların temel özellikleri ve hava harp okulu uygulamaları. Yakın Dönem Türkiye Araştırmaları. 12(24), 133-179.
  • Yılmaz, C., & Tümtürk, A. (2015). İnternet üzerinden alışveriş niyetini etkileyen faktörlerin genişletilmiş teknoloji kabul modeli kullanarak incelenmesi ve bir model önerisi. Yönetim ve Ekonomi, 22(2), 355-384. doi: 10.18657/yecbu.76242
  • Zemke, R., Raines, C, & Filipczak, B. (2000). Generations at work: Managing the clash of veterans, boomers, Xers, and nexters in your workplace. New York: AMACOM.
  • Zhang, Y. (2005). Age, gender, and Internet attitudes among employees in the business world. Computers in Human Behavior, 21(1), 1-10. doi: 10.1016/j.chb.2004.02.006

ATTITUDES OF Y AND Z GENERATIONS TOWARDS ONLINE SHOPPING

Year 2023, , 20 - 49, 27.03.2023
https://doi.org/10.53443/anadoluibfd.1183785

Abstract

Marketing environments have been transforming because of the revolutionary changes witnessed chiefly in technology. Specifically, Internet-driven technologies affect marketing conditions as well as consumer profiles. Hence, a good understanding of Internet-based shopping patterns and differentiated, tech-savvy consumer generations is a necessity for business organizations for sustainable success, especially in marketing. This study aims to explore whether the attitudes of generations Y and Z towards online shopping differ according to the sub-dimensions of e-TAM. Participants of the current study include 1031 undergraduate students. Of the total sample, 531 students are titled Gen Z and other 500 students are Gen Y, according to their date of birth. Independent sample t-test and regression analysis are performed to compare the attitudes of generations. The findings indicate that generations Y and Z have similar attitudes towards online shopping but their reasons for using online shopping differ. In addition, we found that the mean score of men in terms of safety was statistically significantly higher than the mean score of women (t(993)=2.631; p=.009; Ƞ2= .16).

References

  • Adriana-Camelia, B. (2015). Next generations of consumers–challenges and opportunities for brands. Вісник Киiвського нацiонального унiверситету iм. Тараса Шевченка. Серiя: Економiка, 6(171), 6-10. doi: 10.17721/17282667.2667-2015/171-6/1
  • Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391. doi: 10.1111/j.1540-5915.1999.tb01614.x
  • Akhlaq, A., & Ahmed, E. (2016). Gender differences among online shopping factors in Pakistan. Organizations and Markets in Emerging Economies, 7(1), 74-86. doi: 10.15388/omee.2016.7.1.14216
  • Aktan, C. C., & Vural, İ. Y. (2016). Bilgi toplumu, yeni temel teknolojiler ve yeni ekonomi. Yeni Türkiye, 88(1), 1-37.
  • Alch, M. L. (2000). The echo-boom generation: A growing force in American society. The Futurist, 34(5), 42-46.
  • Altuntuğ, N. (2012). Kuşaktan kuşağa tüketim olgusu ve geleceğin tüketici profili. Organizasyon ve Yönetim Bilimleri Dergisi, 4(1), 203-212.
  • Arı, E., & Yılmaz, V. (2015). Üniversite öğrencilerinin online yemek siparişi davranışlarının teknoloji kabul modeliyle araştırılması. Uluslararası Alanya İşletme Fakültesi Dergisi, 7(2), 65-84.
  • Ashraf, A. R., Thongpapanl, N., & Auh, S. (2014). The application of the technology acceptance model under different cultural contexts: The case of online shopping adoption. Journal of International Marketing, 22(3), 68-93. doi: 10.1509/jim.14.0065
  • Ayhün, S. E. (2013). Kuşaklar arasındaki farklılıklar ve örgütsel yansımaları. Muğla Sıtkı Koçman Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonomi ve Yönetim Araştırmaları Dergisi, 2(1), 93-112.
  • Barkhi, R., Belanger, F., & Hicks, J. (2008). A model of the determinants of purchasing from virtual stores. Journal of Organizational Computing and Electronic Commerce, 18(3), 177-196. doi: 10.1080/10919390802198840
  • Baydaş, A., Sezer, A., & Kanoğlu, M. F. (2021). Investigation of the effects of hedonic consumption reasons on voluntary simplicity lifestyle within the scope of consumer purchasing behavior in terms of generations x, y, z. Journal of Current Researches on Social Sciences, 11(4), 451-474. doi: 10.26579/jocress.449
  • Bejtkovský, J. (2016). The current generations: The Baby Boomers, X, Y and Z in the context of human capital management of the 21st century in selected corporations in the Czech Republic. Littera scripta, 9(2), 25-45.
  • Bencsik, A., Horváth-Csikós, G., & Juhász, T. (2016). Y and Z generations at workplaces. Journal of Competitiveness, 8(3), 89-106.
  • Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370. doi: 10.2307/3250921
  • Bhattacherjee, A., & Sanford, C. (2009). The intention–behaviour gap in technology usage: The moderating role of attitude strength. Behaviour & Information Technology, 28(4), 389-401. doi: 10.1080/01449290802121230
  • Bilgiç, H. G., Duman, D., & Seferoğlu, S. S. (2011). Dijital yerlilerin özellikleri ve çevrimiçi ortamların tasarlanmasındaki etkileri. Akademik Bilişim, 2(4), 1-7.
  • Bruner II, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld internet devices. Journal of Business Research, 58(5), 553-558. doi: 10.1016/j.jbusres.2003.08.002
  • Canavan, B. (2020). Contemporary Consumption, Consumers and Marketing: Cases from Generations Y and Z (1st Ed.). New York: Routledge.
  • Cengiz, E., & Şekerkaya, A. (2010). İnternet kullanıcılarının internetten alış-verişe yönelik satın alma karar süreçlerinin incelenmesi ve kullanım yoğunlukları açısından sınıflandırılması üzerine bir araştırma. Öneri, 9(33), 33-49. doi: 10.14783/od.v9i33.1012000147
  • Cennamo, L., & Gardner, D. (2008). Generational differences in work values, outcomes and person-organisation values fit. Journal of Managerial Psychology, 23(8), 891-906. doi: 10.1108/02683940810904385
  • Chang, W. L., & Chen, L. M. (2021). Analyzing the omni-channel shopper journey configuration of generations Y and Z. Journal of Organizational and End User Computing, 33(6), 1-18. doi: 10.4018/JOEUC.293273
  • Chau, Y., & Hu, J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach. Decision Sciences, 32(4), 699-719. doi: 10.1111/j.1540-5915.2001.tb00978.x.
  • Chen, L. D., & Tan, J. (2004). technology adaptation in e-commerce: Key determinants of virtual stores acceptance. European Management Journal, 22(1), 74-86. doi: 10.1016/j.emj.2003.11.014
  • Chiu, C. M., Lin, H. Y., Sun, S. Y., & Hsu, M. H. (2009). Understanding customers' loyalty intentions towards online shopping: An integration of technology acceptance model and fairness theory. Behaviour & Information Technology, 28(4), 347-360. doi: 10.1080/01449290801892492
  • Çakır, C. B. (2009). İnternet üzerinden satın alma davranışının incelenmesi ve bir uygulama (Unpublished Master’ Thesis). İstanbul Technical University, İstanbul.
  • Çelik, H. E. (2009). Yapısal eşitlik modellemesi ve bir uygulama: Genişletilmiş online alışveriş kabul modeli (Unpublished Doctoral Thesis). Eskişehir Osmangazi University, Eskişehir.
  • Dalcher, I., & Shine, J. (2003). Extending the new technology acceptance model to measure the end user information systems satisfaction in a mandatory environment: A bank's treasury. Technology Analysis & Strategic Management, 15(4), 441-455. doi: 10.1080/095373203000136033
  • Davis, F. D. (1986). A technology acceptance model for empirically testing new enduser information systems: Theory and results (Unpublished Doctoral Thesis). Wayne State University, Detroit, Michigan.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi: 10.2307/249008
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi: 10.1287/mnsc.35.8.982
  • Dick, S. D. (2019). A study of the generational differences in work values of generations X, Y, and Z (Unpublished Doctoral Thesis). Northcentral University, San Diego, California.
  • Ersöz, S., & Askeroğlu, E. D. (2020). Generations X, Y, Z and their perception of e-government services: Case of Turkey. Online Journal of Communication and Media Technologies, 10(1), 1-13. doi: 10.29333/ojcmt/6428
  • Faqih, K. M. S., & Jaradat, M. I. R. M. (2015). Assessing the moderating effect of gender differences and individualism-collectivism at individual-level on the adoption of mobile commerce technology: TAM3 perspective. Journal of Retailing and Consumer Services, 22, 37-52. doi: 10.1016/j.jretconser.2014.09.006
  • Fornell, C. (1992). A national customer satisfaction barometer: The Swedish experience. Journal of Marketing, 56(1), 6-21. doi: 10.1177/002224299205600103
  • Freedman, D. (2012). Web 2.0 and the death of the blockbuster economy. In C. James, N. Fenton, D. Freedman (Ed.), Misunderstanding the Internet (pp. 69-94) . London and New York: Routledge.
  • Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega, 28(6), 725-737. doi: 10.1016/S0305-0483(00)00021-9
  • Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90. doi: 10.2307/30036519
  • Gültaş, M. (2020). Teknoloji kabul modeli çerçevesinde internet üzerinden alışveriş davranışının incelenmesi (Unpublished Master’ Thesis). İnönü University, Malatya.
  • Goessling, M. (2017). Attraction and retention of generations x, y and z in the workplace. Integrated Studies. 66. Recieved from https://digitalcommons.murraystate.edu/bis437/66.
  • Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571. doi: 10.1016/j.jbusres.2008.06.016
  • Hassan, M., Kazmi, S. S. A. S., & Padlee, S. F. (2019). Technology acceptance model (TAM) and dynamics of online purchase adaptability. International Journal of Recent Technology and Engineering. 8(1), 390-402.
  • Henderson, R., & Divett, M. J. (2003). Perceived usefulness, ease of use and electronic supermarket use. International Journal of Human-Computer Studies, 59(3), 383-395. doi: 10.1016/S1071-5819(03)00079-X
  • Hernandez, B., Jimenez, J., & Martín, M. J. (2009). Adoption vs acceptance of e‐commerce: Two different decisions. European Journal of Marketing, 43(9/10), 1232-1245. doi: 10.1108/03090560910976465
  • Howe, N., & Strauss, W. (2000). Millennials rising: The next great generation. New York: Vintage Books.
  • Hsu, C. L., & Lu, H. P. (2007). Consumer behavior in online game communities: A motivational factor perspective. Computers in Human Behavior, 23(3), 1642-1659. doi: 10.1016/j.chb.2005.09.001
  • Huang, L., Lu, M. T., & Wong, B. K. (2003). The impact of power distance on email acceptance: Evidence from the PRC. Journal of Computer Information Systems, 44(1), 93-101. doi: 10.1080/08874417.2003.11647556
  • Hysa, B., Karasek, A., & Zdonek, I. (2021). Social media usage by different generations as a tool for sustainable tourism marketing in society 5.0 idea. Sustainability, 13(3), 1-27. doi: 10.3390/su13031018
  • Kalaycı, S., & Kökçel, E. (2017). Y kuşağının teknoloji ile ilişkisi: Ön lisans öğrencileri üzerinde bir araştırma. Bilge Uluslararası Sosyal Araştırmalar Dergisi, 1(1), 79-98.
  • Keisidou, E., Sarigiannidis, L., & Maditinos, D. (2011). Consumer characteristics and their effect on accepting online shopping, in the context of different product types. International Journal of Business Science & Applied Management, 6(2), 31-51.
  • Kim, D. J., Ferrin, D., & Rao, R. (2003). An ınvestigation of consumer online trust and purchase-repurchase ıntentions.In International Conference on Information Systems (pp. 353-365). Seattle, Washington: Research Collection Lee Kong Chian School of Business.
  • Kohli, A. (1989). Determinants of influence in organizational buying: A contingency approach. Journal of Marketing, 53(3), 50-65. doi: 10.1177/002224298905300307
  • Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223. doi: 10.1287/isre.13.2.205.83
  • Kutlák, J. (2019). Generations Y and Z in the workplace: Perception of teamwork. ACC journal, 25(2), 65-77. doi: 10.15240/tul/004/2019-2-005
  • Kutlák, J. (2021). Individualism and self-reliance of Generations Y and Z and their impact on working environment: An empirical study across 5 European countries. Problems and Perspectives in Management, 19(1), 39-52. doi:10.21511/ppm.19(1).2021.04
  • Kuyucu, M. (2017). Y kuşağı ve teknoloji: Y kuşağının iletişim teknolojilerini kullanım alışkanlıkları. Gümüşhane Üniversitesi İletişim Fakültesi Elektronik Dergisi, 5(2), 845-872. doi.org/10.19145/e-gifder.285714
  • Lancaster, L. C., & Stillman, D. (2002). When generations collide: Who they are. Why they clash. How to solve the generational puzzle at work. New York: HarperCollins Publishers Inc.
  • Law, M., & Ng, M. (2016). Age and gender differences: Understanding mature online users with the online purchase intention model. Journal of Global Scholars of Marketing Science, 26(3), 248-269. doi: 10.1080/21639159.2016.1174540
  • Laor, T., & Galily, Y. (2022). Who’S clicking on on-demand? Media consumption patterns of generations Y & Z. Technology in Society, 70, 1-8. doi: 10.1016/j.techsoc.2022.102016
  • Liao, Z, & Cheung, M. T. (2001). Internet-based e-shopping and consumer attitudes: An empirical study. Information & Management, 38(5), 299-306. doi: 10.1016/S0378-7206(00)00072-0
  • Martin, C. A., & Tulgan, B. (2002). Managing the generation mix: From collision to collaboration. Ahherst, Massachusetts: HRD Press Inc.
  • Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. doi: 10.1287/isre.2.3.173
  • McCrindle, M., & Wolfinger, E. (2009). The ABC of XYZ: Understanding the global Generations (1st Edition). Sydney: McCrindle Research, Bella Vista.
  • Miandari, G. A. K. D. D., Yasa, N. N. K., Wardana, M., Giantari, I. G. A. K., & Setini, M. (2021). Application of technology acceptance model to explain repurchase intention in online shopping consumers. Webology, 18(1), 247-262. doi: 10.14704/WEB/V18I1/WEB18087
  • Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. doi: 10.1287/isre.2.3.192
  • Morsümbül, Ş. (2014). Değerlerin kuşaklar arası değişimi: Ankara örneği (Unpublished Doctoral Thesis). Hacettepe University, Ankara.
  • Nazari, M., & Hafezi, H. (2013). Generational differences in purchasing decision making process: Study of buying cell phone in Tehran. International Journal of Multidisciplinary Thought, 3(3), 21–27.
  • Nuzulita, N., & Subriadi, A. P. (2020). The role of risk‐benefit and privacy analysis to understand different uses of social media by Generations X, Y, and Z in Indonesia. The Electronic Journal of Information Systems in Developing Countries, 86(3), 1-17. doi: 10.1002/isd2.12122
  • Oblinger, D., & Oblinger, J. (Ed.). (2005). Educating the Net Generation. Washington, D.C.: EDUCAUSE.
  • O’cass, A., & Fenech, T. (2003). Web retailing adoption: Exploring the nature of internet users web retailing behaviour. Journal of Retailing and Consumer services, 10(2), 81-94. doi: 10.1016/S0969-6989(02)00004-8
  • Ofori, D., & Appiah-Nimo, C. (2019). Determinants of online shopping among tertiary students in Ghana: An extended technology acceptance model. Cogent Business & Management, 6(1), 1-20. doi: 10.1080/23311975.2019.1644715
  • Oğuz, G. V. (2017). Investigation of the effect of retro marketing on brand loyalty over generations X, Y & Z. International Journal of Disciplines Economics & Administrative Sciences Studies, 3(1), 48-60.
  • Omeragić, I. (2021). Digital day in life: Differences between generations X, Y and Z in the use of social media (Unpublished Doctoral Thesis). Rochester Institute of Technology, Croatia.
  • Pallant, J. (2016). SPSS survival manual (6th Edition). Crows Nest, Australia: Allen & Unwin. Park, J., Lee, D., & Ahn, J. (2004). Risk-focused e-commerce adoption model: A cross-country study. Journal of Global Information Technology Management, 7(2), 6-30. doi: 10.1080/1097198X.2004.10856370
  • Paulienė, R., & Sedneva, K. (2019). The influence of recommendations in social media on purchase intentions of generations Y and Z. Organizations and Markets in Emerging Economies, 10(2), 227–256. doi: https://doi.org/10.15388/omee.2019.10.12
  • Pishchik, V. (2020). Features of the mentality of generations X, Y, Z. E3S Web Conferences, 210, 20007. doi: 10.1051/e3sconf/202021020007
  • Prensky, M. (2005). Listen to the natives. Educational Leadership, 63(4), 8-13.
  • Portz, K. S. (2000). The effect of webtrust on the perceived trustworthiness of a web site and the utilization of electronic commerce (Unpublished Doctoral Thesis). The Graduate College at the University of Nebraska, Lincoln, Nebraska.
  • Reeves, T. C., & Oh, E. (2008). Generational differences. In J. M. Spector, M.D. Merrill, J. V. Merrienboer & M. P. Driscoll (Ed.), Handbook of research on educational communications and technology (pp. 295-303). New York: Taylor & Francis Group, LLC.
  • Rothman, D. (2016). A Tsunami of learners called Generation Z. Retrieved from http://www. mdle. net/JoumaFA_Tsunami_of_Learners_Called_Gen_Z. pdf.
  • Sessa, V. I., Kabacoff, R. I., Deal, J., & Brown, H. (2007). Generational differences in leader values and leadership behaviors. The Psychologist-Manager Journal, 10(1), 47–74. doi: 10.1080/10887150709336612 Seyhun, S., & Kurtuldu, G. (2020). Genişletilmiş teknoloji kabul modeli bağlamında mobil alışveriş uygulamalarının benimsenmesini etkileyen faktörler. Trakya Üniversitesi Sosyal Bilimler Dergisi, 22(1), 599-627. doi: 10.26468/trakyasobed.617630
  • Shams, G., Rehman, M. A., Samad, S., & Oikarinen, E. L. (2020). Exploring customer’s mobile banking experiences and expectations among generations X, Y and Z. Journal of Financial Services Marketing, 25(1), 1-13. doi: 10.1057/s41264-020-00071-z
  • Shi, W., Wu, P., Zhou, W., & Chen, J. (2009). Gender differences in purchase intention on mobile data services. In International Joint Conference on Computational Sciences and Optimization. (pp. 773-777. IEEE.
  • Shih, H. P. (2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information & Management, 41(3), 351-368. doi: 10.1016/S0378-7206(03)00079-X
  • Smola, W. K., & Sutton, C. D. (2002). Generational differences: Revisiting generational work values for the new millennium. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 23(4), 363-382. doi.org/10.1002/job.147
  • Stobiecka, J., & Pangsy-Kania, S. (2021). Managing stress as a key element of the competition in the workplace based on the example of generations Y and Z. In 38th International Business Information Management Association Conference. International Business Information Management Association.
  • Tapscott, D. (1998). Growing up digital: the rise of the Net generation. New York: McGraw-Hill.
  • Tapscott, D. (2013). Net kids: Die digitale Generation erobert Wirtschaft und Gesellschaft. Wiesbaden: Gabler GmbH.
  • Thoumrungroje, A. (2021). Drivers of e-commerce continuance intention: A comparison across Baby Boomers, generations X, Y, and Z in Thailand. Chulalongkorn Business Review. 43(2), 168, 21-46.
  • Todorova, G. (2022). Analysis of the perceptions of Generations X, Y, and Z towards media disinformation in Bulgaria (Unpublished Master’ Thesis). Universitat Pompeu Fabra, Barcelona.
  • Tong, X. (2010). A cross-national investigation of an extended technology acceptance model in the online shopping context. International Journal of Retail & Distribution Management, 38(10), 742-759. doi: 10.1108/09590551011076524
  • Townsend, A. M., Demarie, S. M., & Hendrickson, A. R. (2001). Desktop video conferencing in virtual workgroups: Anticipation, system evaluation and performance. Information Systems Journal 11(3), 213-227. doi: 10.1111/j.1365-2575.2001.00103.x
  • Törőcsik, M., Szűcs, K., & Kehl, D. (2014). How generations think: Research on generation Z. Acta universitatis Sapientiae, communicatio, 1(1), 23-45.
  • Tulgan, B. (2013). Meet Generation Z: The second generation within the giant" Millennial" cohort. Rainmaker Thinking. 125, 1-13.
  • Tuomi, I., & Geser, H. (2005). Individual and Collective Life Options. In A. Zerdick, P. Arnold, K. Schrape, J. C. Burgelman, R. Silverstone (Ed.), E-merging media: Communication and the media economy of the future (pp. 213-214). Berlin Heidelberg: Springer-Verlag.
  • Valencia, D. C., Alejandro, V. A., Bran, L., Benjumea, M., & Valencia, J. (2019). Analysis of e-commerce acceptance using the technology acceptance model. Scientific papers of the University of Pardubice. Series D, Faculty of Economics and Administration. 45, 174-185.
  • Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. doi: 10.1287/isre.11.4.342.11872
  • Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information & Management, 41(6), 747-762. doi: 10.1016/j.im.2003.08.011
  • Yadav, R., & Mahara, T. (2019). An empirical study of consumers’ intention to purchase wooden handicraft items online: Using extended technology acceptance model. Global Business Review, 20(2), 479-497. doi: 10.1177/0972150917713899
  • Yalçın, O., Sökmen, A. B., & Kulak, H. (2013). Kuşakların temel özellikleri ve hava harp okulu uygulamaları. Yakın Dönem Türkiye Araştırmaları. 12(24), 133-179.
  • Yılmaz, C., & Tümtürk, A. (2015). İnternet üzerinden alışveriş niyetini etkileyen faktörlerin genişletilmiş teknoloji kabul modeli kullanarak incelenmesi ve bir model önerisi. Yönetim ve Ekonomi, 22(2), 355-384. doi: 10.18657/yecbu.76242
  • Zemke, R., Raines, C, & Filipczak, B. (2000). Generations at work: Managing the clash of veterans, boomers, Xers, and nexters in your workplace. New York: AMACOM.
  • Zhang, Y. (2005). Age, gender, and Internet attitudes among employees in the business world. Computers in Human Behavior, 21(1), 1-10. doi: 10.1016/j.chb.2004.02.006
There are 102 citations in total.

Details

Primary Language English
Subjects Business Administration
Journal Section Araştırma Makalesileri
Authors

Kenan Ateşgöz 0000-0002-2771-4965

Cemil Ulukan 0000-0003-0963-2883

Publication Date March 27, 2023
Submission Date October 3, 2022
Published in Issue Year 2023

Cite

APA Ateşgöz, K., & Ulukan, C. (2023). ATTITUDES OF Y AND Z GENERATIONS TOWARDS ONLINE SHOPPING. Anadolu Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 24(1), 20-49. https://doi.org/10.53443/anadoluibfd.1183785


This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License since 2023.