Research Article
BibTex RIS Cite

TURKEY GLOBAL CONTAINER PORT PROJECTS: CONTAINER TRAFFIC VOLUME AND FOREIGN TRADE PROJECTION IN 2035

Year 2023, , 261 - 298, 25.09.2023
https://doi.org/10.53443/anadoluibfd.1253057

Abstract

Within the framework of the export-led growth model, mega container port projects have been included in the development plans of Turkey. In these plans, it is foreseen that by increasing the capacity of the ports, which are the backbone of global trade, the country's foreign trade will be facilitated and the country's ports will be more demanded in international trade routes. In this study, it was aimed to determine an econometrically significant relationship between the container port volume and foreign trade variables within the scope of the container port projects. In parallel with this purpose, the estimated container port traffic volume for the year 2035, the year when the ports will be completed gradually, was calculated using stochastic processes, using the data of container port traffic in Turkey. Then, it is modeled how the estimated container port traffic volume will be reflected in Turkey's exports, imports and total foreign trade volume by combining it with the econometric relationship parameter. In the findings of the research, while the importance of not delaying these investments in this context that the total capacity provided by mega container port projects will be needed, it is estimated that Turkey's exports will rise to 350 billion dollars, its imports to 340 billion dollars, and the total foreign trade volume to 694 billion dollars by the end of 2035, with the gradual active use of the capacity provided by these container port projects.

References

  • Akgül, E. F., Solak Fışkın, C., Düzalan, B., Erdoğan, T., & Karataş Çetin, Ç. (2015). Port competitiveness and efficiency: An analysis of Turkish container ports. European Conference on Shipping, Intermodalism and Ports (Econship)’ta sunulan bildiri. Sakız Adası.
  • Alderton, P. M. (2008). Llyods’s pratical shipping guides-Port management and operations. (3. baskı). Londra: Informa Law. Amoako, J. (2002). Forecasting Australia’s international container trade. 25th Australian Transport Research Forum’da sunulan bildiri. Canberra.
  • An, L., & Xu, H. (2009). Prediction based on grey model of cargo throughput of Tianjin port. W. Hu & X. Li (Eds.), 2009 International Conference on Information Engineering and Computer Science (s. 1-4) içinde. California: IEEE.
  • Ateş, A., Karadeniz, Ş., & Esmer, S. (2010). Dünya konteyner taşımacılığı pazarında Türkiye'nin yeri. Denizcilik Fakültesi Dergisi 2(2), 83-98.
  • Awah, P. C., Nam, H., & Kim, S. (2021). Short term forecast of container throughput: New variables application for the Port of Douala. Journal of Marine Science and Engineering, 9(7), 720.
  • Aydemir, E., Bedir, F. & Özdemir, G. (2013). Gri sistem teorisi ve uygulamaları: Bilimsel yazın taraması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 18(3), 187-200.
  • Bağcı, B. (2020). Gri Markov modeli ile Türkiye’de işsizlik oranı tahmini. Sosyal Güvenlik Dergisi. 10(2), 259-272. Bayraktutan, Y. & Özbilgin, M. (2013). Limanların uluslararası ticarete etkisi ve Kocaeli limanlarının ülke ekonomisindeki yeri. Kocaeli Üniversitesi Sosyal Bilimler Dergisi. (26),11 – 41.
  • Blonigen, B. A., & Wilson, W. W. (2008). Port efficiency and trade flows. Review of International Economics, 16(1), 21-36.
  • Bottasso, A., Conti, M. P., de Sa Porto, P.C., Ferrari, C. ve Alessio T. (2018). Port infrastructures and trade: Empirical evidence from Brazil. Transportation Research Part A: Policy and Practice. 107, 126–139.
  • Can, T. (2006). Sektörler arası ilişkilerin Markov Zincirleri ile analizi ve tahmini: Türkiye örneği. İstanbul: Derin Yayınları.
  • Chang, Y. T., Jo, A., Choi, K. S., & Lee, S. (2021). Port efficiency and international trade in China. Transportmetrica A: Transport Science, 17(4), 801-823.
  • Chen, C. P., Liu, Q. J., & Zheng, P. (2013). Application of grey-markov model in predicting container throughput of fujian province. In Advanced Materials Research, 779. 720-723.
  • Chung, K. L. & Walsh, J. B. (2005), Markov processes, brownian motion, and time symmetry (2. Baskı). New York: Springer Science Business Media Inc.
  • Clarksons Research (2021). Services/Broking/Containers. https://www.clarksons.com/services/broking/containers/ adresinden erişildi.
  • Dagenais, M. G., & Martin, F. (1987). Forecasting containerized traffic for the port of Montreal (1981-1995). Transportation Research Part A: General, 21(1), 1–16. doi:10.1016/0191-2607(87)90019-7.
  • Deng, J. L. (1989). Introduction to grey system theory. The Journal of Grey System, 1, 1–24.
  • Du, Y. (2013) A Prediction of the Container Throughput of Jiujiang Port Based on Grey System Theory. E. Qi, J. Shen, ve R. Dou (eds.) The 19th International Conference on Industrial Engineering and Engineering Management (s.51-60) içinde, Springer. https://doi.org/10.1007/978-3-642-38391-5.
  • Erdönmez, E.S. & İncaz, S. (2016). 2018 yılına kadar AB denizyolu taşımacılığının stratejik hedefleri ve önerilerinin Türkiye’ye yansıması. Journal of Emerging Economics and Policy, 1, 111-125.
  • Ergeç, F. (1996). Markov Analizi ile hisse senedi fiyatlarının tahmin edilmesi. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 25(2), 123-151.
  • Esmer, S. (2010). Konteyner terminallerinde lojistik süreçlerin optimizasyonu ve bir simülasyon modeli (1. Baskı). İzmir: Dokuz Eylül Yayınları.
  • Esmer, S. (2020). Deniz taşımacılığı ve lojistiği. Ankara: Akademisyen Kitabevi A.Ş.
  • Ferrari, C., Percoco, M. & Tedeschi, A. (2010). Port and local development: Evidence from Italy. International Journal of Transport Economics. 37(1), 9-30.
  • Gosasang, V., Yip, T. L., & Chandraprakaikul, W. (2018). Long-term container throughput forecast and equipment planning: The case of Bangkok Port. Maritime Business Review, 3(1), 53-69.
  • Grifoll, M. (2019). A statistical forecasting model applied to container throughput in a multi-port gateway system: The Barcelona-Tarragona-Valencia case. International Journal of Shipping and Transport Logistics, 11(4), 316-333.
  • Hillier, F. S. & Lieberman, G. J. (1995). Introduction to Operations Research. (7. Baskı) New York: McGraw-Hill Book Company.
  • Hou, J., Chen, Y., & Li, T. (2014, Aralık). The forecast of port cargo throughput based on combination forecasting model. 2014 Seventh International Symposium on Computational Intelligence and Design IEEE’de sunulan bildiri. China.
  • Janssens, S., Meersman, H., & Van de Voorde, E. (2003). Port throughput and international trade: have port authorities any degrees of freedom left?. R. Loyen, E. Buyst ve G. Devos, (Eds.) Struggling for Leadership: Antwerp-Rotterdam Port Competition between 1870 –2000 (s. 91-113) içinde, Physica Heidelberg. doi: 10.1007/978-3-642-57485-6.
  • Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems With Applications, 37(2), 1784-1789.
  • Ke, G.Y., Li, K.W & Hipel, K.W. (2012). An integrated multiple criteria preference ranking approach to The Canadian west coast port congestion conflict. Expert Systems with Applications, 39(10), 9181-9190. doi: 10.1016/j.eswa.2012.02.086.
  • Klein, A. (1996). Forecasting The Antwerp maritime traffic flows using transformations and intervention models. Journal of Forecasting, 15(5), 395-412.
  • Lam, W. H., Ng, P. L., Seabrooke, W., & Hui, E. C. (2004). Forecasts and reliability analysis of port cargo throughput in Hong Kong. Journal of urban Planning and Development, 130(3), 133-144.
  • Lawler, J. K. (2006). Introduction to Stochastic Processes (İkinci Baskı). New York: Chapman & Hall/ CRC Press.
  • Lewis, C.D. (1982). Industrial and business forecasting methods. Londra: Butterworths Publishing.
  • Liu, S. & Lin, Yi (2006). Grey information. Theory and Practical Applications. London: Springer.
  • Liu, S. & Tian, l. (2012, May). The application of Grey-Markov combined model for port cargo throughput forecasting. 9th International Conference on Fuzzy Systems and Knowledge IEEE’de sunulan bildiri, Chongping, Sichuan.
  • Ofluoğlu, N. Ö., Kalaycı, C., Artan, S., & Bal, H. Ç. (2018). Lojistik performansındaki gelişmelerin uluslararası ticaret üzerindeki etkileri: AB ve MENA ülkeleri örneği. Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 9(24), 92-109.
  • Or, İ. (1986). Introduction to stochastic models in operations Research. İstanbul: Boğaziçi Üniversitesi Yayınları No:399.
  • Özdağoğlu, A., Özdağoğlu, G., & Gümüş, G. K. (2012). Altın fiyatındaki dağılımların Markov Zinciri ile analizi: Uzun erimli olasılıklar. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (40), 119-142.
  • Özdemir, A. & Gümüşoğlu, Ş. (2007). İşletmelerin tahminleme sorunlarının çözümlenmesinde Markov zincirleri analizinin uygulanması. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(1). 337-359.
  • Pedroni, P. (2001), Fully modified OLS for heterogeneous cointegrated panels. B.H. Baltagi, T.B. Fomby, ve R. Carter Hill (Eds.) Nonstationary Panels, Panel Cointegration, and Dynamic Panels (Advances in Econometrics, Vol. 15) (s. 93-130) içinde. Bingley, Emerald Group Publishing Limited.
  • Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. IZA Discussion Paper No: 1240. http://ftp.iza.org/dp1240.pdf adresinden erişildi.
  • Pesaran, M. H, & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics. 142(1), 50–93. doi:10.1016/j.jeconom.2007.05.01
  • Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM Test of error cross‐section independence. The Econometrics Journal. 11(1), 105-127.
  • Sánchez, R. J., Hoffmann, J., Micco, A., Pizzolitto, G. V., Sgut, M., & Wilmsmeier, G. (2003). Port efficiency and international trade: Port efficiency as a determinant of maritime transport costs. Maritime Economics & Logistics, 5(2), 199-218.
  • Schulze, P. M., & Prinz, A. (2009). Forecasting container transshipment in Germany. Applied Economics, 41(22), 2809-2815.
  • Seabrooke, W., Hui, E. C., Lam, W. H., & Wong, G. K. (2003). Forecasting cargo growth and regional role of the port of Hong Kong. Cities, 20(1), 51-64.
  • Sun, X., Yan, Y. and Liu, J. (2006). Econometric Analysis of Technical Efficiency of Global Container Operators. Proceedings of the 11th International Conference of Hong Kong Society for Transportation Studies: Sustainable Transportation’da sunulan bildiri. Hong Kong.
  • T.C. Ulaştırma ve Altyapı Bakanlığı. (t.y.). Denizcilik istatistikleri [Veri dosyası]. https://denizcilikistatistikleri.uab.gov.tr/ adresinden erişildi.
  • Tijms, H.C. (2003). A first course in stochastic models. England: John Wiley & Sons, Inc. Tunalı, H. & Akarçay, N. (2018). Deniz taşımacılığı ile sanayi üretimi ilişkisinin analizi: Türkiye örneği, İktisadi İdari ve Siyasal Araştırmalar Dergisi, 3(6), 111-122.
  • Twrdy, E., & Batista, M. (2016). Modeling of container throughput in northern adriatic ports over the period 1990–2013. Journal of Transport Geography, 52(), 131–142. doi:10.1016/j.jtrangeo.2016.03.005.
  • Ünver, Ö. & Gamgam, H. (1996), Uygulamalı istatistik yöntemler (II.Baskı). Ankara: Siyasal Kitabevi.
  • Yerdelen Tatoğlu, F. (2018). Panel zaman serileri analizi stata uygulamaları. (2. Baskı). İstanbul: Beta Yayınları.
  • Yüksel, Y. & Özkan Çevik E., (2010). Liman mühendisliği. İstanbul: Beta Yayınları.
  • Wan, S., Luan, W., Ma, Y., & Haralambides, H. (2020). On determining the hinterlands of China's foreign trade container ports. Journal of Transport Geography, 85, 1-20
  • Wang, Y., & Wang, Z. (2018). Combined throughput prediction of Fujian coastal ports based on grey model and Markov chain. Advances in Economics, Business and Management Research, 68( ), 97-104.
  • Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709-748.
  • Wilson, J. S., Mann, C. L., & Otsuki, T. (2003). Trade facilitation and economic development: A new approach to quantifying the ımpact. The World Bank Economic Review, 17(3), 367-389.
  • Witt, S.F. & Witt, C.A. (1992). Modeling and forecasting demand in tourism. Londra: Academic Press.
  • Wiradanti, B., Pettit, S., Potter, A., Abouarghoub, W., & Beresford, A. (2016). Trends in trade and port development of rising economies: Mexico and Indonesia. Logistics Research Network (LRN) Conference’de sunulan bildiri. Hull.
  • Wu, J. (2020), The relationship between port logistics and ınternational trade based on VAR model. Journal of Coastal Research, 103(SI), 601-604. doi: 10.2112/SI103-122.1
  • Zhang, Y., Fu, Y., & Li, G. (2020). Research on container throughput forecast based on ARIMA-BP neural network. Journal of Physics: Conference Series, 1634(2020) 012024. doi:10.1088/1742

TÜRKİYE KÜRESEL KONTEYNER LİMAN PROJELERİ: 2035 YILI KONTEYNER TRAFİK HACMİ VE DIŞ TİCARET PROJEKSİYONU

Year 2023, , 261 - 298, 25.09.2023
https://doi.org/10.53443/anadoluibfd.1253057

Abstract

İhracata dayalı büyüme modeli çerçevesinde Türkiye kalkınma planlarında mega konteyner liman projelerine yer verilmiştir. Bu planlarda küresel ticaretin en büyük ortakları olan limanların kapasitesinin artırılması ile ülke dış ticaretini kolaylaşacağı ve uluslararası ticaret rotalarında ülke limanlarının daha çok talep edileceği öngörülmektedir. Bu çalışmada söz konusu konteyner liman projeleri kapsamında öncelikle konteyner liman hacmi ile dış ticaret değişkenleri arasında ekonometrik olarak anlamlı bir ilişkinin tespit edilmesi amaçlamıştır. Bu amaca paralel Türkiye konteyner liman trafiği verisinden yararlanarak, limanların kademeli olarak tamamlanacağı yıl olan 2035 yılı için tahmini konteyner liman trafik hacmi stokastik süreçlerle ile hesaplanmış, ardından ekonometrik ilişki parametresi ile birleştirilerek tahmin edilen konteyner liman trafik hacminin Türkiye ihracatı, ithalatı ve toplam dış ticaret hacmine nasıl yansıyacağı modellenmiştir. Araştırmanın bulgularında mega konteyner liman projelerin sağladığı toplam kapasiteye ihtiyaç duyulacağı bu bağlamda bu yatırımların geciktirilmemesinin önemi ortaya konarken, bu konteyner liman projelerinin de kademeli olarak aktif kullanıldığı 2035 yıl sonunda Türkiye ihracatının 350 milyar dolara, ithalatının 340 milyar dolara, toplam dış ticaret hacminin de 694 milyar dolar seviyelerine yükseleceği tahmin edilmiştir.

References

  • Akgül, E. F., Solak Fışkın, C., Düzalan, B., Erdoğan, T., & Karataş Çetin, Ç. (2015). Port competitiveness and efficiency: An analysis of Turkish container ports. European Conference on Shipping, Intermodalism and Ports (Econship)’ta sunulan bildiri. Sakız Adası.
  • Alderton, P. M. (2008). Llyods’s pratical shipping guides-Port management and operations. (3. baskı). Londra: Informa Law. Amoako, J. (2002). Forecasting Australia’s international container trade. 25th Australian Transport Research Forum’da sunulan bildiri. Canberra.
  • An, L., & Xu, H. (2009). Prediction based on grey model of cargo throughput of Tianjin port. W. Hu & X. Li (Eds.), 2009 International Conference on Information Engineering and Computer Science (s. 1-4) içinde. California: IEEE.
  • Ateş, A., Karadeniz, Ş., & Esmer, S. (2010). Dünya konteyner taşımacılığı pazarında Türkiye'nin yeri. Denizcilik Fakültesi Dergisi 2(2), 83-98.
  • Awah, P. C., Nam, H., & Kim, S. (2021). Short term forecast of container throughput: New variables application for the Port of Douala. Journal of Marine Science and Engineering, 9(7), 720.
  • Aydemir, E., Bedir, F. & Özdemir, G. (2013). Gri sistem teorisi ve uygulamaları: Bilimsel yazın taraması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 18(3), 187-200.
  • Bağcı, B. (2020). Gri Markov modeli ile Türkiye’de işsizlik oranı tahmini. Sosyal Güvenlik Dergisi. 10(2), 259-272. Bayraktutan, Y. & Özbilgin, M. (2013). Limanların uluslararası ticarete etkisi ve Kocaeli limanlarının ülke ekonomisindeki yeri. Kocaeli Üniversitesi Sosyal Bilimler Dergisi. (26),11 – 41.
  • Blonigen, B. A., & Wilson, W. W. (2008). Port efficiency and trade flows. Review of International Economics, 16(1), 21-36.
  • Bottasso, A., Conti, M. P., de Sa Porto, P.C., Ferrari, C. ve Alessio T. (2018). Port infrastructures and trade: Empirical evidence from Brazil. Transportation Research Part A: Policy and Practice. 107, 126–139.
  • Can, T. (2006). Sektörler arası ilişkilerin Markov Zincirleri ile analizi ve tahmini: Türkiye örneği. İstanbul: Derin Yayınları.
  • Chang, Y. T., Jo, A., Choi, K. S., & Lee, S. (2021). Port efficiency and international trade in China. Transportmetrica A: Transport Science, 17(4), 801-823.
  • Chen, C. P., Liu, Q. J., & Zheng, P. (2013). Application of grey-markov model in predicting container throughput of fujian province. In Advanced Materials Research, 779. 720-723.
  • Chung, K. L. & Walsh, J. B. (2005), Markov processes, brownian motion, and time symmetry (2. Baskı). New York: Springer Science Business Media Inc.
  • Clarksons Research (2021). Services/Broking/Containers. https://www.clarksons.com/services/broking/containers/ adresinden erişildi.
  • Dagenais, M. G., & Martin, F. (1987). Forecasting containerized traffic for the port of Montreal (1981-1995). Transportation Research Part A: General, 21(1), 1–16. doi:10.1016/0191-2607(87)90019-7.
  • Deng, J. L. (1989). Introduction to grey system theory. The Journal of Grey System, 1, 1–24.
  • Du, Y. (2013) A Prediction of the Container Throughput of Jiujiang Port Based on Grey System Theory. E. Qi, J. Shen, ve R. Dou (eds.) The 19th International Conference on Industrial Engineering and Engineering Management (s.51-60) içinde, Springer. https://doi.org/10.1007/978-3-642-38391-5.
  • Erdönmez, E.S. & İncaz, S. (2016). 2018 yılına kadar AB denizyolu taşımacılığının stratejik hedefleri ve önerilerinin Türkiye’ye yansıması. Journal of Emerging Economics and Policy, 1, 111-125.
  • Ergeç, F. (1996). Markov Analizi ile hisse senedi fiyatlarının tahmin edilmesi. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 25(2), 123-151.
  • Esmer, S. (2010). Konteyner terminallerinde lojistik süreçlerin optimizasyonu ve bir simülasyon modeli (1. Baskı). İzmir: Dokuz Eylül Yayınları.
  • Esmer, S. (2020). Deniz taşımacılığı ve lojistiği. Ankara: Akademisyen Kitabevi A.Ş.
  • Ferrari, C., Percoco, M. & Tedeschi, A. (2010). Port and local development: Evidence from Italy. International Journal of Transport Economics. 37(1), 9-30.
  • Gosasang, V., Yip, T. L., & Chandraprakaikul, W. (2018). Long-term container throughput forecast and equipment planning: The case of Bangkok Port. Maritime Business Review, 3(1), 53-69.
  • Grifoll, M. (2019). A statistical forecasting model applied to container throughput in a multi-port gateway system: The Barcelona-Tarragona-Valencia case. International Journal of Shipping and Transport Logistics, 11(4), 316-333.
  • Hillier, F. S. & Lieberman, G. J. (1995). Introduction to Operations Research. (7. Baskı) New York: McGraw-Hill Book Company.
  • Hou, J., Chen, Y., & Li, T. (2014, Aralık). The forecast of port cargo throughput based on combination forecasting model. 2014 Seventh International Symposium on Computational Intelligence and Design IEEE’de sunulan bildiri. China.
  • Janssens, S., Meersman, H., & Van de Voorde, E. (2003). Port throughput and international trade: have port authorities any degrees of freedom left?. R. Loyen, E. Buyst ve G. Devos, (Eds.) Struggling for Leadership: Antwerp-Rotterdam Port Competition between 1870 –2000 (s. 91-113) içinde, Physica Heidelberg. doi: 10.1007/978-3-642-57485-6.
  • Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems With Applications, 37(2), 1784-1789.
  • Ke, G.Y., Li, K.W & Hipel, K.W. (2012). An integrated multiple criteria preference ranking approach to The Canadian west coast port congestion conflict. Expert Systems with Applications, 39(10), 9181-9190. doi: 10.1016/j.eswa.2012.02.086.
  • Klein, A. (1996). Forecasting The Antwerp maritime traffic flows using transformations and intervention models. Journal of Forecasting, 15(5), 395-412.
  • Lam, W. H., Ng, P. L., Seabrooke, W., & Hui, E. C. (2004). Forecasts and reliability analysis of port cargo throughput in Hong Kong. Journal of urban Planning and Development, 130(3), 133-144.
  • Lawler, J. K. (2006). Introduction to Stochastic Processes (İkinci Baskı). New York: Chapman & Hall/ CRC Press.
  • Lewis, C.D. (1982). Industrial and business forecasting methods. Londra: Butterworths Publishing.
  • Liu, S. & Lin, Yi (2006). Grey information. Theory and Practical Applications. London: Springer.
  • Liu, S. & Tian, l. (2012, May). The application of Grey-Markov combined model for port cargo throughput forecasting. 9th International Conference on Fuzzy Systems and Knowledge IEEE’de sunulan bildiri, Chongping, Sichuan.
  • Ofluoğlu, N. Ö., Kalaycı, C., Artan, S., & Bal, H. Ç. (2018). Lojistik performansındaki gelişmelerin uluslararası ticaret üzerindeki etkileri: AB ve MENA ülkeleri örneği. Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 9(24), 92-109.
  • Or, İ. (1986). Introduction to stochastic models in operations Research. İstanbul: Boğaziçi Üniversitesi Yayınları No:399.
  • Özdağoğlu, A., Özdağoğlu, G., & Gümüş, G. K. (2012). Altın fiyatındaki dağılımların Markov Zinciri ile analizi: Uzun erimli olasılıklar. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (40), 119-142.
  • Özdemir, A. & Gümüşoğlu, Ş. (2007). İşletmelerin tahminleme sorunlarının çözümlenmesinde Markov zincirleri analizinin uygulanması. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(1). 337-359.
  • Pedroni, P. (2001), Fully modified OLS for heterogeneous cointegrated panels. B.H. Baltagi, T.B. Fomby, ve R. Carter Hill (Eds.) Nonstationary Panels, Panel Cointegration, and Dynamic Panels (Advances in Econometrics, Vol. 15) (s. 93-130) içinde. Bingley, Emerald Group Publishing Limited.
  • Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. IZA Discussion Paper No: 1240. http://ftp.iza.org/dp1240.pdf adresinden erişildi.
  • Pesaran, M. H, & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics. 142(1), 50–93. doi:10.1016/j.jeconom.2007.05.01
  • Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM Test of error cross‐section independence. The Econometrics Journal. 11(1), 105-127.
  • Sánchez, R. J., Hoffmann, J., Micco, A., Pizzolitto, G. V., Sgut, M., & Wilmsmeier, G. (2003). Port efficiency and international trade: Port efficiency as a determinant of maritime transport costs. Maritime Economics & Logistics, 5(2), 199-218.
  • Schulze, P. M., & Prinz, A. (2009). Forecasting container transshipment in Germany. Applied Economics, 41(22), 2809-2815.
  • Seabrooke, W., Hui, E. C., Lam, W. H., & Wong, G. K. (2003). Forecasting cargo growth and regional role of the port of Hong Kong. Cities, 20(1), 51-64.
  • Sun, X., Yan, Y. and Liu, J. (2006). Econometric Analysis of Technical Efficiency of Global Container Operators. Proceedings of the 11th International Conference of Hong Kong Society for Transportation Studies: Sustainable Transportation’da sunulan bildiri. Hong Kong.
  • T.C. Ulaştırma ve Altyapı Bakanlığı. (t.y.). Denizcilik istatistikleri [Veri dosyası]. https://denizcilikistatistikleri.uab.gov.tr/ adresinden erişildi.
  • Tijms, H.C. (2003). A first course in stochastic models. England: John Wiley & Sons, Inc. Tunalı, H. & Akarçay, N. (2018). Deniz taşımacılığı ile sanayi üretimi ilişkisinin analizi: Türkiye örneği, İktisadi İdari ve Siyasal Araştırmalar Dergisi, 3(6), 111-122.
  • Twrdy, E., & Batista, M. (2016). Modeling of container throughput in northern adriatic ports over the period 1990–2013. Journal of Transport Geography, 52(), 131–142. doi:10.1016/j.jtrangeo.2016.03.005.
  • Ünver, Ö. & Gamgam, H. (1996), Uygulamalı istatistik yöntemler (II.Baskı). Ankara: Siyasal Kitabevi.
  • Yerdelen Tatoğlu, F. (2018). Panel zaman serileri analizi stata uygulamaları. (2. Baskı). İstanbul: Beta Yayınları.
  • Yüksel, Y. & Özkan Çevik E., (2010). Liman mühendisliği. İstanbul: Beta Yayınları.
  • Wan, S., Luan, W., Ma, Y., & Haralambides, H. (2020). On determining the hinterlands of China's foreign trade container ports. Journal of Transport Geography, 85, 1-20
  • Wang, Y., & Wang, Z. (2018). Combined throughput prediction of Fujian coastal ports based on grey model and Markov chain. Advances in Economics, Business and Management Research, 68( ), 97-104.
  • Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709-748.
  • Wilson, J. S., Mann, C. L., & Otsuki, T. (2003). Trade facilitation and economic development: A new approach to quantifying the ımpact. The World Bank Economic Review, 17(3), 367-389.
  • Witt, S.F. & Witt, C.A. (1992). Modeling and forecasting demand in tourism. Londra: Academic Press.
  • Wiradanti, B., Pettit, S., Potter, A., Abouarghoub, W., & Beresford, A. (2016). Trends in trade and port development of rising economies: Mexico and Indonesia. Logistics Research Network (LRN) Conference’de sunulan bildiri. Hull.
  • Wu, J. (2020), The relationship between port logistics and ınternational trade based on VAR model. Journal of Coastal Research, 103(SI), 601-604. doi: 10.2112/SI103-122.1
  • Zhang, Y., Fu, Y., & Li, G. (2020). Research on container throughput forecast based on ARIMA-BP neural network. Journal of Physics: Conference Series, 1634(2020) 012024. doi:10.1088/1742
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Economics, Business Administration
Journal Section Araştırma Makalesileri
Authors

Handan Öztemiz 0000-0002-4446-6887

Kemal Vatansever 0000-0001-8895-9782

Publication Date September 25, 2023
Submission Date February 20, 2023
Published in Issue Year 2023

Cite

APA Öztemiz, H., & Vatansever, K. (2023). TÜRKİYE KÜRESEL KONTEYNER LİMAN PROJELERİ: 2035 YILI KONTEYNER TRAFİK HACMİ VE DIŞ TİCARET PROJEKSİYONU. Anadolu Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 24(3), 261-298. https://doi.org/10.53443/anadoluibfd.1253057

88x31.png
Bu eser 2023 yılından itibaren Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.