Research Article
BibTex RIS Cite

Investigating Seasonal Variation in The Phytochemical and Antioxidant Capacities of Different Sphagnum Taxa

Year 2024, , 67 - 68, 05.12.2024
https://doi.org/10.26672/anatolianbryology.1521625

Abstract

This study investigated the phytochemical content and antioxidant activities of four Sphagnum taxa (S. centrale, S. palustre, S. teres and, S. auriculatum) collected from the Black Sea region of Turkey during two different seasons. The phytochemical groups in the methanol extracts of Sphagnum taxa were identified using qualitative screening methods. The total phenol content of these taxa was quantitatively determined using Folin-ciocalteu reagent with gallic acid equivalents as the standard their antioxidant activities were evaluated by 1,2-diphenyl-1-picrylhydrazyl free radical scavenging ability (DPPH), the CUPRAC test, and phosphomolybdenum assay. Qualitative phytochemical screening of the methanol extracts showed that phenols, tannins, and saponins were present in the extracts, whereas alkaloids and flavonoids were absent. The highest DPPH free radical scavenging activity was observed in 100 µgmL-1 S. teres methanol extract (74.47±0.001% in the first season, September 2021 and 75.37±0.002% in the second season, May 2022). The highest total antioxidant capacity was found in 100 µgmL-1 S. palustre extract (81.00±0.027% in the first season and 84.87±0.002% in the second season). The results of our experiment showed that Sphagnum taxa collected in spring had higher antioxidant activity than those collected in autumn.

Ethical Statement

This research did not involve human or animal subjects and therefore does not require ethical approval.

Supporting Institution

Aydın Adnan Menderes University Scientific Research Foundation

Project Number

FEF-21013

Thanks

This work was supported by the Aydın Adnan Menderes University Scientific Research Foundation (Project No: FEF-21013).

References

  • Apak R. Güçlü K. Demirata B. Özyürek M. Çelik S.E. Bektaşoğlu B. Berker II. Özyurt D. 2007. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules. 12: 1496-1547.
  • Asakawa Y. Ludwiczuk A. 2013. Bryophytes: Liverworts, mosses, and hornworts: Extraction and isolation procedures. Methods Mol Biol. 1055, 1-20.
  • Asakawa Y. 2007. Biologically active compounds from bryophytes. Pure Appl Chem. 79: 557–580. Basile A. Giordono S. Lopez-Saez JA. Cobianchi R.C. 1999. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry. 52: 1479-1482.
  • Blois M.S. 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181: 1199-1200. Brand Williams W. Cuvelier M.E. Berset C. 1995. Use of free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 28; 25-30.
  • Castro L. Freeman B.A. 2001. Reactive oxygen species in human health and disease. Nutrition. 17:2, 161-165. Chebil L. Humeau C. Anthoni J. Dehez F. Engaseser J.M. Ghoul M. 2007. Solubility of flavonoids in organic solvents. J Chem Eng Data. 52:51, 552-1556.
  • Cheng X. Xiao Y. Wang X. Wang P. Li H. Yan H. Liu Q. 2012. Anti-tumor and proapoptic activity of ethanolic extract and its various fractions from Polytrichum commune L. Ex Hedw in L1210 cells. J Ethnopharmacol. 143: 49– 56.
  • Cheng X. Xiao Y. Wang P. Wang X. Zhou Y. Yan H. Liu Q. 2013. The ethyl acetate fraction of Polytrichum commune L. ex Hedw induced cell apoptosis via reactive oxygen species in L1210 cells. J Ethnopharmacol. 148:3, 926-933.
  • Crum H. 2001. Structural diversity of Bryophytes. Ann Arbor (MI): University of Michigan Herbarium. Çakır Sahilli Y. Alataş M. 2024. Antioxidant activity and some chemical composition of Polytrichum piliferum Hedw. Extracts. Anatolian Bryology. 10:1, 58-66.
  • Çelik Aşkin T. Aslantürk Ö.S. Aslan G. Kırmacı M. 2023. Determination of phytochemical content and antioxidant activities of Sphagnum divinum Flatberg & K. Hassel and Sphagnum girgensohnii Russow (Sphagnopsida). Anatolian Bryol. 9:2, 58-69.
  • Day A. De J.N. 2012. Antioxidative potential of bryophytes: stress tolerance and commercial perspectives: a review. Pharmacologia. 3:6, 151-159.
  • Dominguez X.A. 1973. Métodos de investigación Fitoquímica. México (D.F): Limusa. Fu P. Lin S. Shan L. Lu M. Shen Y.H. Tang J. Liu RH. Zhang X. Zhu R.L. Zhang W.D. 2012. Constituents of the moss Polytrichum commune. J Nat. Prod.72,1335-1337.
  • Duru D. Deniz Bozkurt S. Yaman C. Gül G. Benek A. Canlı K. 2024. Determination of biochemical content and antioxidant activity of Calliergonella cuspidata (Hedw.) Loeske. Anatolian Bryology. 10:1, 25-33.
  • Fu P. Lin S. Shan L. Lu M. Shen YH. Tang J. Liu RH. Zhang X. Zhu RL. Zhang WD. 2012. Constituents of the moss Polytrichum commune. J Nat Prod. 72,1335-1337.
  • Fudyma J.D. Lyon J. Aminitabrizi R. Gieschen H. Chu R.K. Hoyt D.W. Kyle J.E. Toyoda J. Tolic N. Hess N.J. Heyman H.M. Metz T.O. Tfaily M.M. 2019. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. 1-17.
  • Gahtori D. Chaturvedi P. 2020. Bryophytes: A Potential Source of Antioxidants. Intech Open. doi: 10.5772/intechopen.84587.
  • Ghafoor K. Choi Y.H. 2009. Optimization of ultrasound-assisted extraction of phenolic compounds and antioxidants from grape peels through response surface methodology. J Korean Soc Appl Biol Chem. 52: 295–300.
  • Goffinet B. Shaw A.J. 2008. Bryophyte Biology. Cambridge: Cambridge University Press.
  • Hamard S. Robroek B.J.M. Allard P.M. Signarbieux C. Zhou S. Saesong T. de Baaker F. Buttler A. Chiapusio G. Wolfender J.L. Bragazza L. Jassey V.E.J. 2019. Effects of Sphagnum leachate on competitive Sphagnum microbiome depend on species and time. Front Microbiol. 10: 1–17.
  • Heinrichs J. Anton H. Gradstein S.R. Mues R. 2000. Systematics of Plagiochila Sect. Glaucescentes Carl (Hepaticae) from Topical America: A Morphological and Chemotaxonomical Approach. Plant Syst Evol. 220,115-138.
  • Jayanthy A. Prakash K.U. Remashree AB. 2013. Seasonal and geographical variations in cellular characters and chemical contents in Desmodium gangeticum (L.) D.C. An ayurvedic medicinal plant. Int J Herb Med. 1: 34–37.
  • Karunen P. 1982. Seasonal changes in lipids of photosynthetically active and senescent parts of Sphagnum fuscum. Lindbergia. 8: 35-44.
  • Kashyap R. Csintalan Z. Veres K. Péli E.R. 2021. Seasonal variation of antioxidant enzymatic responses in the desiccation-tolerant bryophyte Syntrichia ruralis (Hedw.) Web. & Mohr. Columella. J Agric Environ Sci. 8: 37-50.
  • Kirmaci M. Semiz A. Şen A. 2017. Türkiye Sphagnum L. (Sphagnaceae) Cinsinin Revizyonu. TÜBİTAK 1001 proje bitirme raporu, Proje No: 113Z631.
  • Kirmaci M. Filiz F. Çatak U. 2019. Turkish blanket bogs and Sphagnum (Bryophyta) diversity of these blanket bogs. Acta Biol Turc. 32:4, 211–219.
  • Kirmaci M. Çatak U. Filiz F. 2022. Preliminary red list assessment of Turkish Sphagnum (Sphagnopsida). Anatolian Bryol. 8:1, 1-10.
  • Klavina L. Springe G. Steinberga I. Mezaka A. Ievinsh G. 2018. Seasonal changes of chemical composition in boreonemoral moss species. Environ Exp Biol. 16: 9-19.
  • Krzaczkowski L. Wright M. Rebérioux D. Massiot G. Etiévant C. Gairin JE. 2009. Pharmacological screening of bryophyte extracts that inhibit growth and induce abnormal phenotypes in human HeLa cancer cells. Fundam Clin Pharmaco. 23:4, 473-82.
  • Kulshrestha S. Jibran R. Van Klink J.W. Zhou Y. Brummell D.A. Nick W. Albert N.W. Schwinn K.E. Chagné D. Landi M et al. 2022. Stress, senescence, and specialized metabolites in bryophytes. J Exp Bot. 73:13, 4396–4411.
  • Kürschner H. Erdağ A. 2023. Türkiye Karayosunları Florası- Bryophyte Flora of Türkiye. İstanbul: Hiperyayın.
  • Luni´c T.M. Mandi´c M.R. Oalde Pavlovi´c M.M. Sabovljevi´c A.D. Sabovljevi´c M.S. Boži´c Nedeljkovi´c B.Ð. Boži´c B.Ð. 2022. The influence of seasonality on secondary metabolite profiles and neuroprotective activities of moss Hypnum cupressiforme extracts: In vitro and In silino Study. Plants. 11:123, 2-19.
  • Merkuria T. Steiner U. Hindorf H. Frahm J.P. Dehne H.W. 2005. Bioactivity of bryophyte extracts against Botrytis cinerea, Alternaria solani and Phytophtora infestans. J Appl Bot Food Qua. 79: 89-93.
  • Naghdi Badi H. Yazdani D. Mohammad Ali S. Nazari F. 2004. Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Ind Crops Prod. 19: 231–236.
  • Onbasli D. Yuvali G. 2021. In vitro medicinal potentials of Bryum capillare, a moss sample, from Turkey. Saudi J Biol Sci. 28:1, 478-483.
  • Özen-Öztürk Ö. Özdemir T. Batan N. Erata H. 2023. Three Sphagnum taxa new to Turkey and South-West Asia Bot Ser. 47:1, 47–53.
  • Öztürk Ş. Hazer Y. Kaşkatepe B. Ören M. 2021. Determination of total phenol contents, antibacterial and antioxidant activity of some mosses species. Karaelmas Sci Eng J. 12:1, 86-92.
  • Özyigit II. 2008. Phenolic changes during in vitro organogenesis of cotton (Gossypium hirsutum L.) shoot tips. Afr J Biotechnol. 7:8, 1145–1150.
  • Patiño J. Vanderpoorten A. 2018. Bryophyte biogeography. Crit Rev Plant Sci. 37:2-3, 175-209.
  • Perera-Castro A.V. Waterman M.J. Turnbull J.D. Ashcroft M.B. McKinley E. Watling J.R. Bramley-Alves J. Casanova-Katny A. Zuniga G. Flexas J. 2020. It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Front Plant Sci. 11: 1178.
  • Peters K. Gorzolka K. Bruelheide H. Neumann S. 2018. Seasonal variation of secondary metabolites in nine different bryophytes. Ecol Evol. 8: 9105-9117.
  • Rasmussen S. Wolff C. Rudolph H. 1995. Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry. 38: 35–39.
  • Ravishankara M.N. Neeta S. Harish P. Rajani M. 2002. Evaluation of antioxidant properties root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine. 9: 153-160.
  • Singh H.P. Kaur S. Mittal S. Batish D.R. Kohli R.K. 2008. Phytotoxicity of major constituents of the volatile oil from leaves of Artemisia scoparia Waldst. & Kit. Z Naturforsch C. 63: 663-666.
  • Singleton V.L. Orthofer R. Lamuela Raventós R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-178.
  • Smolińska-Kondla D. Zych M. Ramos P. Wacławek S. Stebel A. 2022. Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Polonica. 68:2, 54-68.
  • Soni U. Brar S. Gauttam V.K. 2015. Effect of seasonal variation on secondary metabolites of medicinal plants. Int J Pharm Sci Res. 6: 3654–3662.
  • Stefkov G. Karapandzova M. Stefova M. Kulevanova S. 2009. Seasonal variation of flavonoids in Teucrium polium L. (Lamiaceae). Maced Pharm Bull. 55:1-2, 33-40.
  • Sytiuk A. Céréghino R. Hamard S. Delarue F. Dorrepaal E. Küttim M. Lamentowicz M. Pourrut B. Robroek BJM. Tuittila ES. Jassey V.E.J. 2020. Morphological and biochemical responses of Sphagnum mosses to environmental changes. BioRxiv.1-46.
  • Thakur S. Kapila S. 2017. Seasonal changes in antioxidant enzymes, polyphenol oxidase enzyme, flavonoids and phenolic content in three leafy liverworts. Lindbergia. 40: 39-44.
  • Üçüncü O. Cansu T.B. Özdemir T. Karaoğlu Alpay Ş. Yayli N. 2010. Chemical composition and antimicrobial activity of the essential oils of mosses Tortula muralis Hedw., Homalothecium lutescens (Hedw) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb. from Turkey. Turk J Chem. 34: 1–10.
  • Türker H. Türkyilmaz Ünal B. 2020. Bryophytes as the potential source of antioxidant. Anatolian Bryol. 6:2, 129-137.
  • Wang X. Cao J. Dai X. Xiao J. Wu Y. Wang Q. 2017. Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): phylogeny and ecological factors. PLoS One. 12:3, e0173003.
  • Xie C.F. Lou H.X. 2009. Secondary metabolites in bryophytes: An ecological aspect. Chem Biodiversity. 6:3, 303-312.
  • Yücel T.B. Erata H. 2021. Antimicrobial and antioxidant activities and volatile constituents of Eurhynchium angustirete (Broth.) T. J. Kop. and Isothecium alopecuroides (Lam. ex Dubois) Isov. from Turkey. Nat. Volatiles & Essent. Oils. 8:3, 64-74.
  • Zhang C. Hu L. Liu D. Huang J. Lin W. 2020. Circumdatin D exerts neuroprotective effects by attenuating lps-induced pro-inflammatory responses and downregulating acetylcholinesterase activity in vitro and in vivo. Front Pharmacol. 11: 760.
  • Zych M. Urbisz K. Kimsa-Dudek M. Kamionka M. Dudek S. Raczak B.K. Wacławek S. Chmura D. Kaczmarczyk-Zebrowska I. Stebel A. 2023. Effects of water–ethanol extracts from four Sphagnum Species on gene expression of selected enzymes in normal human dermal fibroblasts and their antioxidant properties. Pharmaceuticals. 16: 1076.

Farklı Sphagnum Türlerinin Fitokimyasal ve Antioksidan Kapasitelerindeki Mevsimsel Değişimin İncelenmesi

Year 2024, , 67 - 68, 05.12.2024
https://doi.org/10.26672/anatolianbryology.1521625

Abstract

Bu çalışmada, Türkiye'nin Karadeniz bölgesinden iki farklı mevsimde toplanan dört Sphagnum taksonunun (S. centrale, S. palustre, S. teres ve S. auriculatum) fitokimyasal içeriği ve antioksidan aktiviteleri araştırılmıştır. Sphagnum taksonlarının metanol ekstraktlarındaki fitokimyasal gruplar kalitatif tarama yöntemleri kullanılarak tanımlanmıştır. Bu taksonların toplam fenol içeriği, standart olarak gallik asit eşdeğerleri ile Folin-ciocalteu reaktifi kullanılarak kantitatif olarak belirlenmiş, antioksidan aktiviteleri 1,2-difenil-1-pikrilhidrazil serbest radikal süpürme yeteneği (DPPH), CUPRAC testi ve fosfomolibden deneyi ile değerlendirilmiştir. Metanol ekstrelerinin kalitatif fitokimyasal taraması, ekstrelerde fenollerin, tanenlerin ve saponinlerin bulunduğunu, alkaloidlerin ve flavonoidlerin ise bulunmadığını göstermiştir. En yüksek DPPH serbest radikal süpürme aktivitesi 100 µgmL-1 S. teres metanol ekstraktında gözlenmiştir (ilk sezon olan Eylül 2021'de %74,47±0,001 ve ikinci sezon olan Mayıs 2022'de %75,37±0,002). En yüksek toplam antioksidan kapasite 100 µgmL-1 S. palustre ekstresinde tespit edilmiştir (ilk sezonda %81,00±0,027 ve ikinci sezonda %84,87±0,002). Deneyimizin sonuçları, ilkbaharda toplanan Sphagnum taksonlarının sonbaharda toplananlara göre daha yüksek antioksidan aktiviteye sahip olduğunu göstermiştir.

Project Number

FEF-21013

References

  • Apak R. Güçlü K. Demirata B. Özyürek M. Çelik S.E. Bektaşoğlu B. Berker II. Özyurt D. 2007. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules. 12: 1496-1547.
  • Asakawa Y. Ludwiczuk A. 2013. Bryophytes: Liverworts, mosses, and hornworts: Extraction and isolation procedures. Methods Mol Biol. 1055, 1-20.
  • Asakawa Y. 2007. Biologically active compounds from bryophytes. Pure Appl Chem. 79: 557–580. Basile A. Giordono S. Lopez-Saez JA. Cobianchi R.C. 1999. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry. 52: 1479-1482.
  • Blois M.S. 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181: 1199-1200. Brand Williams W. Cuvelier M.E. Berset C. 1995. Use of free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 28; 25-30.
  • Castro L. Freeman B.A. 2001. Reactive oxygen species in human health and disease. Nutrition. 17:2, 161-165. Chebil L. Humeau C. Anthoni J. Dehez F. Engaseser J.M. Ghoul M. 2007. Solubility of flavonoids in organic solvents. J Chem Eng Data. 52:51, 552-1556.
  • Cheng X. Xiao Y. Wang X. Wang P. Li H. Yan H. Liu Q. 2012. Anti-tumor and proapoptic activity of ethanolic extract and its various fractions from Polytrichum commune L. Ex Hedw in L1210 cells. J Ethnopharmacol. 143: 49– 56.
  • Cheng X. Xiao Y. Wang P. Wang X. Zhou Y. Yan H. Liu Q. 2013. The ethyl acetate fraction of Polytrichum commune L. ex Hedw induced cell apoptosis via reactive oxygen species in L1210 cells. J Ethnopharmacol. 148:3, 926-933.
  • Crum H. 2001. Structural diversity of Bryophytes. Ann Arbor (MI): University of Michigan Herbarium. Çakır Sahilli Y. Alataş M. 2024. Antioxidant activity and some chemical composition of Polytrichum piliferum Hedw. Extracts. Anatolian Bryology. 10:1, 58-66.
  • Çelik Aşkin T. Aslantürk Ö.S. Aslan G. Kırmacı M. 2023. Determination of phytochemical content and antioxidant activities of Sphagnum divinum Flatberg & K. Hassel and Sphagnum girgensohnii Russow (Sphagnopsida). Anatolian Bryol. 9:2, 58-69.
  • Day A. De J.N. 2012. Antioxidative potential of bryophytes: stress tolerance and commercial perspectives: a review. Pharmacologia. 3:6, 151-159.
  • Dominguez X.A. 1973. Métodos de investigación Fitoquímica. México (D.F): Limusa. Fu P. Lin S. Shan L. Lu M. Shen Y.H. Tang J. Liu RH. Zhang X. Zhu R.L. Zhang W.D. 2012. Constituents of the moss Polytrichum commune. J Nat. Prod.72,1335-1337.
  • Duru D. Deniz Bozkurt S. Yaman C. Gül G. Benek A. Canlı K. 2024. Determination of biochemical content and antioxidant activity of Calliergonella cuspidata (Hedw.) Loeske. Anatolian Bryology. 10:1, 25-33.
  • Fu P. Lin S. Shan L. Lu M. Shen YH. Tang J. Liu RH. Zhang X. Zhu RL. Zhang WD. 2012. Constituents of the moss Polytrichum commune. J Nat Prod. 72,1335-1337.
  • Fudyma J.D. Lyon J. Aminitabrizi R. Gieschen H. Chu R.K. Hoyt D.W. Kyle J.E. Toyoda J. Tolic N. Hess N.J. Heyman H.M. Metz T.O. Tfaily M.M. 2019. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. 1-17.
  • Gahtori D. Chaturvedi P. 2020. Bryophytes: A Potential Source of Antioxidants. Intech Open. doi: 10.5772/intechopen.84587.
  • Ghafoor K. Choi Y.H. 2009. Optimization of ultrasound-assisted extraction of phenolic compounds and antioxidants from grape peels through response surface methodology. J Korean Soc Appl Biol Chem. 52: 295–300.
  • Goffinet B. Shaw A.J. 2008. Bryophyte Biology. Cambridge: Cambridge University Press.
  • Hamard S. Robroek B.J.M. Allard P.M. Signarbieux C. Zhou S. Saesong T. de Baaker F. Buttler A. Chiapusio G. Wolfender J.L. Bragazza L. Jassey V.E.J. 2019. Effects of Sphagnum leachate on competitive Sphagnum microbiome depend on species and time. Front Microbiol. 10: 1–17.
  • Heinrichs J. Anton H. Gradstein S.R. Mues R. 2000. Systematics of Plagiochila Sect. Glaucescentes Carl (Hepaticae) from Topical America: A Morphological and Chemotaxonomical Approach. Plant Syst Evol. 220,115-138.
  • Jayanthy A. Prakash K.U. Remashree AB. 2013. Seasonal and geographical variations in cellular characters and chemical contents in Desmodium gangeticum (L.) D.C. An ayurvedic medicinal plant. Int J Herb Med. 1: 34–37.
  • Karunen P. 1982. Seasonal changes in lipids of photosynthetically active and senescent parts of Sphagnum fuscum. Lindbergia. 8: 35-44.
  • Kashyap R. Csintalan Z. Veres K. Péli E.R. 2021. Seasonal variation of antioxidant enzymatic responses in the desiccation-tolerant bryophyte Syntrichia ruralis (Hedw.) Web. & Mohr. Columella. J Agric Environ Sci. 8: 37-50.
  • Kirmaci M. Semiz A. Şen A. 2017. Türkiye Sphagnum L. (Sphagnaceae) Cinsinin Revizyonu. TÜBİTAK 1001 proje bitirme raporu, Proje No: 113Z631.
  • Kirmaci M. Filiz F. Çatak U. 2019. Turkish blanket bogs and Sphagnum (Bryophyta) diversity of these blanket bogs. Acta Biol Turc. 32:4, 211–219.
  • Kirmaci M. Çatak U. Filiz F. 2022. Preliminary red list assessment of Turkish Sphagnum (Sphagnopsida). Anatolian Bryol. 8:1, 1-10.
  • Klavina L. Springe G. Steinberga I. Mezaka A. Ievinsh G. 2018. Seasonal changes of chemical composition in boreonemoral moss species. Environ Exp Biol. 16: 9-19.
  • Krzaczkowski L. Wright M. Rebérioux D. Massiot G. Etiévant C. Gairin JE. 2009. Pharmacological screening of bryophyte extracts that inhibit growth and induce abnormal phenotypes in human HeLa cancer cells. Fundam Clin Pharmaco. 23:4, 473-82.
  • Kulshrestha S. Jibran R. Van Klink J.W. Zhou Y. Brummell D.A. Nick W. Albert N.W. Schwinn K.E. Chagné D. Landi M et al. 2022. Stress, senescence, and specialized metabolites in bryophytes. J Exp Bot. 73:13, 4396–4411.
  • Kürschner H. Erdağ A. 2023. Türkiye Karayosunları Florası- Bryophyte Flora of Türkiye. İstanbul: Hiperyayın.
  • Luni´c T.M. Mandi´c M.R. Oalde Pavlovi´c M.M. Sabovljevi´c A.D. Sabovljevi´c M.S. Boži´c Nedeljkovi´c B.Ð. Boži´c B.Ð. 2022. The influence of seasonality on secondary metabolite profiles and neuroprotective activities of moss Hypnum cupressiforme extracts: In vitro and In silino Study. Plants. 11:123, 2-19.
  • Merkuria T. Steiner U. Hindorf H. Frahm J.P. Dehne H.W. 2005. Bioactivity of bryophyte extracts against Botrytis cinerea, Alternaria solani and Phytophtora infestans. J Appl Bot Food Qua. 79: 89-93.
  • Naghdi Badi H. Yazdani D. Mohammad Ali S. Nazari F. 2004. Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Ind Crops Prod. 19: 231–236.
  • Onbasli D. Yuvali G. 2021. In vitro medicinal potentials of Bryum capillare, a moss sample, from Turkey. Saudi J Biol Sci. 28:1, 478-483.
  • Özen-Öztürk Ö. Özdemir T. Batan N. Erata H. 2023. Three Sphagnum taxa new to Turkey and South-West Asia Bot Ser. 47:1, 47–53.
  • Öztürk Ş. Hazer Y. Kaşkatepe B. Ören M. 2021. Determination of total phenol contents, antibacterial and antioxidant activity of some mosses species. Karaelmas Sci Eng J. 12:1, 86-92.
  • Özyigit II. 2008. Phenolic changes during in vitro organogenesis of cotton (Gossypium hirsutum L.) shoot tips. Afr J Biotechnol. 7:8, 1145–1150.
  • Patiño J. Vanderpoorten A. 2018. Bryophyte biogeography. Crit Rev Plant Sci. 37:2-3, 175-209.
  • Perera-Castro A.V. Waterman M.J. Turnbull J.D. Ashcroft M.B. McKinley E. Watling J.R. Bramley-Alves J. Casanova-Katny A. Zuniga G. Flexas J. 2020. It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Front Plant Sci. 11: 1178.
  • Peters K. Gorzolka K. Bruelheide H. Neumann S. 2018. Seasonal variation of secondary metabolites in nine different bryophytes. Ecol Evol. 8: 9105-9117.
  • Rasmussen S. Wolff C. Rudolph H. 1995. Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry. 38: 35–39.
  • Ravishankara M.N. Neeta S. Harish P. Rajani M. 2002. Evaluation of antioxidant properties root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine. 9: 153-160.
  • Singh H.P. Kaur S. Mittal S. Batish D.R. Kohli R.K. 2008. Phytotoxicity of major constituents of the volatile oil from leaves of Artemisia scoparia Waldst. & Kit. Z Naturforsch C. 63: 663-666.
  • Singleton V.L. Orthofer R. Lamuela Raventós R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-178.
  • Smolińska-Kondla D. Zych M. Ramos P. Wacławek S. Stebel A. 2022. Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Polonica. 68:2, 54-68.
  • Soni U. Brar S. Gauttam V.K. 2015. Effect of seasonal variation on secondary metabolites of medicinal plants. Int J Pharm Sci Res. 6: 3654–3662.
  • Stefkov G. Karapandzova M. Stefova M. Kulevanova S. 2009. Seasonal variation of flavonoids in Teucrium polium L. (Lamiaceae). Maced Pharm Bull. 55:1-2, 33-40.
  • Sytiuk A. Céréghino R. Hamard S. Delarue F. Dorrepaal E. Küttim M. Lamentowicz M. Pourrut B. Robroek BJM. Tuittila ES. Jassey V.E.J. 2020. Morphological and biochemical responses of Sphagnum mosses to environmental changes. BioRxiv.1-46.
  • Thakur S. Kapila S. 2017. Seasonal changes in antioxidant enzymes, polyphenol oxidase enzyme, flavonoids and phenolic content in three leafy liverworts. Lindbergia. 40: 39-44.
  • Üçüncü O. Cansu T.B. Özdemir T. Karaoğlu Alpay Ş. Yayli N. 2010. Chemical composition and antimicrobial activity of the essential oils of mosses Tortula muralis Hedw., Homalothecium lutescens (Hedw) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb. from Turkey. Turk J Chem. 34: 1–10.
  • Türker H. Türkyilmaz Ünal B. 2020. Bryophytes as the potential source of antioxidant. Anatolian Bryol. 6:2, 129-137.
  • Wang X. Cao J. Dai X. Xiao J. Wu Y. Wang Q. 2017. Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): phylogeny and ecological factors. PLoS One. 12:3, e0173003.
  • Xie C.F. Lou H.X. 2009. Secondary metabolites in bryophytes: An ecological aspect. Chem Biodiversity. 6:3, 303-312.
  • Yücel T.B. Erata H. 2021. Antimicrobial and antioxidant activities and volatile constituents of Eurhynchium angustirete (Broth.) T. J. Kop. and Isothecium alopecuroides (Lam. ex Dubois) Isov. from Turkey. Nat. Volatiles & Essent. Oils. 8:3, 64-74.
  • Zhang C. Hu L. Liu D. Huang J. Lin W. 2020. Circumdatin D exerts neuroprotective effects by attenuating lps-induced pro-inflammatory responses and downregulating acetylcholinesterase activity in vitro and in vivo. Front Pharmacol. 11: 760.
  • Zych M. Urbisz K. Kimsa-Dudek M. Kamionka M. Dudek S. Raczak B.K. Wacławek S. Chmura D. Kaczmarczyk-Zebrowska I. Stebel A. 2023. Effects of water–ethanol extracts from four Sphagnum Species on gene expression of selected enzymes in normal human dermal fibroblasts and their antioxidant properties. Pharmaceuticals. 16: 1076.
There are 55 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Research Articles
Authors

Tülay Aşkın Çelik 0000-0001-6891-9089

Özlem Sultan Aslantürk 0000-0002-2503-0164

Gözde Aslan 0000-0001-6157-1382

Mesut Kırmacı 0000-0001-8373-6520

Project Number FEF-21013
Publication Date December 5, 2024
Submission Date July 24, 2024
Acceptance Date October 8, 2024
Published in Issue Year 2024

Cite

APA Aşkın Çelik, T., Aslantürk, Ö. S., Aslan, G., Kırmacı, M. (2024). Investigating Seasonal Variation in The Phytochemical and Antioxidant Capacities of Different Sphagnum Taxa. Anatolian Bryology, 10(2), 67-68. https://doi.org/10.26672/anatolianbryology.1521625

13304133141331513316133242069422229 27016 27017 27017  27018