Research Article
BibTex RIS Cite

Environmental and Topographical Factors Influencing Moss Distribution in Semi-Arid Regions: A Study of Çankırı-Eldivan Mountain

Year 2024, , 179 - 190, 05.12.2024
https://doi.org/10.26672/anatolianbryology.1594697

Abstract

This research investigated the environmental and topographical variables influencing the distribution of moss, utilizing data from 455 sampling locations in the Çankırı-Eldivan Mountain region. Logistic regression analysis results indicated that the primary determinants of moss presence were elevation, mean temperature, and slope. Elevation positively influences moss presence, whereas mean temperature negatively affects it. Slope, conversely, positively influenced moss habitats by enhancing water retention and soil stability. Despite the limited impact of the aspect, surfaces oriented towards the north and east were more advantageous. The total precipitation positively influenced moss presence; however, this effect was eclipsed by elevation. These findings significantly enhance the comprehension of mosses' ecological tolerance and reliance on environmental variables. The research underscores critical environmental variables influencing moss distribution and establishes a foundation for natural resource management, biodiversity conservation strategies, and evaluation of climate change impacts. Future research should investigate anthropogenic influences on moss distribution more comprehensively and employ molecular ecological techniques.

References

  • Abay G. Gül E. Günlü A. Erşahin S. Ursavaş S. 2015. Spatial variation, mapping, and classification of moss families in semi-arid landscapes in NW Turkey. Environmental monitoring and assessment, 187, 1-11.
  • Abay G. Gül E. Ursavaş S. Erşahin, S. 2014. Substratum properties and mosses in semi-arid environments. A case study from North Turkey. Cryptogamie, Bryologie, 35:2, 181-196.
  • Alataş M. Ezer T. Erata H. Batan N. Ursavaş S. 2023. The Epiphytic Bryophyte Vegetation of Buxus sempervirens L. Forests in the Fırtına Valley (Rize, Turkey). Cryptogamie, Bryologie, 44:5, 123-132.
  • Alvarenga D.O. Rousk K. 2022. Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erac091.
  • Baker W.L. 2005. Topographic controls on bryophyte distribution in temperate regions. The Bryologist, 108:4, 557–570.
  • Bates J.W. 2000. Bryophyte ecology and adaptive strategies: An overview. Cambridge University Press.
  • Cruz M. Parker B. Salmane, A.K. 2023. Biocentric Design: Mapping Optimal Environmental Variables for Moss Propagation on Urban Bioreceptive Surfaces. Blucher Design Proceedings. https://doi.org/10.5151/sigradi2022-sigradi2022_296.
  • Ediş S. Aytaş İ. Özcan A.U. 2021. ICONA modeli kullanarak toprak erozyon riskinin değerlendirilmesi: Meşeli (Çubuk/Ankara) Havzası Örneği. Anadolu Orman Araştırmaları Dergisi, 7:1, 15-22.
  • Gignac L.D. 2001. Bryophytes as indicators of climate change in arctic and boreal ecosystems. Annals of Botany, 87:5, 515–523.
  • Gonzalez‐Aragon D. Rivadeneira M.M. Lara C. Torres F.I. Vásquez J.A. Broitman B.R. 2024. A species distribution model of the giant kelp Macrocystis pyrifera: Worldwide changes and a focus on the Southeast Pacific. Ecology and Evolution, 14:3, e10901.
  • Gornall J.L. Jónsdóttir I.S. Woodin S.J. Wal R. van der. 2007. Arctic mosses govern the below-ground environment and ecosystem processes. Oecologia. https://doi.org/10.1007/S00442-007-0785-0.
  • Hanley J.A. McNeil B.J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.
  • Heegaard E. 2002. Modelling bryophyte species richness in Norway as a function of environmental variables. Journal of Vegetation Science, 13:1, 39–46.
  • Hosmer D.W. Leme show S. 2000. Applied Logistic Regression. Wiley-Interscience.
  • Ji X.-H. Pang S.Q. Zheng Q. 2018. Impacts of Environmental Heterogeneity on Distribution Pattern of Moss Crust Patches in Temperate Desert in Central Asia. Polish Journal of Ecology. https://doi.org/10.3161/15052249PJE2018.66.2.001.
  • MGM, 2024. Turkish State Meteorological Service, Çankırı Meteorological Station data.
  • Pearson K. 1895. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58: 240–242.
  • Perdrizet W.J. McKnight K.B. 2012. Edaphic and phytosociological factors influencing moss species occurrence in a northern hardwood forest. The Bryologist. https://doi.org/10.1639/0007-2745-115.1.118.
  • Rolland C. 2003. Bryophytes and elevation gradients: An analysis of species distribution along an altitudinal gradient. Plant Ecology, 169:2, 217–229.
  • Rooy J. van Phephu N. 2016. Centres of moss diversity in southern Africa. Bryophyte Diversity and Evolution. https://doi.org/10.11646/BDE.38.1.3.
  • Rydin H. Jeglum J.K. Bennett K.D. 2013. The biology of peatlands, 2e. OUP Oxford.
  • Rydin H. 2009. The ecology of bryophytes: A synthesis of bryophyte distribution and environmental factors. Springer-Verlag.
  • Schreiber P.J.M.Z. 1904. Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol, 21:10, 441-452.
  • Shidong C. Yang Z. Liu X. Sun J. Xu C. Xiong D. Lin W. Li, Y. Guo J. Yang Y. 2019. Moss regulates soil evaporation leading to decoupling of soil and near-surface air temperatures. Journal of Soils and Sediments. https://doi.org/10.1007/S11368-019-02297-4.
  • Shui-Liang G. Tong C. 2001. Distribution patterns of ground moss species and its relationships with environmental factors in Changbai Mountain, northeast China. Journal of Integrative Plant Biology. 43:6, 631-643.
  • Tuba Z. Proctor M.C.F. Csintalan Z. 2011. Bryophyte ecophysiology and adaptation strategies in arid and semi-arid environments. Springer Series on Bryophyte Studies.
  • Xiao L. Zhang W. Hu P. Vesterdal L. Zhao J. Tang L. Xiao D. Wang K. 2023. Mosses stimulate soil carbon and nitrogen accumulation during vegetation restoration in a humid subtropical area. Soil Biology & Biochemistry. https://doi.org/10.1016/j.soilbio.2023.109127.
  • Yıldırımer S. Özalp M. 2024. Evaluation of Hydrological Parameters and Sediment Dynamics in the Borçka Dam Watershed Using the SWAT Model. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. https://doi.org/10.17474/artvinofd.1426951.
  • Yin H. Perera-Castro A.V. Randall K. Turnbull J.D. Waterman M.J. Dunn J. Robinson S.A. 2023. Basking in the sun: how mosses photosynthesis and survive in Antarctica. Photosynthesis Research. https://doi.org/10.1007/s11120-023-01040-y.
  • Zheng G. Gu J. Zhao W. Zhang Y. Guan Z. Lei M. He C. 2024. Spatial, Geographical, Climatic, and Edaphic Influences on Moss Community Structure: A Case Study from Qinhuangdao, China. Forests. https://doi.org/10.3390/f15030424.

Yarı Kurak Bölgelerde Karayosunu Varlığını Etkileyen Çevresel ve Topoğrafik Değişkenler: Çankırı-Eldivan Dağı Örneği

Year 2024, , 179 - 190, 05.12.2024
https://doi.org/10.26672/anatolianbryology.1594697

Abstract

Bu çalışma, Çankırı-Eldivan Dağı’ndaki 455 örnekleme noktasından elde edilen veriler kullanılarak karayosunu varlığını etkileyen çevresel ve topoğrafik faktörleri incelemektedir. Lojistik regresyon analizi sonuçları, karayosunu varlığını belirleyen en güçlü faktörlerin yükselti, ortalama sıcaklık ve eğim olduğunu göstermiştir. Yükselti, karayosunu varlığı üzerinde pozitif bir etkiye sahipken, ortalama sıcaklık negatif bir etki göstermektedir. Eğim ise su birikimi ve toprak stabilitesini destekleyerek karayosunu habitatlarını olumlu yönde etkilemiştir. Bakı değişkeni sınırlı bir etki gösterse de kuzey ve doğu yönelimli yüzeylerin daha avantajlı olduğu belirlenmiştir. Toplam yağışın karayosunu varlığı üzerinde pozitif bir etkisi olduğu tespit edilmiştir, ancak bu etkinin yükseltinin gölgesinde kaldığı görülmüştür. Bu bulgular, karayosunlarının ekolojik toleranslarını ve çevresel değişkenlere olan bağımlılıklarını anlamada önemli katkılar sağlamaktadır. Çalışma, karayosunlarının dağılımını etkileyen temel çevresel faktörleri vurgularken, doğal kaynak yönetimi, biyoçeşitlilik koruma stratejileri ve iklim değişikliğinin etkilerini değerlendirmek için bir temel sunmaktadır. Gelecekteki çalışmalar, karayosunu dağılımını etkileyen insan kaynaklı faktörlerin daha detaylı bir şekilde incelenmesini ve moleküler ekoloji yaklaşımlarının kullanılmasını önermektedir.

References

  • Abay G. Gül E. Günlü A. Erşahin S. Ursavaş S. 2015. Spatial variation, mapping, and classification of moss families in semi-arid landscapes in NW Turkey. Environmental monitoring and assessment, 187, 1-11.
  • Abay G. Gül E. Ursavaş S. Erşahin, S. 2014. Substratum properties and mosses in semi-arid environments. A case study from North Turkey. Cryptogamie, Bryologie, 35:2, 181-196.
  • Alataş M. Ezer T. Erata H. Batan N. Ursavaş S. 2023. The Epiphytic Bryophyte Vegetation of Buxus sempervirens L. Forests in the Fırtına Valley (Rize, Turkey). Cryptogamie, Bryologie, 44:5, 123-132.
  • Alvarenga D.O. Rousk K. 2022. Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erac091.
  • Baker W.L. 2005. Topographic controls on bryophyte distribution in temperate regions. The Bryologist, 108:4, 557–570.
  • Bates J.W. 2000. Bryophyte ecology and adaptive strategies: An overview. Cambridge University Press.
  • Cruz M. Parker B. Salmane, A.K. 2023. Biocentric Design: Mapping Optimal Environmental Variables for Moss Propagation on Urban Bioreceptive Surfaces. Blucher Design Proceedings. https://doi.org/10.5151/sigradi2022-sigradi2022_296.
  • Ediş S. Aytaş İ. Özcan A.U. 2021. ICONA modeli kullanarak toprak erozyon riskinin değerlendirilmesi: Meşeli (Çubuk/Ankara) Havzası Örneği. Anadolu Orman Araştırmaları Dergisi, 7:1, 15-22.
  • Gignac L.D. 2001. Bryophytes as indicators of climate change in arctic and boreal ecosystems. Annals of Botany, 87:5, 515–523.
  • Gonzalez‐Aragon D. Rivadeneira M.M. Lara C. Torres F.I. Vásquez J.A. Broitman B.R. 2024. A species distribution model of the giant kelp Macrocystis pyrifera: Worldwide changes and a focus on the Southeast Pacific. Ecology and Evolution, 14:3, e10901.
  • Gornall J.L. Jónsdóttir I.S. Woodin S.J. Wal R. van der. 2007. Arctic mosses govern the below-ground environment and ecosystem processes. Oecologia. https://doi.org/10.1007/S00442-007-0785-0.
  • Hanley J.A. McNeil B.J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.
  • Heegaard E. 2002. Modelling bryophyte species richness in Norway as a function of environmental variables. Journal of Vegetation Science, 13:1, 39–46.
  • Hosmer D.W. Leme show S. 2000. Applied Logistic Regression. Wiley-Interscience.
  • Ji X.-H. Pang S.Q. Zheng Q. 2018. Impacts of Environmental Heterogeneity on Distribution Pattern of Moss Crust Patches in Temperate Desert in Central Asia. Polish Journal of Ecology. https://doi.org/10.3161/15052249PJE2018.66.2.001.
  • MGM, 2024. Turkish State Meteorological Service, Çankırı Meteorological Station data.
  • Pearson K. 1895. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58: 240–242.
  • Perdrizet W.J. McKnight K.B. 2012. Edaphic and phytosociological factors influencing moss species occurrence in a northern hardwood forest. The Bryologist. https://doi.org/10.1639/0007-2745-115.1.118.
  • Rolland C. 2003. Bryophytes and elevation gradients: An analysis of species distribution along an altitudinal gradient. Plant Ecology, 169:2, 217–229.
  • Rooy J. van Phephu N. 2016. Centres of moss diversity in southern Africa. Bryophyte Diversity and Evolution. https://doi.org/10.11646/BDE.38.1.3.
  • Rydin H. Jeglum J.K. Bennett K.D. 2013. The biology of peatlands, 2e. OUP Oxford.
  • Rydin H. 2009. The ecology of bryophytes: A synthesis of bryophyte distribution and environmental factors. Springer-Verlag.
  • Schreiber P.J.M.Z. 1904. Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol, 21:10, 441-452.
  • Shidong C. Yang Z. Liu X. Sun J. Xu C. Xiong D. Lin W. Li, Y. Guo J. Yang Y. 2019. Moss regulates soil evaporation leading to decoupling of soil and near-surface air temperatures. Journal of Soils and Sediments. https://doi.org/10.1007/S11368-019-02297-4.
  • Shui-Liang G. Tong C. 2001. Distribution patterns of ground moss species and its relationships with environmental factors in Changbai Mountain, northeast China. Journal of Integrative Plant Biology. 43:6, 631-643.
  • Tuba Z. Proctor M.C.F. Csintalan Z. 2011. Bryophyte ecophysiology and adaptation strategies in arid and semi-arid environments. Springer Series on Bryophyte Studies.
  • Xiao L. Zhang W. Hu P. Vesterdal L. Zhao J. Tang L. Xiao D. Wang K. 2023. Mosses stimulate soil carbon and nitrogen accumulation during vegetation restoration in a humid subtropical area. Soil Biology & Biochemistry. https://doi.org/10.1016/j.soilbio.2023.109127.
  • Yıldırımer S. Özalp M. 2024. Evaluation of Hydrological Parameters and Sediment Dynamics in the Borçka Dam Watershed Using the SWAT Model. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. https://doi.org/10.17474/artvinofd.1426951.
  • Yin H. Perera-Castro A.V. Randall K. Turnbull J.D. Waterman M.J. Dunn J. Robinson S.A. 2023. Basking in the sun: how mosses photosynthesis and survive in Antarctica. Photosynthesis Research. https://doi.org/10.1007/s11120-023-01040-y.
  • Zheng G. Gu J. Zhao W. Zhang Y. Guan Z. Lei M. He C. 2024. Spatial, Geographical, Climatic, and Edaphic Influences on Moss Community Structure: A Case Study from Qinhuangdao, China. Forests. https://doi.org/10.3390/f15030424.
There are 30 citations in total.

Details

Primary Language English
Subjects Forest Botany
Journal Section Research Articles
Authors

Serhat Ursavaş 0000-0001-5480-5590

Semih Edis 0000-0003-4211-2476

Publication Date December 5, 2024
Submission Date December 2, 2024
Acceptance Date December 4, 2024
Published in Issue Year 2024

Cite

APA Ursavaş, S., & Edis, S. (2024). Environmental and Topographical Factors Influencing Moss Distribution in Semi-Arid Regions: A Study of Çankırı-Eldivan Mountain. Anatolian Bryology, 10(2), 179-190. https://doi.org/10.26672/anatolianbryology.1594697

133041331413315 27016 27017 27017  27018