Research Article
BibTex RIS Cite

Uzun Süreli İmpedans Testleri ile Asidik Çözeltideki Yumuşak Çeliğin Korozyonuna Yeni Bir İnhibitör Yaklaşımı: Hypnum cupressiforme (Bryophyta) için Yeni Bir Uygulama Alanı

Year 2020, Volume: 6 Issue: 2, 119 - 128, 15.11.2020
https://doi.org/10.26672/anatolianbryology.767714

Abstract

Bu çalışmanın en önemli yönü, 298 K’de 1,0 M HCl çözeltisindeki yumuşak çeliğin korozyon davranışına, bir briyofit türü olan Hypnum cupressiforme Hedw.’nin “yeşil inhibitor” olarak etkisinin ilk kez inceleniyor olmasıdır. Karayosunu ekstraktının inhibitör etkisi, elektrokimyasal impedans spektroskopisi (EIS) tekniği uygulanarak araştırılmıştır. Ekstrakt’ın farklı derişimlerinin bazı zaman parametreleriyle değişimini incelemek amacıyla, EIS ile Nyquist diyagramları oluşturulmuştur. Ayrıca, EIS tekniği ile metalin inhibisyon mekanizması açısından yüzey yükü belirlenmiş ve bunun sonucunda, protonlanmış inhibitör moleküllerinin doğrudan metal yüzeyine adsorplandığı bulunmuştur. Çalışma elektrotlarının yüzey morfoloji incelemeleri alan emisyonlu taramalı elektron mikroskobu (FESEM) ve optik metal mikroskobu teknikleri kullanılarak gerçekleştirilmiştir. Elektrokimyasal deneylerle, yüzey analizi çalışmaları birbirini destekler niteliktedir.

References

  • Comparative study on the corrosion inhibition of mild steel by Maesobatrya barteri leaf and root extracts in acidic medium. J. Sci. Eng. Res. 3: 138-144.
  • Abdel-Gaber A.M. Abd-El-Nabey B.A. Sidahmed I.M. El-Zayady A.M. Saadawy M. 2006. Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corrosion Science. 48: 2765-2779.
  • Abiola O.K. Oforka N.C. Ebenso E.E. Nwinuka N.M. 2007. Eco-friendly corrosion inhibitors: The inhibitive action of Delonix regia extract for the corrosion of aluminium in acidic media. Anti-Corrosion Methods and Materials. 54: 4, 219-224.
  • Alibakhshi E. Ramezanzadeh M. Bahlakeh G. Ramezanzadeh B. Mahdavian M. Motamedi M. 2018. Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J. Mol. Liq. 255: 185-198.
  • Aljuhani A. El-Sayed W.S. Sahu P.K. Rezki N. Aouad M.R. Salghi R. Messali M. 2018. Microwave-assisted synthesis of novel imidazolium, pyridinium and pyridazinium based ionic liquids and/or salts and prediction of physico-chemical properties for their toxicity and antibacterial activity. J. Mol. Liq. 249: 747-753.
  • Allaoui M. Rahim O. Sekhri L. 2017. Electrochemical study on corrosion inhibition of iron in acidic medium by Moringa oleifera extract. Orient. J. Chem. 33: 2, 637-646.
  • Al-Senani G.M. 2016. Corrosion Inhibition of Carbon Steel in acidic chloride medium by Cucumis sativus (cucumber) Peel Extract. Int. J. Electrochem. Sci. 11: 291-302.
  • Ameta G. Pathak A.K. Ameta C. Ameta R. Punjabi P.B. 2015. Sonochemical synthesis and characterization of imidazolium based ionic liquids: a green pathway. J. Mol. Liq. 211: 934-937.
  • Charitha B.P. Rao P. 2018. Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies. Int. J. Biol. Macromol. 112: 461-472.
  • Cortini Pedrotti C. 2006. Flora dei muschi d’Italia, Bryopsida (II parte). Roma: Antonia Delfino Editore. ISBN: 88-7287-370-3, Antonio Delfino Editore Medicina-Scienze. pp. 817-1235.
  • Dar M.A. 2011. A review: plant extracts and oils as corrosion inhibitors in aggressive Media. Ind. Lubr. Tribol. 63: 4, 227-233.
  • Delwiche C.F. Cooper E.D. 2015. The Evolutionary Origin of a Terrestrial Flora. Current Biology. 25: 899-910.
  • Ebenso E.E. Ekpe U.J. 1996. Kinetic study of corrosion and corrosion inhibition of mild steel in H2SO4 using Parica papaya leaves extract. West African Journal of Biological and Applied Chemistry. 41: 21-27.
  • El-Etre A.Y. 2003. Inhibition of aluminum corrosion using Opuntia extract. Corrosion Science. 45: 11, 2485-2495.
  • El Ouariachi E. Paolini J. Bouklah M. Elidrissi A. Bouyanzer A. Hammouti B. Desjobert J.M. Costa J. 2010. Adsorption properties of Rosmarinus officinalis oil as green corrosion inhibitors on C38 steel in 0.5 M H2SO4. Acta Metallurgica Sinica. 23: 1, 13-20.
  • Emregül K.C. Hayvali M. 2006. Studies on the effect of a newly synthesized Schiff base compound from phenazone and vanillin on the corrosion of steel in 2 M HCl. Corrosion Science. 48: 4, 797-812.
  • Fang Y. Suganthan B. Ramasamy R.P. 2019. Electrochemical characterization of aromatic corrosion inhibitors from plant extracts. Journal of Electroanalytical Chemistry. 840: 74-83.
  • Fitoz A. Nazır H. Özgür nee Yakut M. Emregül E. Emregül K.C. 2018. An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor. Corros. Sci. 133: 451-464.
  • Houbairi S. Essahli M. Lamiri A. 2013. Inhibition of Copper Corrosion in 2 M HNO3 by the Essential Oil of Thyme Morocco. Port. Electrochim. Acta. 31: 4, 221-233.
  • Mo S. Luo H.-Q. Li N.-B. 2016. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid. Chemical Papers. 70: 9, 1131-1143.
  • Obot I.B. Obi-Egbedi N.O. 2011. Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid: Experimental and theoretical investigations, Curr. Appl. Phys. 11: 382-392.
  • Oguzie E.E. 2008. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel. Corrosion Science. 50: 11, 2993-2998.
  • Okafor P.C. Ekpe U.J. Ebenso E.E. Umoren E.M. Leizou K.E. 2005. Inhibition of mild steel corrosion in acidic medium by Allium sativum extracts. Bulletin of Electrochemistry. 21: 8, 347-352.
  • Özkır D. Kayakırılmaz K. Bayol E. Gürten A.A. Kandemirli F. 2012. The inhibition effect of Azure A on mild steel in 1M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corrosion Science. 56: 143-152.
  • Özkır D. Çifcibaşı Ö. 2017. The Investigation of the Adsorption of a Schiff Base Derivated from 2,5-Dichloroaniline as an Inhibitor on Mild Steel Corrosion in Acidic Medium by Electrochemical Methods. Engineering Sciences. 12: 2, 97-107.
  • Özkır D. 2018. A new example of mild steel corrosion inhibitors synthesized from Chloroaniline: 2-[(2,5- dichlorophenylimino)methyl]phenol. OHU J. Eng. Sci. 7: 2, 993-1003.
  • Özkır D. 2019a. A Newly Synthesized Schiff Base Derived from Condensation Reaction of 2,5-dichloroaniline and benzaldehyde: Its Applicability through Molecular Interaction on Mild Steel as an Acidic Corrosion Inhibitor by Using Electrochemical Techniques. J. Electrochem. Sci. Technol. 10: 1, 37-54.
  • Özkır D. 2019b. The Electrochemical Variation of a Kind of Protein Staining and Food Dye as a New Corrosion Inhibitor on Mild Steel in Acidic Medium. International Journal of Electrochemistry. 1-11. Article ID 5743952. https://doi.org/10.1155/2019/5743952.
  • Özkır D. Kayakırılmaz K. 2020. The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel. J. Electrochem. Sci. Technol. (Epub ahead of print). https://doi.org/10.33961/jecst.2019.00703
  • Prathibha B.S. Nagaswarupa H.P. Kotteeswaran P. BheemaRaju V. 2017. Inhibiting effect of Quaternary ammonium compound on the corrosion of mild steel in 1M Hydrochloric acid solution, its adsorption and kinetic characteristics. Mater. Today-Proc. 4: 11, 12245-12254.
  • Rani B.E.A. Basu B.B.J. 2012. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. International Journal of Corrosion. 15 pp.
  • Saraswat V. Yadav M. Obot I.B. 2020. Investigations on eco-friendly corrosion inhibitors for mild steel in acid environment: Electrochemical, DFT and Monte Carlo Simulation approach. Colloids and Surfaces A. 599, 124881-124893.
  • Sheldon R.A. 2016. Green chemistry and resource efficiency: towards a green economy. Green Chem. 18: 3180-3183.
  • Sin H.L.Y. Rahim A.A. Gan C.Y. Saad B. Salleh M.I. Umeda M. 2017. Aquilaria subintergra leaves extracts as sustainable mild steel corrosion inhibitors in HCl. Measurement. 109: 334-345.
  • Singh A. Ahamad I. Quraishi M.A. 2016. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arab. J. Chem. 9: 2, S1584-S1589.
  • Smith A.J.E. 2004. The moss flora of Britain and Ireland, Cambridge Univ. Press. Cambridge.
  • Sürme Y. Gürten A.A. 2009. Role of polyethylene glycol tert-octylphenyl ether on corrosion behaviour of mild steel in acidic solution. Corros. Eng. Sci. Techn. 44: 4, 304-311.
  • Sürme Y. Gürten A.A. Bayol E. 2011. Corrosion behavior of mild steel in the presence of scale inhibitor in sulfuric acid solution. Prot. Met. Phys. Chem+. 47: 1, 117-120.
  • Wang Y. Zuo Y. Tang Y. 2018. Inhibition effect and mechanism of sodium oleate on passivation and pitting corrosion of steel in simulated concrete pore solution, Constr. Build. Mater. 167: 197-204.
  • Xie C.F. Lou H.X. 2009. Secondary Metabolites in Bryophytes: An Ecological Aspect. Chemistry & Biodiversity. 6: 303-312.
  • Xu B. Liu Y. Yin X. Yang W. Chen Y. 2013. Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corrosion Science. 74: 206-213.

A New Inhibitor Approach to the Corrosion of Mild Steel in Acidic Solution with Long-Term Impedance Tests: A New Application Area for Hypnum cupressiforme (Bryophyta)

Year 2020, Volume: 6 Issue: 2, 119 - 128, 15.11.2020
https://doi.org/10.26672/anatolianbryology.767714

Abstract

The most important aspect of this study is that the effect of Hypnum cupressiforme Hedw. which is a bryophyte species as a “green inhibitor” on the corrosion behavior of mild steel in 1.0 M HCl solution at 298 K is being examined for the first time. The inhibitory effect of moss extract was investigated applying electrochemical impedance spectroscopy (EIS) technique. Nyquist diagrams were performed by EIS to examine the variation of the different concentrations of the extract with some immersion-time parameters. In addition, the surface charge of the metal in terms of the inhibition mechanism was determined by the EIS technique and as a result, it was found that the protonated inhibitor molecules were adsorbed directly onto the metal surface. The surface morphology studies of working electrodes was performed using field emission scanning electron microscope (FESEM) and optical metal microscopy techniques. Electrochemical tests and surface analysis studies support each other.

References

  • Comparative study on the corrosion inhibition of mild steel by Maesobatrya barteri leaf and root extracts in acidic medium. J. Sci. Eng. Res. 3: 138-144.
  • Abdel-Gaber A.M. Abd-El-Nabey B.A. Sidahmed I.M. El-Zayady A.M. Saadawy M. 2006. Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corrosion Science. 48: 2765-2779.
  • Abiola O.K. Oforka N.C. Ebenso E.E. Nwinuka N.M. 2007. Eco-friendly corrosion inhibitors: The inhibitive action of Delonix regia extract for the corrosion of aluminium in acidic media. Anti-Corrosion Methods and Materials. 54: 4, 219-224.
  • Alibakhshi E. Ramezanzadeh M. Bahlakeh G. Ramezanzadeh B. Mahdavian M. Motamedi M. 2018. Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study. J. Mol. Liq. 255: 185-198.
  • Aljuhani A. El-Sayed W.S. Sahu P.K. Rezki N. Aouad M.R. Salghi R. Messali M. 2018. Microwave-assisted synthesis of novel imidazolium, pyridinium and pyridazinium based ionic liquids and/or salts and prediction of physico-chemical properties for their toxicity and antibacterial activity. J. Mol. Liq. 249: 747-753.
  • Allaoui M. Rahim O. Sekhri L. 2017. Electrochemical study on corrosion inhibition of iron in acidic medium by Moringa oleifera extract. Orient. J. Chem. 33: 2, 637-646.
  • Al-Senani G.M. 2016. Corrosion Inhibition of Carbon Steel in acidic chloride medium by Cucumis sativus (cucumber) Peel Extract. Int. J. Electrochem. Sci. 11: 291-302.
  • Ameta G. Pathak A.K. Ameta C. Ameta R. Punjabi P.B. 2015. Sonochemical synthesis and characterization of imidazolium based ionic liquids: a green pathway. J. Mol. Liq. 211: 934-937.
  • Charitha B.P. Rao P. 2018. Pullulan as a potent green inhibitor for corrosion mitigation of aluminum composite: Electrochemical and surface studies. Int. J. Biol. Macromol. 112: 461-472.
  • Cortini Pedrotti C. 2006. Flora dei muschi d’Italia, Bryopsida (II parte). Roma: Antonia Delfino Editore. ISBN: 88-7287-370-3, Antonio Delfino Editore Medicina-Scienze. pp. 817-1235.
  • Dar M.A. 2011. A review: plant extracts and oils as corrosion inhibitors in aggressive Media. Ind. Lubr. Tribol. 63: 4, 227-233.
  • Delwiche C.F. Cooper E.D. 2015. The Evolutionary Origin of a Terrestrial Flora. Current Biology. 25: 899-910.
  • Ebenso E.E. Ekpe U.J. 1996. Kinetic study of corrosion and corrosion inhibition of mild steel in H2SO4 using Parica papaya leaves extract. West African Journal of Biological and Applied Chemistry. 41: 21-27.
  • El-Etre A.Y. 2003. Inhibition of aluminum corrosion using Opuntia extract. Corrosion Science. 45: 11, 2485-2495.
  • El Ouariachi E. Paolini J. Bouklah M. Elidrissi A. Bouyanzer A. Hammouti B. Desjobert J.M. Costa J. 2010. Adsorption properties of Rosmarinus officinalis oil as green corrosion inhibitors on C38 steel in 0.5 M H2SO4. Acta Metallurgica Sinica. 23: 1, 13-20.
  • Emregül K.C. Hayvali M. 2006. Studies on the effect of a newly synthesized Schiff base compound from phenazone and vanillin on the corrosion of steel in 2 M HCl. Corrosion Science. 48: 4, 797-812.
  • Fang Y. Suganthan B. Ramasamy R.P. 2019. Electrochemical characterization of aromatic corrosion inhibitors from plant extracts. Journal of Electroanalytical Chemistry. 840: 74-83.
  • Fitoz A. Nazır H. Özgür nee Yakut M. Emregül E. Emregül K.C. 2018. An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor. Corros. Sci. 133: 451-464.
  • Houbairi S. Essahli M. Lamiri A. 2013. Inhibition of Copper Corrosion in 2 M HNO3 by the Essential Oil of Thyme Morocco. Port. Electrochim. Acta. 31: 4, 221-233.
  • Mo S. Luo H.-Q. Li N.-B. 2016. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid. Chemical Papers. 70: 9, 1131-1143.
  • Obot I.B. Obi-Egbedi N.O. 2011. Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid: Experimental and theoretical investigations, Curr. Appl. Phys. 11: 382-392.
  • Oguzie E.E. 2008. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel. Corrosion Science. 50: 11, 2993-2998.
  • Okafor P.C. Ekpe U.J. Ebenso E.E. Umoren E.M. Leizou K.E. 2005. Inhibition of mild steel corrosion in acidic medium by Allium sativum extracts. Bulletin of Electrochemistry. 21: 8, 347-352.
  • Özkır D. Kayakırılmaz K. Bayol E. Gürten A.A. Kandemirli F. 2012. The inhibition effect of Azure A on mild steel in 1M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corrosion Science. 56: 143-152.
  • Özkır D. Çifcibaşı Ö. 2017. The Investigation of the Adsorption of a Schiff Base Derivated from 2,5-Dichloroaniline as an Inhibitor on Mild Steel Corrosion in Acidic Medium by Electrochemical Methods. Engineering Sciences. 12: 2, 97-107.
  • Özkır D. 2018. A new example of mild steel corrosion inhibitors synthesized from Chloroaniline: 2-[(2,5- dichlorophenylimino)methyl]phenol. OHU J. Eng. Sci. 7: 2, 993-1003.
  • Özkır D. 2019a. A Newly Synthesized Schiff Base Derived from Condensation Reaction of 2,5-dichloroaniline and benzaldehyde: Its Applicability through Molecular Interaction on Mild Steel as an Acidic Corrosion Inhibitor by Using Electrochemical Techniques. J. Electrochem. Sci. Technol. 10: 1, 37-54.
  • Özkır D. 2019b. The Electrochemical Variation of a Kind of Protein Staining and Food Dye as a New Corrosion Inhibitor on Mild Steel in Acidic Medium. International Journal of Electrochemistry. 1-11. Article ID 5743952. https://doi.org/10.1155/2019/5743952.
  • Özkır D. Kayakırılmaz K. 2020. The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel. J. Electrochem. Sci. Technol. (Epub ahead of print). https://doi.org/10.33961/jecst.2019.00703
  • Prathibha B.S. Nagaswarupa H.P. Kotteeswaran P. BheemaRaju V. 2017. Inhibiting effect of Quaternary ammonium compound on the corrosion of mild steel in 1M Hydrochloric acid solution, its adsorption and kinetic characteristics. Mater. Today-Proc. 4: 11, 12245-12254.
  • Rani B.E.A. Basu B.B.J. 2012. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. International Journal of Corrosion. 15 pp.
  • Saraswat V. Yadav M. Obot I.B. 2020. Investigations on eco-friendly corrosion inhibitors for mild steel in acid environment: Electrochemical, DFT and Monte Carlo Simulation approach. Colloids and Surfaces A. 599, 124881-124893.
  • Sheldon R.A. 2016. Green chemistry and resource efficiency: towards a green economy. Green Chem. 18: 3180-3183.
  • Sin H.L.Y. Rahim A.A. Gan C.Y. Saad B. Salleh M.I. Umeda M. 2017. Aquilaria subintergra leaves extracts as sustainable mild steel corrosion inhibitors in HCl. Measurement. 109: 334-345.
  • Singh A. Ahamad I. Quraishi M.A. 2016. Piper longum extract as green corrosion inhibitor for aluminium in NaOH solution. Arab. J. Chem. 9: 2, S1584-S1589.
  • Smith A.J.E. 2004. The moss flora of Britain and Ireland, Cambridge Univ. Press. Cambridge.
  • Sürme Y. Gürten A.A. 2009. Role of polyethylene glycol tert-octylphenyl ether on corrosion behaviour of mild steel in acidic solution. Corros. Eng. Sci. Techn. 44: 4, 304-311.
  • Sürme Y. Gürten A.A. Bayol E. 2011. Corrosion behavior of mild steel in the presence of scale inhibitor in sulfuric acid solution. Prot. Met. Phys. Chem+. 47: 1, 117-120.
  • Wang Y. Zuo Y. Tang Y. 2018. Inhibition effect and mechanism of sodium oleate on passivation and pitting corrosion of steel in simulated concrete pore solution, Constr. Build. Mater. 167: 197-204.
  • Xie C.F. Lou H.X. 2009. Secondary Metabolites in Bryophytes: An Ecological Aspect. Chemistry & Biodiversity. 6: 303-312.
  • Xu B. Liu Y. Yin X. Yang W. Chen Y. 2013. Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corrosion Science. 74: 206-213.
There are 41 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Demet Özkır 0000-0002-8096-5755

Tülay Ezer 0000-0002-6485-5505

Publication Date November 15, 2020
Submission Date July 10, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

APA Özkır, D., & Ezer, T. (2020). A New Inhibitor Approach to the Corrosion of Mild Steel in Acidic Solution with Long-Term Impedance Tests: A New Application Area for Hypnum cupressiforme (Bryophyta). Anatolian Bryology, 6(2), 119-128. https://doi.org/10.26672/anatolianbryology.767714

13304133141331513316133242069422229 27016 27017 27017  27018