Research Article
BibTex RIS Cite

Bioactive Compounds and Antioxidant Capacities of Mnium hornum and Mnium lycopodioides

Year 2024, Volume: 10 Issue: 2, 152 - 157, 05.12.2024
https://doi.org/10.26672/anatolianbryology.1568999

Abstract

Bryophytes, the oldest terrestrial plants, have been studied less than seed plants in terms of their bioactive compounds and therapeutic potential. In this study, the bioactive compounds (total phenolic and flavonoid content, ascorbic acid content, carotenoid content, nitric oxide scavenging and deoxyribose degradation activity) and antioxidant capacities (ferric reducing/antioxidant power) of acrocarp mosses Mnium hornum Hedw. and Mnium lycopodioides Schwägr. were investigated. As a result of the study, the species determined to contain significant amounts of total flavonoids and phenolics were predicted to be potential antioxidant agents.

References

  • AOAC. 1990. Official methods of analysis of the Association of Official Analytical Chemists. Vol. 15., Association of Official Analytical Chemists. Washington DC.
  • Alataş M. Ursavaş S. 2019. Palu İlçesi (Elazığ/Türkiye) briyofit florası. Biological Diversity and Conservation. 12:1, 81-88.
  • Asakawa Y. Ludwiczuk A. Nagashima F. 2013. Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics. Springer-Verlag. Vienna.
  • Badami S. Moorkoth S. Rai S.R. Kannan E. Bhojraj S. 2003. Antioxidant activity of Caesalpinia sappan heartwood. Biol Pharm Bull. 26:11, 1534-1537.
  • Chen F. Ludwiczuk A. Wei G. Chen X. Crandall-Stotler B. Bowman JL. 2018. Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis andbiological functions. Crit Rev Plant Sci. 37:2-3, 210-231.
  • Chobot V. Kubicová L. Nabbout S. Jahodár L. Vytlacilová J. 2006. Antioxidant and free radical scavenging activities of five moss species. Fitoterapia. 77:7-8, 598-600.
  • Cruz De Carvalho R. Branquinho C. Marques Da Silva J. 2019. Desiccation rate affects chlorophyll and carotenoid content and the recovery of the aquatic moss Fontinalis antipyretica (Fontinalaceae). Hattoria. 10: 53-60.
  • Çakır Sahilli Y. Alataş M. 2024. Antioxidant Activity and Some Chemical Composition of Polytrichum piliferum Hedw. Extracts. Anatolian Bryology. 10:1, 58-66.
  • Çöteli E. Alataş M. Batan N. Hazer Y. 2017. Comparing of Glutathione Ingredients of Some Species in Bryaceae Family. Anatolian Bryology. 5: 15-21.
  • De Carvalho L.M.J. Gomes P.B. de Oliveira Godoy R.L. Pacheco S. do Monte P.H.F. de Carvalho J.L.V. Nutti M.R. Neves A.C.L. Vieira A.C.R.A. Ramos S.R.R. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): a preliminary study. Food Res Int. 47:2, 337-340.
  • Demirbağ M. Yıldırım M. Batan N. Yılmaz Ö. Emre İ. Alataş M. 2022. The Biochemical Properties of Some Species of Dicranum Hedw. Anatolian Bryology. 8:2, 140-148
  • Edge R. McGarvey D.J. Truscott TG. 1997. The carotenoids as anti-oxidants-a review. J Photochem Photobiol B. 41:3, 189-200.
  • Elibol B. Ezer T. Kara R. Yuvalı Çelik G. Çolak E. 1998. Antifungal and antibacterial effects of some acrocarpic mosses. Afr J Biotechnol. 10: 986-989.
  • Granger M. Eck P. 2018. Dietary vitamin C in human health. Adv Food Nutr Res. 83, 281-310.
  • Halliwell B. 1997. Antioxidants and human disease: a general introduction. Nutr Rev. 55, 44-49.
  • Halliwell B. Gutteridge J.M.C. Aruoma OI. 1987. Thedeoxyribose methods: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 165:1, 215-215.
  • Henderson D.M. 1961. Contribution to the Bryophyte Flora of Turkey: IV. Notes from Royal Botanic Garden Edinburgh. 23: 263-278.
  • Ichikawa T. Namikawa M. Yamada K. Sakai K. Kondo K. 1983. Novel cyclopentenonyl fatty acids from mosses, Dicranum scoporium and Dicranum japonicum. Tetrahedron Letter. 24, 3337-3340.
  • Karim F.A. Suleiman M. Rahmat A.S. Bakar M.A. 2014. Phytochemicals, antioxidant and antiproliferative properties of five moss species from Sabah, Malaysia. Int J Pharm Pharm Sci. 6:2 92-297.
  • Lipinski B. 2011. Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev. 2011, 809696.
  • Manoj G.S. Murugan K. 2012. Phenolic profiles, antimicrobial and antioxidant potentiality of methanolic extract of a liverwort, Plagiochila beddomei Steph. Ind J Nat Prod Resour. 3:2, 173-183.
  • Marko S. Aneta B. Dragoljub G. 2001. Bryophytes as a potential source of medicinal compounds. Pregledni Clanak. 21: 17-29.
  • Marques R.V. Guillaumin A. Abdelwahab A.B. Salwinski A. Gotfredsen C.H. Bourgaud F. Enemark-Rasmussen K. Miguel S. Simonsen H.T. 2021. Collagenase and tyrosinase inhibitory effect of isolated constituents from the moss Polytrichum formosum. Plants. 10:7, 1271.
  • Martínez-Abaigar J. Núñez-Olivera E. 2021. Novel biotechnological substances from bryophytes. In: Sinha R.P. Häder D.P. eds. Natural bioactive compounds. Academic Press. Cambridge. pp. 233-248.
  • Mitra A.K. 2020. Antioxidants: a masterpiece of mother nature to prevent illness. J Chem Rev. 2:4, 243-256.
  • Noda Y. Anzai K. Mori A. Kohno M. Shinmei M. Packer L. 1997. Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES‐FR30 ESR spectrometer system. TBMB. 42:1, 35-44.
  • Okan O.T. Serencam H. Baltaş N. Can Z. 2019. Some edible forest fruits their in vitro antioxidant activities, phenloic compounds and some enzyme inhibition effects. Fresenius Enviromental Bulletin. 28:8, 6090-6098.
  • Onbasli D. Yuvali G. 2021. In vitro medicinal potentials of Bryum capillare, a moss sample, from Turkey. Saudi J Biol Sci. 28:1, 478-483.
  • Pejin B. Bogdanovic-Pristov J. Pejin I. Sabovljevic M. 2013. Potential antioxidant activity of the moss Bryum moravicum. Nat Prod Res. 27:10, 900-902.
  • Percival M. 1998. Antioxidants. Clin Nutr Insights. 1098, 54-58.
  • Quiles J.L. Rivas-García L. Varela-López A. Llopis J. Battino M. Sánchez-González C. 2020. Do nutrients and other bioactive molecules from foods have anything to say in the treatment against COVID-19? Environ Res. 191: 110053.
  • Rao A.V. Rao L.G. 2007. Carotenoids and human health. Pharmacol Res. 55:3, 207-216.
  • Ricciardolo F.L. Sterk P.J. Gaston B. Folkerts G. 2004. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 84:3, 731-765.
  • Ross J.A. Kasum C.M. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 22, 19-34.
  • Smith A.J.E. 2004. The Moss Flora of Britain and Ireland. Cambridge Univ. Press. Cambridge.
  • Soobrattee M.A. Neergheen V.S. Luximon-Ramma A. Aruoma O.I. Bahorun T. 2005. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res. 579:1-2, 200-213.
  • Tedone L. Komala I. Ludwiczuk A. Nagashima F. Ito T. Mondero L. Asakawa Y. 2011. Volatile components of selected Japanese and Indonesian liverworts. 55th Symposium on the Chemistry of Terpenes; Essential Oils and Aromatics. Tsukuba, Japan, p. 272-274.
  • Türker H. Ünal B.T. 2020. Bryophytes as the potential source of antioxidant. Anatolian Bryology. 6:2, 129-137.
  • Vats S. 2016. Effect of initial temperature treatment on phytochemicals and antioxidant activity of Azadirachta indica A. Juss. Appl Biochem Biotechnol. 178:3, 504-512.
  • Vats S. Gupta T. 2017. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol Mol Biol Plants. 23:1, 239-248.
  • Wang X. Cao J. Dai X. Xiao J. Wu Y. Wang Q. 2017. Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): phylogeny and ecological factors. PloS One. 12:3, e0173003.
  • Whitehead J. Wittemann M. Cronberg N. 2018. Allelopathy in bryophytes-a review. Lindbergia. 41:1, 01097.
  • Yen G.C. Duh P.D. Tsai H.L. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79:3, 307-313.
  • Young A. Lowe G.L. 2018. Carotenoids-antioxidant properties. Antioxidants (Basel). 7:2, 28-31.

Mnium hornum ve Mnium lycopodioides Türlerinin Biyoaktif Bileşikleri ve Antioksidan Kapasiteleri

Year 2024, Volume: 10 Issue: 2, 152 - 157, 05.12.2024
https://doi.org/10.26672/anatolianbryology.1568999

Abstract

En eski karasal bitkiler olan briyofitler, biyoaktif bileşikleri ve terapötik potansiyelleri açısından tohumlu bitkilere göre nispeten daha az incelenmişlerdir. Bu çalışmada, akrokarp karayosunlarından Mnium hornum Hedw. ve Mnium lycopodioides Schwägr türlerinin biyoaktif bileşikleri (toplam fenolik ve flavonoid içeriği, askorbik asit içeriği, karotenoid içeriği, nitrik oksit süpürme ve deoksiriboz bozunma aktivitesi) ve antioksidan kapasiteleri (ferrik indirgeyici/antioksidan güç) araştırılmıştır. Araştırma sonucunda, önemli miktarda toplam flavonoid ve fenolik içerdiği belirlenen türler, potansiyel antioksidan ajanlar olarak öngörülmüştür.

References

  • AOAC. 1990. Official methods of analysis of the Association of Official Analytical Chemists. Vol. 15., Association of Official Analytical Chemists. Washington DC.
  • Alataş M. Ursavaş S. 2019. Palu İlçesi (Elazığ/Türkiye) briyofit florası. Biological Diversity and Conservation. 12:1, 81-88.
  • Asakawa Y. Ludwiczuk A. Nagashima F. 2013. Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics. Springer-Verlag. Vienna.
  • Badami S. Moorkoth S. Rai S.R. Kannan E. Bhojraj S. 2003. Antioxidant activity of Caesalpinia sappan heartwood. Biol Pharm Bull. 26:11, 1534-1537.
  • Chen F. Ludwiczuk A. Wei G. Chen X. Crandall-Stotler B. Bowman JL. 2018. Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis andbiological functions. Crit Rev Plant Sci. 37:2-3, 210-231.
  • Chobot V. Kubicová L. Nabbout S. Jahodár L. Vytlacilová J. 2006. Antioxidant and free radical scavenging activities of five moss species. Fitoterapia. 77:7-8, 598-600.
  • Cruz De Carvalho R. Branquinho C. Marques Da Silva J. 2019. Desiccation rate affects chlorophyll and carotenoid content and the recovery of the aquatic moss Fontinalis antipyretica (Fontinalaceae). Hattoria. 10: 53-60.
  • Çakır Sahilli Y. Alataş M. 2024. Antioxidant Activity and Some Chemical Composition of Polytrichum piliferum Hedw. Extracts. Anatolian Bryology. 10:1, 58-66.
  • Çöteli E. Alataş M. Batan N. Hazer Y. 2017. Comparing of Glutathione Ingredients of Some Species in Bryaceae Family. Anatolian Bryology. 5: 15-21.
  • De Carvalho L.M.J. Gomes P.B. de Oliveira Godoy R.L. Pacheco S. do Monte P.H.F. de Carvalho J.L.V. Nutti M.R. Neves A.C.L. Vieira A.C.R.A. Ramos S.R.R. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): a preliminary study. Food Res Int. 47:2, 337-340.
  • Demirbağ M. Yıldırım M. Batan N. Yılmaz Ö. Emre İ. Alataş M. 2022. The Biochemical Properties of Some Species of Dicranum Hedw. Anatolian Bryology. 8:2, 140-148
  • Edge R. McGarvey D.J. Truscott TG. 1997. The carotenoids as anti-oxidants-a review. J Photochem Photobiol B. 41:3, 189-200.
  • Elibol B. Ezer T. Kara R. Yuvalı Çelik G. Çolak E. 1998. Antifungal and antibacterial effects of some acrocarpic mosses. Afr J Biotechnol. 10: 986-989.
  • Granger M. Eck P. 2018. Dietary vitamin C in human health. Adv Food Nutr Res. 83, 281-310.
  • Halliwell B. 1997. Antioxidants and human disease: a general introduction. Nutr Rev. 55, 44-49.
  • Halliwell B. Gutteridge J.M.C. Aruoma OI. 1987. Thedeoxyribose methods: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 165:1, 215-215.
  • Henderson D.M. 1961. Contribution to the Bryophyte Flora of Turkey: IV. Notes from Royal Botanic Garden Edinburgh. 23: 263-278.
  • Ichikawa T. Namikawa M. Yamada K. Sakai K. Kondo K. 1983. Novel cyclopentenonyl fatty acids from mosses, Dicranum scoporium and Dicranum japonicum. Tetrahedron Letter. 24, 3337-3340.
  • Karim F.A. Suleiman M. Rahmat A.S. Bakar M.A. 2014. Phytochemicals, antioxidant and antiproliferative properties of five moss species from Sabah, Malaysia. Int J Pharm Pharm Sci. 6:2 92-297.
  • Lipinski B. 2011. Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev. 2011, 809696.
  • Manoj G.S. Murugan K. 2012. Phenolic profiles, antimicrobial and antioxidant potentiality of methanolic extract of a liverwort, Plagiochila beddomei Steph. Ind J Nat Prod Resour. 3:2, 173-183.
  • Marko S. Aneta B. Dragoljub G. 2001. Bryophytes as a potential source of medicinal compounds. Pregledni Clanak. 21: 17-29.
  • Marques R.V. Guillaumin A. Abdelwahab A.B. Salwinski A. Gotfredsen C.H. Bourgaud F. Enemark-Rasmussen K. Miguel S. Simonsen H.T. 2021. Collagenase and tyrosinase inhibitory effect of isolated constituents from the moss Polytrichum formosum. Plants. 10:7, 1271.
  • Martínez-Abaigar J. Núñez-Olivera E. 2021. Novel biotechnological substances from bryophytes. In: Sinha R.P. Häder D.P. eds. Natural bioactive compounds. Academic Press. Cambridge. pp. 233-248.
  • Mitra A.K. 2020. Antioxidants: a masterpiece of mother nature to prevent illness. J Chem Rev. 2:4, 243-256.
  • Noda Y. Anzai K. Mori A. Kohno M. Shinmei M. Packer L. 1997. Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES‐FR30 ESR spectrometer system. TBMB. 42:1, 35-44.
  • Okan O.T. Serencam H. Baltaş N. Can Z. 2019. Some edible forest fruits their in vitro antioxidant activities, phenloic compounds and some enzyme inhibition effects. Fresenius Enviromental Bulletin. 28:8, 6090-6098.
  • Onbasli D. Yuvali G. 2021. In vitro medicinal potentials of Bryum capillare, a moss sample, from Turkey. Saudi J Biol Sci. 28:1, 478-483.
  • Pejin B. Bogdanovic-Pristov J. Pejin I. Sabovljevic M. 2013. Potential antioxidant activity of the moss Bryum moravicum. Nat Prod Res. 27:10, 900-902.
  • Percival M. 1998. Antioxidants. Clin Nutr Insights. 1098, 54-58.
  • Quiles J.L. Rivas-García L. Varela-López A. Llopis J. Battino M. Sánchez-González C. 2020. Do nutrients and other bioactive molecules from foods have anything to say in the treatment against COVID-19? Environ Res. 191: 110053.
  • Rao A.V. Rao L.G. 2007. Carotenoids and human health. Pharmacol Res. 55:3, 207-216.
  • Ricciardolo F.L. Sterk P.J. Gaston B. Folkerts G. 2004. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 84:3, 731-765.
  • Ross J.A. Kasum C.M. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 22, 19-34.
  • Smith A.J.E. 2004. The Moss Flora of Britain and Ireland. Cambridge Univ. Press. Cambridge.
  • Soobrattee M.A. Neergheen V.S. Luximon-Ramma A. Aruoma O.I. Bahorun T. 2005. Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res. 579:1-2, 200-213.
  • Tedone L. Komala I. Ludwiczuk A. Nagashima F. Ito T. Mondero L. Asakawa Y. 2011. Volatile components of selected Japanese and Indonesian liverworts. 55th Symposium on the Chemistry of Terpenes; Essential Oils and Aromatics. Tsukuba, Japan, p. 272-274.
  • Türker H. Ünal B.T. 2020. Bryophytes as the potential source of antioxidant. Anatolian Bryology. 6:2, 129-137.
  • Vats S. 2016. Effect of initial temperature treatment on phytochemicals and antioxidant activity of Azadirachta indica A. Juss. Appl Biochem Biotechnol. 178:3, 504-512.
  • Vats S. Gupta T. 2017. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol Mol Biol Plants. 23:1, 239-248.
  • Wang X. Cao J. Dai X. Xiao J. Wu Y. Wang Q. 2017. Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): phylogeny and ecological factors. PloS One. 12:3, e0173003.
  • Whitehead J. Wittemann M. Cronberg N. 2018. Allelopathy in bryophytes-a review. Lindbergia. 41:1, 01097.
  • Yen G.C. Duh P.D. Tsai H.L. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79:3, 307-313.
  • Young A. Lowe G.L. 2018. Carotenoids-antioxidant properties. Antioxidants (Basel). 7:2, 28-31.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Botany (Other)
Journal Section Research Articles
Authors

Yeliz Çakır Sahilli 0000-0003-1905-5506

Mevlüt Alataş 0000-0003-0862-0258

Publication Date December 5, 2024
Submission Date October 17, 2024
Acceptance Date November 1, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Çakır Sahilli, Y., & Alataş, M. (2024). Mnium hornum ve Mnium lycopodioides Türlerinin Biyoaktif Bileşikleri ve Antioksidan Kapasiteleri. Anatolian Bryology, 10(2), 152-157. https://doi.org/10.26672/anatolianbryology.1568999

13304133141331513316133242069422229 27016 27017 27017  27018