Research Article
BibTex RIS Cite
Year 2016, Volume: 10 Issue: 1, 50 - 59, 01.05.2016

Abstract

References

  • Galanopoulou AS, Buckmaster PS, Staley KJ, Moshe SL, Perucca E,
  • Engel J Jr, Loscher W, Noebels JL, Pitkanen A, Stables J, White HS,
  • O’Brien TJ, Simonato M; American Epilepsy Society Basic Science
  • Committee and The International League Against Epilepsy
  • Working Group on Recommendations for Preclinical Epilepsy
  • Drug Discovery. Identification of new epilepsy treatments: issues in
  • preclinical methodology. Epilepsia 2012;53:571–82.
  • Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure
  • drugs and agents that act on novel molecular targets as
  • antiepileptogenic treatments. Neurotherapeutics 2014;11:385–400.
  • Pitkanen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D,
  • Galanopoulou AS, Jensen FE, Kaminski RM, Kapur J, Klitgaard H,
  • Loscher W, Mody I, Schmidt D. Issues related to development of
  • antiepileptogenic therapies. Epilepsia 2013;54:35–43.
  • Weaver DF. Design of innovative therapeutics for pharmacoresistant
  • epilepsy: challenges and needs. Epilepsia 2013;54:56–9.
  • Loscher W, Brandt C. Prevention or modification of epileptogenesis
  • after brain insults: experimental approaches and translational
  • research. Pharmacol Rev 2010;62:668–700.
  • Gaitatzis A, Sander JW. The mortality of epilepsy revisited.
  • Epileptic Disord 2004;6:3–13.
  • Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z,
  • Haase CG, Hufnagel A, Faustmann PM. Glia and epilepsy: experimental
  • investigation of antiepileptic drugs in an astroglia/microglia
  • co-culture model of inflammation. Epilepsia 2014;55:184–92.
  • Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets
  • for CNS disorders. Neurotherapeutics 2010;7:494–506.
  • Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses:
  • glia, the unacknowledged partner. Trends Neurosci 1999;22:208–15.
  • Coulter DA, Steinhäuser C. Role of astrocytes in epilepsy. Cold
  • Spring Harb Perspect Med 2015;5:a022434.
  • Avoli M, D’Antuono M, Louvel J, Kohling R, Biagini G, Pumain R,
  • D’Arcangelo G, Tancredi V. Network and pharmacological mechanisms
  • leading to epileptiform synchronization in the limbic system in
  • vitro. Prog Neurobiol 2002;68:167–207.
  • Binder DK, Steinhäuser C. Functional changes in astroglial cells in
  • epilepsy. Glia 2006;54:358–68.
  • Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation
  • following pilocarpine-induced seizures in rats. Epilepsia 2008;
  • :33–41.
  • do Nascimento AL, Dos Santos NF, Campos Pelagio F, Aparecida
  • Teixeira S, de Moraes Ferrari EA, Langone F. Neuronal degeneration
  • and gliosis time-course in the mouse hippocampal formation
  • after pilocarpine-induced status epilepticus. Brain Res 2012;1470:
  • –110.
  • Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate
  • and adaptive immunity during epileptogenesis and spontaneous
  • seizures: evidence from experimental models and human temporal
  • lobe epilepsy. Neurobiol Dis 2008;29:142–60.
  • Rossi AR, Angelo MF, Villarreal A, Lukin J, Ramos AJ. Gabapentin
  • administration reduces reactive gliosis and neurodegeneration after
  • pilocarpine-induced status epilepticus. PLoS One 2013;8:e78516.
  • Crunelli V, Carmignoto G. New vistas on astroglia in convulsive and
  • non-convulsive epilepsy highlight novel astrocytic targets for treatment.
  • J Physiol 2013;591:775–85.
  • Cohen-Gadol AA, Pan JW, Kim JH, Spencer DD, Hetherington
  • HH. Mesial temporal lobe epilepsy: a proton magnetic resonance
  • spectroscopy study and a histopathological analysis. J Neurosurg
  • ;101:613–20.
  • van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen
  • CW, de Graan PN. Reduced glutamine synthetase in hippocampal
  • areas with neuron loss in temporal lobe epilepsy. Neurology 2005;64:
  • –33.
  • Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG,
  • Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen
  • O, Gispen WH, de Graan PN. Distribution of glutamate transporters
  • in the hippocampus of patients with pharmaco-resistant temporal
  • lobe epilepsy. Brain 2002;125:32–43.
  • Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL.
  • Increased glial glutamate transporter EAAT2 expression reduces
  • epileptogenic processes following pilocarpine-induced status epilepticus.
  • Neurobiol Dis 2012;47:145–54.
  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M,
  • Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T,
  • Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. Epilepsy
  • and exacerbation of brain injury in mice lacking the glutamate transporter
  • GLT-1. Science 1997;276:1699–702.
  • Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka
  • K. Amygdala-kindled and pentylenetetrazole-induced seizures in
  • glutamate transporter GLAST-deficient mice. Brain Res 1999;845:
  • –6.
  • Devinsky O, Vezzani A, Najjar S, de lanerolle N, Rogawski M. Glia
  • and epilepsy: excitability and inflammation. Trends Neurosci 2013;
  • :174–84.
  • Steinhauser C, Grunnet M, Carmignoto G. Crucial role of astrocytes
  • in temporal lobe epilepsy. Neuroscience 2016; 323:157–69.
  • Heuser K, Eid T, Lauritzen F, Thoren AE, Vindedal GF, Tauboll
  • E, Gjerstad L, Spencer DD, Ottersen OP, Nagelhus EA, de
  • Lanerolle NC. Loss of perivascular Kir4.1 potassium channels in the
  • sclerotic hippocampus of patients with mesial temporal lobe epilepsy.
  • J Neuropathol Exp Neurol 2012;71:814–25.
  • Crunelli V, Carmignoto G, Steinhäuser C. Novel astrocyte targets:
  • new avenues for the therapeutic treatment of epilepsy. Neuroscientist
  • ;21:62–83.
  • Buono RJ, Lohoff FW, Sander T, Sperling MR, O’Connor MJ,
  • Dlugos DJ, Ryan SG, Golden GT, Zhao H, Scattergood TM,
  • Berrettini WH, Ferraro TN. Association between variation in the
  • human KCNJ10 potassium ion channel gene and seizure susceptibility.
  • Epilepsy Res 2004;58:175–83.
  • Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy.
  • Glia 2012;60:1203–14.
  • Lee DJ, Hsu MS, Seldin MM, Arellano JL, Binder DK. Decreased
  • expression of the glial water channel aquaporin-4 in the intrahippocampal
  • kainic acid model of epileptogenesis. Exp Neurol 2012;
  • :246–55.
  • Alvestad S, Hammer J, Hoddevik EH, Skare Ø, Sonnewald U,
  • Amiry-Moghaddam M, Ottersen OP. Mislocalization of AQP4 precedes
  • chronic seizures in the kainate model of temporal lobe epilepsy.
  • Epilepsy Res 2013;105:30–41.
  • Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels,
  • neurons, and networks. Nat Rev Neurosci 2002;3:371–82.
  • Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C.
  • Pathophysiological mechanisms of genetic absence epilepsy in the
  • rat. Prog Neurobiol 1998;55:27–57.
  • Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM.
  • Ontogeny of spontaneous petit mal-like seizures in Wistar rats. Brain
  • Res 1986;395:85–7.
  • Errington AC, Cope DW, Crunelli V. Augmentation of tonic
  • GABA(A) inhibition in absence epilepsy: therapeutic value of inverse
  • agonists at extrasynaptic GABA(A) receptors. Adv Pharmacol Sci
  • ;2011:790590.
  • Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug
  • development. Neurotherapeutics 2007;4:18–61.
  • Liu Z , Vergnes M, Depaulis A, Marescaux C. Evidence for a critical
  • role of GABAergic transmission within the thalamus in the genesis
  • and control of absence seizures in the rat. Brain Res 1991;545:1–7.
  • Tolmacheva EA, van Luijtelaar G. Absence seizures are reduced by
  • the enhancement of GABAergic inhibition in the hippocampus in
  • WAG/Rij rats. Neurosci Lett 2007;416:17–21.
  • Touret M, Parrot S, Denoroy L, Belin MF, Didier-Bazes M.
  • Glutamatergic alterations in the cortex of genetic absence epilepsy
  • rats. BMC Neurosci 2007;8:69.
  • Dutuit M, Touret M, Szymocha R, Nehlig A, Belin MF, Didier-
  • Bazes M. Decreased expression of glutamate transporters in genetic
  • absence epilepsy rats before seizure occurrence. J Neurochem 2002;
  • :1029–38.
  • Dutuit M, Didier-Bazes M, Vergnes M, Mutin M, Conjard A,
  • Akaoka H, Belin MF, Touret M. Specific alteration in the expression
  • of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine
  • synthetase in rats with genetic absence epilepsy. Glia
  • ;32:15–24.
  • Melo TM, Sonnewald U, Touret M, Nehlig A. Cortical glutamate
  • metabolism is enhanced in a genetic model of absence epilepsy. J
  • Cereb Blood Flow Metab 2006;26:1496–1506.
  • Melo TM, Sonnewald U, Bastholm IA, Nehlig A. Astrocytes may
  • play a role in the etiology of absence epilepsy: a comparison between
  • immature GAERS not yet expressing seizures and adults. Neurobiol
  • Dis 2007;28:227–35.
  • Nehlig A, Vergnes M, Marescaux C, Boyet S, Lannes B. Local cerebral
  • glucose utilization in rats with petit mal-like seizures. Ann
  • Neurol 1991;29:72–7.
  • Nehlig A, Vergnes M, Boyet S, Marescaux C. Local cerebral glucose
  • utilization in adult and immature GAERS. Epilepsy Res 1998;32:
  • –12.
  • De Biasi S, Vitellaro-Zuccarello L, Brecha NC. Immunoreactivity
  • for the GABA transporter-1 and GABA transporter-3 is restricted to
  • astrocytes in the rat thalamus. A light and electron microscopic
  • immunolocalization. Neuroscience 1998;83:815–28.
  • Cope DW, Di Giovanni G, Fyson SJ, Orban G, Errington AC,
  • Lorincz ML, Gould TM, Carter DA, Crunelli V. Enhanced tonic
  • GABAA inhibition in typical absence epilepsy. Nat Med
  • ;15:1392–98.
  • Pirttimaki T, Parri HR, Crunelli V. Astrocytic GABA transporter
  • GAT-1 dysfunction in experimental absence seizures. J Physiol
  • ;591:823–33.
  • Yamamura S, Hoshikawa M, Dai K, Saito H, Suzuki N, Niwa O,
  • Okada M. ONO-2506 inhibits spike–wave discharges in a genetic
  • animal model without affecting traditional convulsive tests via gliotransmission
  • regulation. Br J Pharmacol 2013;168:1088–100.
  • De Smedt T, Raedt R, Vonck K, Boon P. Levetiracetam: the profile
  • of a novel anticonvulsant drug-part I: preclinical data. CNS Drug
  • Rev 2007;13:43–56.
  • Vezzani A. Epilepsy and inflammation in the brain: overview and
  • pathophysiology. Epilepsy Curr 2014;14:3–7.
  • Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune
  • responses in epilepsy. Glia 2012;60:1258–68.
  • Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A,
  • De Simoni MG, Sperk G, Andell Jonsson S, Lundkvist J, Iverfeldt K,
  • Bartfai T. Powerful anticonvulsant action of IL-1 receptor antagonist
  • on intracerebral injection and astrocytic overexpression in mice.
  • Proc Natl Acad Sci USA 2000;97:11534–9.
  • Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F,
  • De Simoni MG. Interleukin-1beta immunoreactivity and microglia
  • are enhanced in the rat hippocampus by focal kainate application:
  • functional evidence for enhancement of electrographic seizures. J
  • Neurosci 1999;19:5054–65.
  • Ravizza T, Vezzani A. Status epilepticus induces time-dependent
  • neuronal and astrocytic expression of interleukin-1 receptor type I in
  • the rat limbic system. Neuroscience 2006;137:301–8.
  • Ravizza T, Noe F, Zardoni D, Vaghi V, Sifringer M, Vezzani A.
  • Interleukin converting enzyme inhibition impairs kindling epileptogenesis
  • in rats by blocking astrocytic IL-1beta production.
  • Neurobiol Dis 2008b;31:327–33.
  • Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate
  • and adaptive immunity during epileptogenesis and spontaneous
  • seizures: evidence from experimental models and human temporal
  • lobe epilepsy. Neurobiol Dis 2008;29:142–60.
  • Akin D, Ravizza T, Maroso M, Carcak N, Eryigit T, Vanzulli I, Aker
  • RG, Vezzani A, Onat FY. IL-1‚ is induced in reactive astrocytes in
  • the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence.
  • Neurobiol Dis 2011;44:259–69.
  • Carcak N, Aker RG, Ozdemir O, Demiralp T, Onat FY. The relationship
  • between age-related development of spike-and-wave discharges
  • and the resistance to amygdaloid kindling in rats with genetic
  • absence epilepsy. Neurobiol Dis 2008;32:355–63.
  • Akman O, Gulcebi MI, Carcak N, Ketenci Ozatman S, Eryigit T,
  • Moshé SL, Galanopoulou AS, Yilmaz Onat F. The role of the substantia
  • nigra pars reticulata in kindling resistance in rats with genetic
  • absence epilepsy. Epilepsia 2015; 56:1793–802.
  • Gigout S, Louvel J, Pumain R. Effects in vitro and in vivo of a gap
  • junction blocker on epileptiform activities in a genetic model of
  • absence epilepsy. Epilepsy Res 2006;69:15–29.
  • Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances.
  • Lancet 2015;385:884–98.

MANAGING EPILEPSY BY MODULATING GLIA

Year 2016, Volume: 10 Issue: 1, 50 - 59, 01.05.2016

Abstract

Antiepileptic drugs suppress epileptic seizures and provide a symptomatic control of seizures rather than anti-epileptogenic effects. Evidence about links between glial functions and neuronal signaling has been accumulating and has opened a perspective for the development of anti-epileptogenic approaches for the management of convulsive and non-convulsive forms of epilepsy. Astrocytic excitability and glial transmission have been shown to play critical roles in epileptogenesis and seizure generation. Although glial cells in convulsive types of epilepsy have been widely studied, little work has been done on the contribution of these cells in the non-convulsive epilepsy forms, particularly in absence epilepsy. This review underlies the participation of reactive astrocytes, glia modulating approaches and the roles of inflammatory cytokines in the modulation of convulsive and non-convulsive forms of epilepsy. The understanding of links between astrocyte functions and neuronal signaling in epileptogenesis will be one of the top epilepsy research advances in the future.

References

  • Galanopoulou AS, Buckmaster PS, Staley KJ, Moshe SL, Perucca E,
  • Engel J Jr, Loscher W, Noebels JL, Pitkanen A, Stables J, White HS,
  • O’Brien TJ, Simonato M; American Epilepsy Society Basic Science
  • Committee and The International League Against Epilepsy
  • Working Group on Recommendations for Preclinical Epilepsy
  • Drug Discovery. Identification of new epilepsy treatments: issues in
  • preclinical methodology. Epilepsia 2012;53:571–82.
  • Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure
  • drugs and agents that act on novel molecular targets as
  • antiepileptogenic treatments. Neurotherapeutics 2014;11:385–400.
  • Pitkanen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D,
  • Galanopoulou AS, Jensen FE, Kaminski RM, Kapur J, Klitgaard H,
  • Loscher W, Mody I, Schmidt D. Issues related to development of
  • antiepileptogenic therapies. Epilepsia 2013;54:35–43.
  • Weaver DF. Design of innovative therapeutics for pharmacoresistant
  • epilepsy: challenges and needs. Epilepsia 2013;54:56–9.
  • Loscher W, Brandt C. Prevention or modification of epileptogenesis
  • after brain insults: experimental approaches and translational
  • research. Pharmacol Rev 2010;62:668–700.
  • Gaitatzis A, Sander JW. The mortality of epilepsy revisited.
  • Epileptic Disord 2004;6:3–13.
  • Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z,
  • Haase CG, Hufnagel A, Faustmann PM. Glia and epilepsy: experimental
  • investigation of antiepileptic drugs in an astroglia/microglia
  • co-culture model of inflammation. Epilepsia 2014;55:184–92.
  • Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets
  • for CNS disorders. Neurotherapeutics 2010;7:494–506.
  • Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses:
  • glia, the unacknowledged partner. Trends Neurosci 1999;22:208–15.
  • Coulter DA, Steinhäuser C. Role of astrocytes in epilepsy. Cold
  • Spring Harb Perspect Med 2015;5:a022434.
  • Avoli M, D’Antuono M, Louvel J, Kohling R, Biagini G, Pumain R,
  • D’Arcangelo G, Tancredi V. Network and pharmacological mechanisms
  • leading to epileptiform synchronization in the limbic system in
  • vitro. Prog Neurobiol 2002;68:167–207.
  • Binder DK, Steinhäuser C. Functional changes in astroglial cells in
  • epilepsy. Glia 2006;54:358–68.
  • Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation
  • following pilocarpine-induced seizures in rats. Epilepsia 2008;
  • :33–41.
  • do Nascimento AL, Dos Santos NF, Campos Pelagio F, Aparecida
  • Teixeira S, de Moraes Ferrari EA, Langone F. Neuronal degeneration
  • and gliosis time-course in the mouse hippocampal formation
  • after pilocarpine-induced status epilepticus. Brain Res 2012;1470:
  • –110.
  • Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate
  • and adaptive immunity during epileptogenesis and spontaneous
  • seizures: evidence from experimental models and human temporal
  • lobe epilepsy. Neurobiol Dis 2008;29:142–60.
  • Rossi AR, Angelo MF, Villarreal A, Lukin J, Ramos AJ. Gabapentin
  • administration reduces reactive gliosis and neurodegeneration after
  • pilocarpine-induced status epilepticus. PLoS One 2013;8:e78516.
  • Crunelli V, Carmignoto G. New vistas on astroglia in convulsive and
  • non-convulsive epilepsy highlight novel astrocytic targets for treatment.
  • J Physiol 2013;591:775–85.
  • Cohen-Gadol AA, Pan JW, Kim JH, Spencer DD, Hetherington
  • HH. Mesial temporal lobe epilepsy: a proton magnetic resonance
  • spectroscopy study and a histopathological analysis. J Neurosurg
  • ;101:613–20.
  • van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen
  • CW, de Graan PN. Reduced glutamine synthetase in hippocampal
  • areas with neuron loss in temporal lobe epilepsy. Neurology 2005;64:
  • –33.
  • Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG,
  • Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen
  • O, Gispen WH, de Graan PN. Distribution of glutamate transporters
  • in the hippocampus of patients with pharmaco-resistant temporal
  • lobe epilepsy. Brain 2002;125:32–43.
  • Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL.
  • Increased glial glutamate transporter EAAT2 expression reduces
  • epileptogenic processes following pilocarpine-induced status epilepticus.
  • Neurobiol Dis 2012;47:145–54.
  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M,
  • Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T,
  • Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K. Epilepsy
  • and exacerbation of brain injury in mice lacking the glutamate transporter
  • GLT-1. Science 1997;276:1699–702.
  • Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka
  • K. Amygdala-kindled and pentylenetetrazole-induced seizures in
  • glutamate transporter GLAST-deficient mice. Brain Res 1999;845:
  • –6.
  • Devinsky O, Vezzani A, Najjar S, de lanerolle N, Rogawski M. Glia
  • and epilepsy: excitability and inflammation. Trends Neurosci 2013;
  • :174–84.
  • Steinhauser C, Grunnet M, Carmignoto G. Crucial role of astrocytes
  • in temporal lobe epilepsy. Neuroscience 2016; 323:157–69.
  • Heuser K, Eid T, Lauritzen F, Thoren AE, Vindedal GF, Tauboll
  • E, Gjerstad L, Spencer DD, Ottersen OP, Nagelhus EA, de
  • Lanerolle NC. Loss of perivascular Kir4.1 potassium channels in the
  • sclerotic hippocampus of patients with mesial temporal lobe epilepsy.
  • J Neuropathol Exp Neurol 2012;71:814–25.
  • Crunelli V, Carmignoto G, Steinhäuser C. Novel astrocyte targets:
  • new avenues for the therapeutic treatment of epilepsy. Neuroscientist
  • ;21:62–83.
  • Buono RJ, Lohoff FW, Sander T, Sperling MR, O’Connor MJ,
  • Dlugos DJ, Ryan SG, Golden GT, Zhao H, Scattergood TM,
  • Berrettini WH, Ferraro TN. Association between variation in the
  • human KCNJ10 potassium ion channel gene and seizure susceptibility.
  • Epilepsy Res 2004;58:175–83.
  • Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy.
  • Glia 2012;60:1203–14.
  • Lee DJ, Hsu MS, Seldin MM, Arellano JL, Binder DK. Decreased
  • expression of the glial water channel aquaporin-4 in the intrahippocampal
  • kainic acid model of epileptogenesis. Exp Neurol 2012;
  • :246–55.
  • Alvestad S, Hammer J, Hoddevik EH, Skare Ø, Sonnewald U,
  • Amiry-Moghaddam M, Ottersen OP. Mislocalization of AQP4 precedes
  • chronic seizures in the kainate model of temporal lobe epilepsy.
  • Epilepsy Res 2013;105:30–41.
  • Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels,
  • neurons, and networks. Nat Rev Neurosci 2002;3:371–82.
  • Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C.
  • Pathophysiological mechanisms of genetic absence epilepsy in the
  • rat. Prog Neurobiol 1998;55:27–57.
  • Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM.
  • Ontogeny of spontaneous petit mal-like seizures in Wistar rats. Brain
  • Res 1986;395:85–7.
  • Errington AC, Cope DW, Crunelli V. Augmentation of tonic
  • GABA(A) inhibition in absence epilepsy: therapeutic value of inverse
  • agonists at extrasynaptic GABA(A) receptors. Adv Pharmacol Sci
  • ;2011:790590.
  • Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug
  • development. Neurotherapeutics 2007;4:18–61.
  • Liu Z , Vergnes M, Depaulis A, Marescaux C. Evidence for a critical
  • role of GABAergic transmission within the thalamus in the genesis
  • and control of absence seizures in the rat. Brain Res 1991;545:1–7.
  • Tolmacheva EA, van Luijtelaar G. Absence seizures are reduced by
  • the enhancement of GABAergic inhibition in the hippocampus in
  • WAG/Rij rats. Neurosci Lett 2007;416:17–21.
  • Touret M, Parrot S, Denoroy L, Belin MF, Didier-Bazes M.
  • Glutamatergic alterations in the cortex of genetic absence epilepsy
  • rats. BMC Neurosci 2007;8:69.
  • Dutuit M, Touret M, Szymocha R, Nehlig A, Belin MF, Didier-
  • Bazes M. Decreased expression of glutamate transporters in genetic
  • absence epilepsy rats before seizure occurrence. J Neurochem 2002;
  • :1029–38.
  • Dutuit M, Didier-Bazes M, Vergnes M, Mutin M, Conjard A,
  • Akaoka H, Belin MF, Touret M. Specific alteration in the expression
  • of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine
  • synthetase in rats with genetic absence epilepsy. Glia
  • ;32:15–24.
  • Melo TM, Sonnewald U, Touret M, Nehlig A. Cortical glutamate
  • metabolism is enhanced in a genetic model of absence epilepsy. J
  • Cereb Blood Flow Metab 2006;26:1496–1506.
  • Melo TM, Sonnewald U, Bastholm IA, Nehlig A. Astrocytes may
  • play a role in the etiology of absence epilepsy: a comparison between
  • immature GAERS not yet expressing seizures and adults. Neurobiol
  • Dis 2007;28:227–35.
  • Nehlig A, Vergnes M, Marescaux C, Boyet S, Lannes B. Local cerebral
  • glucose utilization in rats with petit mal-like seizures. Ann
  • Neurol 1991;29:72–7.
  • Nehlig A, Vergnes M, Boyet S, Marescaux C. Local cerebral glucose
  • utilization in adult and immature GAERS. Epilepsy Res 1998;32:
  • –12.
  • De Biasi S, Vitellaro-Zuccarello L, Brecha NC. Immunoreactivity
  • for the GABA transporter-1 and GABA transporter-3 is restricted to
  • astrocytes in the rat thalamus. A light and electron microscopic
  • immunolocalization. Neuroscience 1998;83:815–28.
  • Cope DW, Di Giovanni G, Fyson SJ, Orban G, Errington AC,
  • Lorincz ML, Gould TM, Carter DA, Crunelli V. Enhanced tonic
  • GABAA inhibition in typical absence epilepsy. Nat Med
  • ;15:1392–98.
  • Pirttimaki T, Parri HR, Crunelli V. Astrocytic GABA transporter
  • GAT-1 dysfunction in experimental absence seizures. J Physiol
  • ;591:823–33.
  • Yamamura S, Hoshikawa M, Dai K, Saito H, Suzuki N, Niwa O,
  • Okada M. ONO-2506 inhibits spike–wave discharges in a genetic
  • animal model without affecting traditional convulsive tests via gliotransmission
  • regulation. Br J Pharmacol 2013;168:1088–100.
  • De Smedt T, Raedt R, Vonck K, Boon P. Levetiracetam: the profile
  • of a novel anticonvulsant drug-part I: preclinical data. CNS Drug
  • Rev 2007;13:43–56.
  • Vezzani A. Epilepsy and inflammation in the brain: overview and
  • pathophysiology. Epilepsy Curr 2014;14:3–7.
  • Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune
  • responses in epilepsy. Glia 2012;60:1258–68.
  • Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A,
  • De Simoni MG, Sperk G, Andell Jonsson S, Lundkvist J, Iverfeldt K,
  • Bartfai T. Powerful anticonvulsant action of IL-1 receptor antagonist
  • on intracerebral injection and astrocytic overexpression in mice.
  • Proc Natl Acad Sci USA 2000;97:11534–9.
  • Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F,
  • De Simoni MG. Interleukin-1beta immunoreactivity and microglia
  • are enhanced in the rat hippocampus by focal kainate application:
  • functional evidence for enhancement of electrographic seizures. J
  • Neurosci 1999;19:5054–65.
  • Ravizza T, Vezzani A. Status epilepticus induces time-dependent
  • neuronal and astrocytic expression of interleukin-1 receptor type I in
  • the rat limbic system. Neuroscience 2006;137:301–8.
  • Ravizza T, Noe F, Zardoni D, Vaghi V, Sifringer M, Vezzani A.
  • Interleukin converting enzyme inhibition impairs kindling epileptogenesis
  • in rats by blocking astrocytic IL-1beta production.
  • Neurobiol Dis 2008b;31:327–33.
  • Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate
  • and adaptive immunity during epileptogenesis and spontaneous
  • seizures: evidence from experimental models and human temporal
  • lobe epilepsy. Neurobiol Dis 2008;29:142–60.
  • Akin D, Ravizza T, Maroso M, Carcak N, Eryigit T, Vanzulli I, Aker
  • RG, Vezzani A, Onat FY. IL-1‚ is induced in reactive astrocytes in
  • the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence.
  • Neurobiol Dis 2011;44:259–69.
  • Carcak N, Aker RG, Ozdemir O, Demiralp T, Onat FY. The relationship
  • between age-related development of spike-and-wave discharges
  • and the resistance to amygdaloid kindling in rats with genetic
  • absence epilepsy. Neurobiol Dis 2008;32:355–63.
  • Akman O, Gulcebi MI, Carcak N, Ketenci Ozatman S, Eryigit T,
  • Moshé SL, Galanopoulou AS, Yilmaz Onat F. The role of the substantia
  • nigra pars reticulata in kindling resistance in rats with genetic
  • absence epilepsy. Epilepsia 2015; 56:1793–802.
  • Gigout S, Louvel J, Pumain R. Effects in vitro and in vivo of a gap
  • junction blocker on epileptiform activities in a genetic model of
  • absence epilepsy. Epilepsy Res 2006;69:15–29.
  • Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances.
  • Lancet 2015;385:884–98.
There are 214 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Reviews
Authors

Medine Gülçebi İdrizoğlu This is me

Nihan Carcak

Filiz Yılmaz Onat This is me

Publication Date May 1, 2016
Published in Issue Year 2016 Volume: 10 Issue: 1

Cite

APA İdrizoğlu, M. G., Carcak, N., & Onat, F. Y. (2016). MANAGING EPILEPSY BY MODULATING GLIA. Anatomy, 10(1), 50-59.
AMA İdrizoğlu MG, Carcak N, Onat FY. MANAGING EPILEPSY BY MODULATING GLIA. Anatomy. June 2016;10(1):50-59.
Chicago İdrizoğlu, Medine Gülçebi, Nihan Carcak, and Filiz Yılmaz Onat. “MANAGING EPILEPSY BY MODULATING GLIA”. Anatomy 10, no. 1 (June 2016): 50-59.
EndNote İdrizoğlu MG, Carcak N, Onat FY (June 1, 2016) MANAGING EPILEPSY BY MODULATING GLIA. Anatomy 10 1 50–59.
IEEE M. G. İdrizoğlu, N. Carcak, and F. Y. Onat, “MANAGING EPILEPSY BY MODULATING GLIA”, Anatomy, vol. 10, no. 1, pp. 50–59, 2016.
ISNAD İdrizoğlu, Medine Gülçebi et al. “MANAGING EPILEPSY BY MODULATING GLIA”. Anatomy 10/1 (June 2016), 50-59.
JAMA İdrizoğlu MG, Carcak N, Onat FY. MANAGING EPILEPSY BY MODULATING GLIA. Anatomy. 2016;10:50–59.
MLA İdrizoğlu, Medine Gülçebi et al. “MANAGING EPILEPSY BY MODULATING GLIA”. Anatomy, vol. 10, no. 1, 2016, pp. 50-59.
Vancouver İdrizoğlu MG, Carcak N, Onat FY. MANAGING EPILEPSY BY MODULATING GLIA. Anatomy. 2016;10(1):50-9.

Anatomy is the official journal of Turkish Society of Anatomy and Clinical Anatomy (TSACA).