Research Article
BibTex RIS Cite

OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES

Year 2015, Volume: 9 Issue: 3, 177 - 181, 01.02.2016

Abstract

Optogenetic tools and strategies, as an innovative approach to control neurodegenerative diseases, have been developed in recent years with the application of a combination of optical and genetic techniques on a certain group of cells of living tissue. With this technique, a particular cell type and their predefined pathway can be controlled precisely. The basic steps of this optogenetics include discovery and placing of light-sensitive molecules into cells to provide optical control and applications in animal experiments. Strategies for suppressing neurons are based on activation of light-sensitive prokaryotic membrane proteins that act as ion channels and transporters. Optogenetic strategies that are adapted clinically have the capacity to provide temporal, regional and cellular specific delivery in ways that no other treatment may suggest. Engineering channelrhodopsin(CR) molecule and its expression are very important in terms of optogenetic experiments. Because experiments conducted with conventional CR are not suitable for testing chronic long-term studies, there is a certain need for a controlled medium for optogenetic neurodegenerative disease experiments.

References

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond- timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005;8:1263–8.
  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940–5.
  • Lin JY. A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 2011;6:19–25.
  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007;27:14231–8.
  • Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engineered
  • channelrhodopsin variants with improved properties and kinetics. Biophys J 2009;96:1803–14.
  • Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. Ultrafast optogenetic control. Nat Neurosci 2010;13:387–92.
  • Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA 2011;108:7595–600.
  • Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann, P, Deisseroth K. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 2008;11:631–3.
  • Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2011;2:e00115–11.
  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011;477:171–8.
  • Schobert B, Lanyi JK. Halorhodopsin is a light-driven chloride pump. J Biol Chem 1982;257:10306–13.
  • Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature 2007;446:633–9.
  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007;27: 14231–8.
  • Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010;141:154–65.
  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010;463:98–102.
  • Yamamoto K, Tanei Z, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, Yizhar O, Fenno LE, Fukayama M, Bito H, Cirrito JR, Holtzman DM, Deisseroth K, Iwatsubo T. Chronic optogenetic activation augments Aβ pathology in a mouse model of Alzheimer disease. Cell Rep 2015;11: 859–65.
  • Maher MP, Pine J, Wright J, Tai YC. The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods 1999;87:45–56.
  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science 2009;324:354–9.
  • Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin- 2. Neuron 2007;54:205–18.
  • Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, Hiroi T, Ishizuka T, Mushiake H, Kato M, Hirabayashi M, Shigemoto R, Yawo H, Tamai M. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 2009;4:e7679.
  • Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F, Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ. High-speed mapping of synaptic connectivity using photostimulation in channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 2007;104:8143–8.
  • Chuhma N, Tanaka KF, Hen R, Rayport S. Functional connectome of the striatal medium spiny neuron. J Neurosci 2011;31:1183–92.
  • Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011;8:745–52.
  • Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 2008;36:129–39.
  • Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 2011;5:18.
  • Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009;459:698–702.
  • Benzekhroufa K, Liu BH, Teschemacher AG, Kasparov S. Targeting central serotonergic neurons with lentiviral vectors based on a transcriptional amplification strategy. Gene Ther 2009; 16:681–8.
Year 2015, Volume: 9 Issue: 3, 177 - 181, 01.02.2016

Abstract

References

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond- timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005;8:1263–8.
  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940–5.
  • Lin JY. A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 2011;6:19–25.
  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007;27:14231–8.
  • Lin JY, Lin MZ, Steinbach P, Tsien RY. Characterization of engineered
  • channelrhodopsin variants with improved properties and kinetics. Biophys J 2009;96:1803–14.
  • Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. Ultrafast optogenetic control. Nat Neurosci 2010;13:387–92.
  • Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA 2011;108:7595–600.
  • Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann, P, Deisseroth K. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 2008;11:631–3.
  • Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2011;2:e00115–11.
  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011;477:171–8.
  • Schobert B, Lanyi JK. Halorhodopsin is a light-driven chloride pump. J Biol Chem 1982;257:10306–13.
  • Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature 2007;446:633–9.
  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007;27: 14231–8.
  • Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010;141:154–65.
  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010;463:98–102.
  • Yamamoto K, Tanei Z, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, Yizhar O, Fenno LE, Fukayama M, Bito H, Cirrito JR, Holtzman DM, Deisseroth K, Iwatsubo T. Chronic optogenetic activation augments Aβ pathology in a mouse model of Alzheimer disease. Cell Rep 2015;11: 859–65.
  • Maher MP, Pine J, Wright J, Tai YC. The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J Neurosci Methods 1999;87:45–56.
  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science 2009;324:354–9.
  • Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin- 2. Neuron 2007;54:205–18.
  • Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, Hiroi T, Ishizuka T, Mushiake H, Kato M, Hirabayashi M, Shigemoto R, Yawo H, Tamai M. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 2009;4:e7679.
  • Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F, Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ. High-speed mapping of synaptic connectivity using photostimulation in channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 2007;104:8143–8.
  • Chuhma N, Tanaka KF, Hen R, Rayport S. Functional connectome of the striatal medium spiny neuron. J Neurosci 2011;31:1183–92.
  • Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011;8:745–52.
  • Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 2008;36:129–39.
  • Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 2011;5:18.
  • Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009;459:698–702.
  • Benzekhroufa K, Liu BH, Teschemacher AG, Kasparov S. Targeting central serotonergic neurons with lentiviral vectors based on a transcriptional amplification strategy. Gene Ther 2009; 16:681–8.
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Reviews
Authors

Emel Sokullu This is me

Publication Date February 1, 2016
Published in Issue Year 2015 Volume: 9 Issue: 3

Cite

APA Sokullu, E. (2016). OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES. Anatomy, 9(3), 177-181.
AMA Sokullu E. OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES. Anatomy. February 2016;9(3):177-181.
Chicago Sokullu, Emel. “OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES”. Anatomy 9, no. 3 (February 2016): 177-81.
EndNote Sokullu E (February 1, 2016) OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES. Anatomy 9 3 177–181.
IEEE E. Sokullu, “OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES”, Anatomy, vol. 9, no. 3, pp. 177–181, 2016.
ISNAD Sokullu, Emel. “OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES”. Anatomy 9/3 (February 2016), 177-181.
JAMA Sokullu E. OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES. Anatomy. 2016;9:177–181.
MLA Sokullu, Emel. “OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES”. Anatomy, vol. 9, no. 3, 2016, pp. 177-81.
Vancouver Sokullu E. OPTOGENETIC STRATEGIES FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES. Anatomy. 2016;9(3):177-81.

Anatomy is the official journal of Turkish Society of Anatomy and Clinical Anatomy (TSACA).