Research Article
BibTex RIS Cite
Year 2016, Volume: 10 Issue: 3, 182 - 192, 30.12.2016

Abstract

References

  • 1. Prevalence (number of cases) of cleft lip and palate. National Institute of Dental and Craniofacial Research http://www.nidcr.nih.gov/ 2014 (accessed in Oct 25, 2016)
  • 2. Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer R, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A. Updated national birth prevalence estimates for selected birth defects in the United States. Birth Defects Res (Part A) 2010;88:1008–16.
  • 3. Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: synthesizing genetic and environmental influences. Nat Rev Genet 2011;12:167–78.
  • 4. Kalter H. The history of the A family of inbred mice and the biology of its congenital malformations. Teratology 1979;20:213–32.
  • 5. Juriloff, DM. Mapping studies in animal models. In: Wyszynski DF, editor. Cleft lip and palate. From origin to treatment. New York: Oxford Press; 2002. pp. 265–82.
  • 6. Kadowaki S, Sakamoto M, Kamiishi H, Tanimura T. Embryologic features of term fetuses and newborns in CL/Fr mice with special reference to cyanosis. Cleft Palate Craniofac J 1997;34:211–7.
  • 7. Juriloff DM, Harris MJ, Mah DG. The clf1 gene maps to a 2- to 3- cM region of distal mouse chromosome 11. Mamm Genome 1996; 7:789.
  • 8. JuriloffDM, Harris MJ, Brown CJ. Unraveling the complex genetics of cleft lip in the mouse model. Mamm Genome 2001;12:426–35.
  • 9. Juriloff DM, Harris MJ, Dewell SL. A digenic cause of cleft lip in Astrain mice and definition of candidate genes for the two loci. Birth Defects Res A Clin Mol Teratol 2004;70:509–18. 10. Plamondon JA, Harris MJ, Mager DL, Gagnier L, Juriloff DM. The clf2 gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Def Res A Clin Mol Teratol 2011;91:716–27.
  • 11. Carinci F, Pezzetti F, Scapoli L, Martinelli M, Avantaggiato A, Carinci P, Padula E, Baciliero U, Gombos F, Laino G, Rullo R, Cenzi R, Carls F, Tognon M. Recent developments in orofacial cleft genetics. J Craniofac Surg 2003;14:130–43.
  • 12. Carinci F, Scapoli L, Palmieri A, Zollino I, Pezzetti F. Human genetic factors in nonsyndromic cleft lip and palate: an update. Int J Pediatr Otorhinolaryngol 2007;71:1509–19.
  • 13. Fontoura C, Silva RM, Granjeiro JM, Letra A. Association of WNT9B gene polymorphisms with nonsyndromic cleft lip with or without cleft palate in a Brazilian nuclear families. Cleft Palate Craniofac J 2015;52: 44–8.
  • 14. He F, Chen Y. Wnt signaling in lip and palate development. Front Oral Biol 2012;16:81–90.
  • 15. Juriloff DM, Harris MJ, McMahon AP, Carroll TJ, Lidral AC. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res A Clin Mol Teratol 2006;76:574–9.
  • 16. Juriloff DM, Harris MJ, Mager DL, Gagnier L. Epigenetic mechanism causes Wnt9b deficiency and nonsyndromic cleft lip and palate in the A/WySn mouse strain. Birth Defects Res A Clin Mol Teratol 2014;100:772–88.
  • 17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta DeltaC(T)) method. Methods 2001;25:402–8.
  • 18. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandersompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611–22.
  • 19. Lan Y, Ryan RC, Zhang Z, Bullard SA, Bush JO, Maltby KM, Lidral AC, Jiang R. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice. Dev Dyn 2006; 235:1448–54.
  • 20. Fogelgren B, Kuroyama MC, McBratney-Owen B, Spence AA, Melahn LE, Anawati MK, Cabatbat C, Alarcon VB, Marikawa Y, Lozanoff S. Misexpression of Six2 is associated with heritable frontonasal dysplasia and renal hypoplasia in 3H1 Br mice. Dev Dyn 2008;237:1767–79.
  • 21. Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. New York (NY): WH Freeman; 1995.
  • 22. Ferretti E, Li B, Zewdu R, Wells V, Hebert J, Karner C, Anderson M, Williams T, Dixon J, Dixon M, Depew M, Selleri L. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell 2011;21: 627–41.
  • 23. Jin Y-R, Han XH, Taketo MM, Yoon JK. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development 2012;139: 1821–30.
  • 24. Kurosaka H, Iulianella A, Williams T, Trainor P. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis. J Clin Invest 2014;124:1660–71.
  • 25. Diewert VM, Wang K-Y, Tait B. A new threshold model for cleft lip in mice. Ann NY Acad Sci 1993;678:341–3.
  • 26. Young N, Wat S, Diewert VM, Browder LW, Hallgrimsson B. Comparative morphometrics of embryonic facial morphogenesis: Implications for cleft-lip etiology. Anat Rec (Hoboken) 2007;290: 123–39.
  • 27. Bronsky PT, Johnston MC, Sulik KK. Morphogenesis of hypoxiainduced cleft lip in CL/Fr mice. J Craniofac Genet Dev Biol Suppl 1986;2:113–28.
  • 28. Martin DA, Nonaka K, Yanagita K, Nakata M. The effect of dam strain on the craniofacial morphogenesis of CL/Fr mouse fetuses. J Craniofac Genet Dev Biol 1995;15:117–24.
  • 29. Nonaka K, Sasaki Y, Watanabe Y, Yanagita K, Nakata M. Effects of fetus weight, dam strain, dam weight, and litter size on the craniofacial morphogenesis of CL/Fr mouse fetuses affected with cleft lip and palate. Cleft Palate Craniofac J 1997;34:325–30.
  • 30. Nonaka K, Sasaki Y, Martin DA, Nakata M. Effect of the dam strain on the spontaneous incidence of cleft lip and palate and intrauterine growth of CL/Fr mouse fetuses. J Assist Reprod Genet 1995;12:447–52.
  • 31. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127:469–80.
  • 32. Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-varation of the brain and face. Genesis 2011;49: 177–89.
  • 33. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89: 747–54.
  • 34. Aberg T, Cavender A., Gaikwad JS, Bronckers AL, Wang X, Waltimo-Siren J, Thesleff I, D’Souza RN. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem 2004;52:131–9.
  • 35. Lan Y, Ovitt CE, Cho ES, Maltby KM, Wang Q, Jiang R. Oddskipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis. Development 2004;131: 3207–16.
  • 36. Zhou J, Gao Y, Lan Y, Jia S, Jiang R. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development 2013;140: 4709–18.
  • 37. Sasaki Y, Tanaka S, Hamachi T, Taya Y. Deficient cell proliferation in palatal shelf mesenchyme of CL/Fr mouse embryos. J Dent Res 2004;83:797–801.
  • 38. Sasaki Y, Taya Y, Saito K, Fujita K, Aoba T, Fujiwara T. Molecular contribution to cleft palate production in cleft lip mice. Congenit Anom (Kyoto) 2014;54:94–9.
  • 39. Barnett P. Somatostatin and somatostatin receptor physiology. Endocrine 2003;20:255–64.
  • 40. Jeon K-I, Jono H, Miller C, Cai Y, Lim S, Liu X, Gao P, Abe J-I, Li J-D, Yan C. Ca2+/calmodulin-stimulated PDE1 regulates the betacatenin/ TCF signaling through PP2A B56 gamma subunit in proliferating vascular smooth muscle cells. FEBS J 2010; 227:5026–39.

Reduction in Wnt9b and associated gene expression in the embryonic midface of CL/Fr mice with heritable cleft lip and palate

Year 2016, Volume: 10 Issue: 3, 182 - 192, 30.12.2016

Abstract

Objectives: The CL/Fr mouse displays cleft lip and palate (CLP) at a rate of 35%. The clf1 mutation is associated with CLP in related“A” strain mice and affects the gene Wnt9b. The purpose of this study was to determine tissue specific expression of Wnt9bduring facial prominence morphogenesis in CL/Fr mice and provide new details concerning gene variants associated with CLP.

Methods: Facial prominences from CLP(-) and CLP(+) CL/Fr and 3H1 wild-type (WT) mice at embryonic day 11.5 (E11.5)were collected for expression assays (DNA microarray analysis, qRT-PCR, immunostaining, and in situ hybridization). A modified Chi square test was used to analyze microarray data while a student t-test was used to statistically compare qRT-PCR values (p<0.05).

Results: There was a partial and variable loss of Wnt9b in facial prominences of E11.5 CLP susceptible CL/Fr mice, with a greater loss associated with CLP(+). Two genes in the clf2 locus, Adcy2 and Ube2q11 also showed decreased expression. Two regulators of palatogenesis, Runx2 and Osr2 were significantly downregulated, while an inhibitor of cell proliferation, somatostatin (Sst), was elevated in CLP(+) relative to CLP(-) mice.

Conclusion: Results indicate a role for Wnt9b in the pathogenesis of CLP and supports previous reports concerning its involvement with CLP in “A” strain mice. Misexpression of Sst suggests that it may be a downstream target of Wnt9b causing reduced overall growth possibly hindering fusion of facial prominences and contributing to the development of CLP.

References

  • 1. Prevalence (number of cases) of cleft lip and palate. National Institute of Dental and Craniofacial Research http://www.nidcr.nih.gov/ 2014 (accessed in Oct 25, 2016)
  • 2. Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer R, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A. Updated national birth prevalence estimates for selected birth defects in the United States. Birth Defects Res (Part A) 2010;88:1008–16.
  • 3. Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: synthesizing genetic and environmental influences. Nat Rev Genet 2011;12:167–78.
  • 4. Kalter H. The history of the A family of inbred mice and the biology of its congenital malformations. Teratology 1979;20:213–32.
  • 5. Juriloff, DM. Mapping studies in animal models. In: Wyszynski DF, editor. Cleft lip and palate. From origin to treatment. New York: Oxford Press; 2002. pp. 265–82.
  • 6. Kadowaki S, Sakamoto M, Kamiishi H, Tanimura T. Embryologic features of term fetuses and newborns in CL/Fr mice with special reference to cyanosis. Cleft Palate Craniofac J 1997;34:211–7.
  • 7. Juriloff DM, Harris MJ, Mah DG. The clf1 gene maps to a 2- to 3- cM region of distal mouse chromosome 11. Mamm Genome 1996; 7:789.
  • 8. JuriloffDM, Harris MJ, Brown CJ. Unraveling the complex genetics of cleft lip in the mouse model. Mamm Genome 2001;12:426–35.
  • 9. Juriloff DM, Harris MJ, Dewell SL. A digenic cause of cleft lip in Astrain mice and definition of candidate genes for the two loci. Birth Defects Res A Clin Mol Teratol 2004;70:509–18. 10. Plamondon JA, Harris MJ, Mager DL, Gagnier L, Juriloff DM. The clf2 gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Def Res A Clin Mol Teratol 2011;91:716–27.
  • 11. Carinci F, Pezzetti F, Scapoli L, Martinelli M, Avantaggiato A, Carinci P, Padula E, Baciliero U, Gombos F, Laino G, Rullo R, Cenzi R, Carls F, Tognon M. Recent developments in orofacial cleft genetics. J Craniofac Surg 2003;14:130–43.
  • 12. Carinci F, Scapoli L, Palmieri A, Zollino I, Pezzetti F. Human genetic factors in nonsyndromic cleft lip and palate: an update. Int J Pediatr Otorhinolaryngol 2007;71:1509–19.
  • 13. Fontoura C, Silva RM, Granjeiro JM, Letra A. Association of WNT9B gene polymorphisms with nonsyndromic cleft lip with or without cleft palate in a Brazilian nuclear families. Cleft Palate Craniofac J 2015;52: 44–8.
  • 14. He F, Chen Y. Wnt signaling in lip and palate development. Front Oral Biol 2012;16:81–90.
  • 15. Juriloff DM, Harris MJ, McMahon AP, Carroll TJ, Lidral AC. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res A Clin Mol Teratol 2006;76:574–9.
  • 16. Juriloff DM, Harris MJ, Mager DL, Gagnier L. Epigenetic mechanism causes Wnt9b deficiency and nonsyndromic cleft lip and palate in the A/WySn mouse strain. Birth Defects Res A Clin Mol Teratol 2014;100:772–88.
  • 17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta DeltaC(T)) method. Methods 2001;25:402–8.
  • 18. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandersompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611–22.
  • 19. Lan Y, Ryan RC, Zhang Z, Bullard SA, Bush JO, Maltby KM, Lidral AC, Jiang R. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice. Dev Dyn 2006; 235:1448–54.
  • 20. Fogelgren B, Kuroyama MC, McBratney-Owen B, Spence AA, Melahn LE, Anawati MK, Cabatbat C, Alarcon VB, Marikawa Y, Lozanoff S. Misexpression of Six2 is associated with heritable frontonasal dysplasia and renal hypoplasia in 3H1 Br mice. Dev Dyn 2008;237:1767–79.
  • 21. Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. New York (NY): WH Freeman; 1995.
  • 22. Ferretti E, Li B, Zewdu R, Wells V, Hebert J, Karner C, Anderson M, Williams T, Dixon J, Dixon M, Depew M, Selleri L. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell 2011;21: 627–41.
  • 23. Jin Y-R, Han XH, Taketo MM, Yoon JK. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development 2012;139: 1821–30.
  • 24. Kurosaka H, Iulianella A, Williams T, Trainor P. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis. J Clin Invest 2014;124:1660–71.
  • 25. Diewert VM, Wang K-Y, Tait B. A new threshold model for cleft lip in mice. Ann NY Acad Sci 1993;678:341–3.
  • 26. Young N, Wat S, Diewert VM, Browder LW, Hallgrimsson B. Comparative morphometrics of embryonic facial morphogenesis: Implications for cleft-lip etiology. Anat Rec (Hoboken) 2007;290: 123–39.
  • 27. Bronsky PT, Johnston MC, Sulik KK. Morphogenesis of hypoxiainduced cleft lip in CL/Fr mice. J Craniofac Genet Dev Biol Suppl 1986;2:113–28.
  • 28. Martin DA, Nonaka K, Yanagita K, Nakata M. The effect of dam strain on the craniofacial morphogenesis of CL/Fr mouse fetuses. J Craniofac Genet Dev Biol 1995;15:117–24.
  • 29. Nonaka K, Sasaki Y, Watanabe Y, Yanagita K, Nakata M. Effects of fetus weight, dam strain, dam weight, and litter size on the craniofacial morphogenesis of CL/Fr mouse fetuses affected with cleft lip and palate. Cleft Palate Craniofac J 1997;34:325–30.
  • 30. Nonaka K, Sasaki Y, Martin DA, Nakata M. Effect of the dam strain on the spontaneous incidence of cleft lip and palate and intrauterine growth of CL/Fr mouse fetuses. J Assist Reprod Genet 1995;12:447–52.
  • 31. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127:469–80.
  • 32. Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-varation of the brain and face. Genesis 2011;49: 177–89.
  • 33. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89: 747–54.
  • 34. Aberg T, Cavender A., Gaikwad JS, Bronckers AL, Wang X, Waltimo-Siren J, Thesleff I, D’Souza RN. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem 2004;52:131–9.
  • 35. Lan Y, Ovitt CE, Cho ES, Maltby KM, Wang Q, Jiang R. Oddskipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis. Development 2004;131: 3207–16.
  • 36. Zhou J, Gao Y, Lan Y, Jia S, Jiang R. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis. Development 2013;140: 4709–18.
  • 37. Sasaki Y, Tanaka S, Hamachi T, Taya Y. Deficient cell proliferation in palatal shelf mesenchyme of CL/Fr mouse embryos. J Dent Res 2004;83:797–801.
  • 38. Sasaki Y, Taya Y, Saito K, Fujita K, Aoba T, Fujiwara T. Molecular contribution to cleft palate production in cleft lip mice. Congenit Anom (Kyoto) 2014;54:94–9.
  • 39. Barnett P. Somatostatin and somatostatin receptor physiology. Endocrine 2003;20:255–64.
  • 40. Jeon K-I, Jono H, Miller C, Cai Y, Lim S, Liu X, Gao P, Abe J-I, Li J-D, Yan C. Ca2+/calmodulin-stimulated PDE1 regulates the betacatenin/ TCF signaling through PP2A B56 gamma subunit in proliferating vascular smooth muscle cells. FEBS J 2010; 227:5026–39.
There are 39 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Articles
Authors

Brennan Takagi This is me

Trudy Hong This is me

Thomas E. Hynd This is me

Keith S. K. Fong This is me

Ben Fogelgren This is me

Kazuaki Nonaka This is me

Scott Lozanoff

Publication Date December 30, 2016
Published in Issue Year 2016 Volume: 10 Issue: 3

Cite

APA Takagi, B., Hong, T., Hynd, T. E., Fong, K. S. K., et al. (2016). Reduction in Wnt9b and associated gene expression in the embryonic midface of CL/Fr mice with heritable cleft lip and palate. Anatomy, 10(3), 182-192.
AMA Takagi B, Hong T, Hynd TE, Fong KSK, Fogelgren B, Nonaka K, Lozanoff S. Reduction in Wnt9b and associated gene expression in the embryonic midface of CL/Fr mice with heritable cleft lip and palate. Anatomy. December 2016;10(3):182-192.
Chicago Takagi, Brennan, Trudy Hong, Thomas E. Hynd, Keith S. K. Fong, Ben Fogelgren, Kazuaki Nonaka, and Scott Lozanoff. “Reduction in Wnt9b and Associated Gene Expression in the Embryonic Midface of CL/Fr Mice With Heritable Cleft Lip and Palate”. Anatomy 10, no. 3 (December 2016): 182-92.
EndNote Takagi B, Hong T, Hynd TE, Fong KSK, Fogelgren B, Nonaka K, Lozanoff S (December 1, 2016) Reduction in Wnt9b and associated gene expression in the embryonic midface of CL/Fr mice with heritable cleft lip and palate. Anatomy 10 3 182–192.
IEEE B. Takagi, T. Hong, T. E. Hynd, K. S. K. Fong, B. Fogelgren, K. Nonaka, and S. Lozanoff, “Reduction in Wnt9b and associated gene expression in the embryonic midface of CL/Fr mice with heritable cleft lip and palate”, Anatomy, vol. 10, no. 3, pp. 182–192, 2016.
ISNAD Takagi, Brennan et al. “Reduction in Wnt9b and Associated Gene Expression in the Embryonic Midface of CL/Fr Mice With Heritable Cleft Lip and Palate”. Anatomy 10/3 (December 2016), 182-192.
JAMA Takagi B, Hong T, Hynd TE, Fong KSK, Fogelgren B, Nonaka K, Lozanoff S. Reduction in Wnt9b and associated gene expression in the embryonic midface of CL/Fr mice with heritable cleft lip and palate. Anatomy. 2016;10:182–192.
MLA Takagi, Brennan et al. “Reduction in Wnt9b and Associated Gene Expression in the Embryonic Midface of CL/Fr Mice With Heritable Cleft Lip and Palate”. Anatomy, vol. 10, no. 3, 2016, pp. 182-9.
Vancouver Takagi B, Hong T, Hynd TE, Fong KSK, Fogelgren B, Nonaka K, Lozanoff S. Reduction in Wnt9b and associated gene expression in the embryonic midface of CL/Fr mice with heritable cleft lip and palate. Anatomy. 2016;10(3):182-9.

Anatomy is the official journal of Turkish Society of Anatomy and Clinical Anatomy (TSACA).