Research Article
BibTex RIS Cite

Effect of streptozotocin-induced diabetes on the autonomic ganglia of albino rats

Year 2017, Volume: 11 Issue: 2, 51 - 60, 30.08.2017

Abstract

Objectives: One of the common clinical observations regarding long-standing hyperglycemia is autonomic neuropathy, probably due to its unfavorable destructive effects on the neurons of the autonomic ganglia. Accordingly, the current study was aimed to analyze the effect of experimental hyperglycemia on parasympathetic pterygopalatine ganglion (PtG) and sympathetic coeliac ganglion (ClG) of albino rats.

Methods: Thirty-six albino rats were divided into six groups (n=6, each) and were designated as control, two weeks, one month, two months, four months and six months groups. Diabetes was induced with a single dose of streptozotocin (STZ, 60 mg/kg, i.p.). Body weight and blood sugar were monitored at biweekly intervals. At the end of each experimental period, animals were euthanized by deep ether anesthesia and blood samples were collected by direct puncture of heart for biochemical

analysis. Animals were perfused with Karnovsky fixative. After 48 hours, tissue samples were collected and processed for light microscopy.

Results: Biochemical analysis of serum revealed increased serum creatinine and reduced serum total protein. Histopathology and histomorphometry of ganglia revealed that the progressively increasing duration of hyperglycemia was associated with

decreased proportion of small-sized neurons, increased proportion of large-sized neurons, dark and dead neurons, and thickening of capsular and endoneurial collagen.

Conclusion: The association of the long-standing hyperglycemia with increased neuronal death, altered proportion of neurons and deposition of collagen fibers in autonomic ganglia appear to be important contributing factors likely to be responsible for diabetic autonomic neuropathy.

References

  • 1. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003;17:24–38. 2. Phillips M, Cataneo RN, Cheema T, Greenberg J. Increased breath biomarker of oxidative stress in diabetes mellitus. Clin Chim Acta 2004;344:189–94. 3. Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci 2008;9:36–45. 4. Guven A, Yavuz O, Cam M, Comunoglu C, Sevinc O. Central nervous system complications of diabetes in streptozotocin-induced diabetic rats: a histopathological and immunohistochemical examination. Int J Neurosci 2009;119:1155–69. 5. Rudchenko A, Akude E, Cooper E. Synapses on sympathetic neurons and parasympathetic neurons differ in their vulnerability to diabetes. J Neurosci 2014;34:8865–74. 6. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathyevidence for apoptosis and associated mitochondrial dysfunction. Diabetes 2000;49:1932–8. 7. Fernyhough A, Chowdhury SKR, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 2010;5:39–49. 8. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1553–79. 9. Siessere S, Vitti M, de Sousa, LG, Semprini M, Iyomasa MM, Regalo SC. Anatomic variation of cranial parasympathetic ganglia. Braz Oral Res 2008;22:101–5. 10. Sisu AM, Petrescu CI, Cebzan CC, Motoc A, Bolintineanu S, vaida AM, Niculescu MC, Rusu MC. The adult coeliac ganglion: a morphologic study. Rom J Morphol Embryol 2008;49:491–4. 11. Sasahara TH, De souza RR, Machado MR, Da silva RA, Guidi WL, Ribeiro AA. Macro- and microstructural organization of the rabbit's celiac-mesenteric ganglion complex (Oryctolagus cuniculus). Ann Anat 2003;185:441–8. 12. Schmidt RE, Dorsey DA, Beaudet LN, Frederick KE, Parvin CA, Plurad SB, Levisetti MG. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy a new experimental model of diabetic autonomic neuropathy. Am J Pathol 2003;163: 2077–91. 13. Olsson Y, Sourander P. Changes in the sympathetic nervous system in diabetes mellitus. J Neurovisc Relat 1968;81:86–95. 14. Faizal PAM, Khan AA, Elsy B. Effect of experimental hyperglycemia on the trigeminal ganglia of albino rats. Int J Health Sci Res 2017;7: 191–8. 15. Young B, O’Dowd G, Woodford P. Wheater’s functional histology: a text and colour atlas. 6th edition. Philadelphia (PA): Churchill Livingstone, 2016. 139 p. 16. Ernst MC, Sinal CJ. Chemerin at the crossroads of inflammation and obesity. Trends Endocrinol Metab 2010;21:660–7. 17. King KD, Jones JD, Warthen J. Microvascular and macrovascular complications of diabetes mellitus. Am J Pharm Educ 2005;69:1–10. 18. Cheng D. Prevalence, predisposition and prevention of type II diabetes. Nutr Metab (Lond) 2005;18:2–29. 19. Air EL, Strowski MZ, Benoit SC, Conarello SL, Salituro GM, Guan XM, Liu K, Woods SC, Zhang BB. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat Med 2002;8:179–83. 20. Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med 2014;12:35–41. 21. Cintra LTA, Samuel RO, Prieto AK, Sumida DH, Dezan-Junior E, Gomes-Filho JE. Oral health, diabetes, and body weight. Arch Oral Biol 2017;73:94–9. 22. Elsy B, Maheshwari V, Khan AA. Effects of d alpha-tocopherol on progression of reepithelialization, matrix remodeling and appearance of epidermal appendages in secondary skin wounds of diabetic rats. Journal of Dermatology and Clinical Research 2016;4:1081. 23. Doddigarla Z, Ahmad J, Parwez I. Effect of chromium picolinate and melatonin either in single or in a combination in high carbohydrate diet?fed male Wistar rats. Biofactors 2016;42:106–14. 24. Elfvin LG. The ultrastructure of the superior cervical sympathetic ganglion of the cat: I. The structure of the ganglion cell processes as studied by serial sections. J Ultrastruct Res 1963;8:403–40. 25. Jurgaitiene R, Pauziene N, Azelis V, Zurauskas E. Morphometric study of age-related changes in the human intracardiac ganglia. Medicina (Kaunas) 2004;40:574–81. 26. Szczurkowski A, Kuder T, Nowak E, Kuchinka J. Morphology, topography and cytoarchitectonics of the pterygopalatine ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest). Folia Morphol (Warsz) 2002;61:107–10. 27. Dilkash MNA, Ahmed SS, Khan AA. Comparative light microscopic study of trigeminal ganglion neurons in mammals. Curr Neurobiol 2010;1:25–9. 28. Adebiyi OA, Adebiyi OO, Owira PM. Naringin reduces hyperglycemia- induced cardiac fibrosis by relieving oxidative stress. PloS One 2016;11:1–15. 29. De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH. Inhibition of the interaction of AGE-RAGE prevents hyperglycemiainduced fibrosis of the peritoneal membrane. J Am Soc Nephrol 2003;14:2109–18. 30. Malak HW, Saleh SI, Salah El Din RA, Abdul Hamid HF. Histological and immunohistochemical study on the consequences of acute glycemic level alteration on the dorsal root ganglia and sciatic nerve integrity in neonatal albino rats. Egyptian Journal of Histology 2015;38:332–45. 31. Ahmadpour SH, Haghir H. Diabetes mellitus type 1 induces dark neuron formation in the dentate gyrus: a study by Gallyas’ method and transmission electron microscopy. Rom J Morphol Embryol 2011;52:575–9. 32. Zsombok A, Toth Z, Gallyas F. Basophilia, acidophilia and argyrophilia of ‘dark’ (compacted) neurons during their formation, recovery or death in an otherwise undamaged environment. J Neurosci Methods 2005;142:145–52. 33. Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 2008;44:205–21. 34. Keane RW, Kraydieh S, Lotocki G, Alonso OF, Aldana P, Dietrich WD. Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab 2001;21:1189–98. 35. Sango, K, Horie H, Saito H, Ajiki K, Tokashiki A, Takeshita K, Ishigatsubo Y, Kawano H, Ishikawa Y. Diabetes is not a potent inducer of neuronal cell death in mouse sensory ganglia, but it enhances neurite regeneration in vitro. Life Sci 2002;71:2351–68. 36. Duchen LW, Scaravilli F. Quantitative and electron microscopic studies of sensory ganglion cells of the Sprawling mouse. J Neurocytol 1977;6:465–81. 37. Seylaz J, Hara H, Pinard E, Mraovitch S, MacKenzie ET, Edvinsson L. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J Cereb Blood Flow Metab 1988;8:875–8. 38. Yasui T, Karita K, Izumi H, Tamai M. Correlation between vasodilatation and secretion in the lacrimal gland elicited by stimulation of the cornea and facial nerve root of the cat. Invest Ophthalmol Vis Sci 1997;38:2476–82. 39. Kaji A, Maeda T, Watanabe S. Parasympathetic innervation of cutaneous blood vessels examined by retrograde tracing in the rat lower lip. J Auton Nerv Syst 1991;32:153–8. 40. Yoon KC, Im SK, Seo MS. Changes of tear film and ocular surface in diabetes mellitus. Korean J Ophthalmol 2004;18:68–74. 41. Postorino M, Catalano C, Martorano C, Cutrupi S, Marino C, Cozzupoli P, Scudo P, Zoccali C. Salivary and lacrimal secretion is reduced in patients with ESRD. Am J Kidney Dis 2003;42:722–8. 42. Gibbins IL, Morris JL. Structure of peripheral synapses: autonomic ganglia. Cell Tissue Res 2006;326:205–26. 43. Hokfelt T, Elfvin LG, Elde R, Schultzberg M, Goldstein M, Luft R. Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc Natl Acad Sci USA 1977;74:3587–91. 44. Gibbins IL. Vasomotor, pilomotor and secretomotor neurons distinguished by size and neuropeptide content in superior cervical ganglia of mice. J Auton Nerv Syst 1991;34:171–83. 45. Phillips LK, Rayner CK, Jones KL, Horowitz M. An update on autonomic neuropathy affecting the gastrointestinal tract. Curr Diab Rep 2006;6:417–23. 46. Ding C, He QP, Li PA. Diabetes increases expression of ICAM after a brief period of cerebral ischemia. J Neuroimmunol 2005;161:61–7. 47. Katz ML, Robison WG Jr. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr 2002;34:169–84. 48. Sugaya A, Sugimioto H, Mogi N, Tsujigami H, Deguchi S. Experimental diabetes accelerates accumulation of fluorescent pigments in rat trigeminal neurons. Brain Res 2004;999:132–4. 49. Schmidt RE, Plurad SB, Parvin CA, Roth KA. Effect of diabetes and aging on human sympathetic autonomic ganglia. Am J Pathol 1993; 143:143–53. 50. Ronco C, Grammaticopoulos S, Rosner M, De Cal M, Soni S, Lentini P, Piccini P. Oliguria, creatinine and other biomarkers of acute kidney injury. Contrib Nephrol 2010;164:118–27. 51. Sjöholm A, Nyström T. Inflammation and the etiology of type 2 diabetes. Diabetes Metab Res Rev 2006;22:4–10. 52. Danielle AT de Almeida, Camila PB,. Ethel LBN, Ana Angelica HF. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin. Brazilian Archieves of Biology and Technology 2012;55:527–36. 53. Upchurch GR Jr, Keagy BA, Johnson G Jr. An acute phase reaction in diabetic patients with foot ulcers. Cardiovasc Surg 1997;5: 32–6.
Year 2017, Volume: 11 Issue: 2, 51 - 60, 30.08.2017

Abstract

References

  • 1. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003;17:24–38. 2. Phillips M, Cataneo RN, Cheema T, Greenberg J. Increased breath biomarker of oxidative stress in diabetes mellitus. Clin Chim Acta 2004;344:189–94. 3. Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci 2008;9:36–45. 4. Guven A, Yavuz O, Cam M, Comunoglu C, Sevinc O. Central nervous system complications of diabetes in streptozotocin-induced diabetic rats: a histopathological and immunohistochemical examination. Int J Neurosci 2009;119:1155–69. 5. Rudchenko A, Akude E, Cooper E. Synapses on sympathetic neurons and parasympathetic neurons differ in their vulnerability to diabetes. J Neurosci 2014;34:8865–74. 6. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathyevidence for apoptosis and associated mitochondrial dysfunction. Diabetes 2000;49:1932–8. 7. Fernyhough A, Chowdhury SKR, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 2010;5:39–49. 8. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1553–79. 9. Siessere S, Vitti M, de Sousa, LG, Semprini M, Iyomasa MM, Regalo SC. Anatomic variation of cranial parasympathetic ganglia. Braz Oral Res 2008;22:101–5. 10. Sisu AM, Petrescu CI, Cebzan CC, Motoc A, Bolintineanu S, vaida AM, Niculescu MC, Rusu MC. The adult coeliac ganglion: a morphologic study. Rom J Morphol Embryol 2008;49:491–4. 11. Sasahara TH, De souza RR, Machado MR, Da silva RA, Guidi WL, Ribeiro AA. Macro- and microstructural organization of the rabbit's celiac-mesenteric ganglion complex (Oryctolagus cuniculus). Ann Anat 2003;185:441–8. 12. Schmidt RE, Dorsey DA, Beaudet LN, Frederick KE, Parvin CA, Plurad SB, Levisetti MG. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy a new experimental model of diabetic autonomic neuropathy. Am J Pathol 2003;163: 2077–91. 13. Olsson Y, Sourander P. Changes in the sympathetic nervous system in diabetes mellitus. J Neurovisc Relat 1968;81:86–95. 14. Faizal PAM, Khan AA, Elsy B. Effect of experimental hyperglycemia on the trigeminal ganglia of albino rats. Int J Health Sci Res 2017;7: 191–8. 15. Young B, O’Dowd G, Woodford P. Wheater’s functional histology: a text and colour atlas. 6th edition. Philadelphia (PA): Churchill Livingstone, 2016. 139 p. 16. Ernst MC, Sinal CJ. Chemerin at the crossroads of inflammation and obesity. Trends Endocrinol Metab 2010;21:660–7. 17. King KD, Jones JD, Warthen J. Microvascular and macrovascular complications of diabetes mellitus. Am J Pharm Educ 2005;69:1–10. 18. Cheng D. Prevalence, predisposition and prevention of type II diabetes. Nutr Metab (Lond) 2005;18:2–29. 19. Air EL, Strowski MZ, Benoit SC, Conarello SL, Salituro GM, Guan XM, Liu K, Woods SC, Zhang BB. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat Med 2002;8:179–83. 20. Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med 2014;12:35–41. 21. Cintra LTA, Samuel RO, Prieto AK, Sumida DH, Dezan-Junior E, Gomes-Filho JE. Oral health, diabetes, and body weight. Arch Oral Biol 2017;73:94–9. 22. Elsy B, Maheshwari V, Khan AA. Effects of d alpha-tocopherol on progression of reepithelialization, matrix remodeling and appearance of epidermal appendages in secondary skin wounds of diabetic rats. Journal of Dermatology and Clinical Research 2016;4:1081. 23. Doddigarla Z, Ahmad J, Parwez I. Effect of chromium picolinate and melatonin either in single or in a combination in high carbohydrate diet?fed male Wistar rats. Biofactors 2016;42:106–14. 24. Elfvin LG. The ultrastructure of the superior cervical sympathetic ganglion of the cat: I. The structure of the ganglion cell processes as studied by serial sections. J Ultrastruct Res 1963;8:403–40. 25. Jurgaitiene R, Pauziene N, Azelis V, Zurauskas E. Morphometric study of age-related changes in the human intracardiac ganglia. Medicina (Kaunas) 2004;40:574–81. 26. Szczurkowski A, Kuder T, Nowak E, Kuchinka J. Morphology, topography and cytoarchitectonics of the pterygopalatine ganglion in Egyptian spiny mouse (Acomys cahirinus, Desmarest). Folia Morphol (Warsz) 2002;61:107–10. 27. Dilkash MNA, Ahmed SS, Khan AA. Comparative light microscopic study of trigeminal ganglion neurons in mammals. Curr Neurobiol 2010;1:25–9. 28. Adebiyi OA, Adebiyi OO, Owira PM. Naringin reduces hyperglycemia- induced cardiac fibrosis by relieving oxidative stress. PloS One 2016;11:1–15. 29. De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH. Inhibition of the interaction of AGE-RAGE prevents hyperglycemiainduced fibrosis of the peritoneal membrane. J Am Soc Nephrol 2003;14:2109–18. 30. Malak HW, Saleh SI, Salah El Din RA, Abdul Hamid HF. Histological and immunohistochemical study on the consequences of acute glycemic level alteration on the dorsal root ganglia and sciatic nerve integrity in neonatal albino rats. Egyptian Journal of Histology 2015;38:332–45. 31. Ahmadpour SH, Haghir H. Diabetes mellitus type 1 induces dark neuron formation in the dentate gyrus: a study by Gallyas’ method and transmission electron microscopy. Rom J Morphol Embryol 2011;52:575–9. 32. Zsombok A, Toth Z, Gallyas F. Basophilia, acidophilia and argyrophilia of ‘dark’ (compacted) neurons during their formation, recovery or death in an otherwise undamaged environment. J Neurosci Methods 2005;142:145–52. 33. Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 2008;44:205–21. 34. Keane RW, Kraydieh S, Lotocki G, Alonso OF, Aldana P, Dietrich WD. Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab 2001;21:1189–98. 35. Sango, K, Horie H, Saito H, Ajiki K, Tokashiki A, Takeshita K, Ishigatsubo Y, Kawano H, Ishikawa Y. Diabetes is not a potent inducer of neuronal cell death in mouse sensory ganglia, but it enhances neurite regeneration in vitro. Life Sci 2002;71:2351–68. 36. Duchen LW, Scaravilli F. Quantitative and electron microscopic studies of sensory ganglion cells of the Sprawling mouse. J Neurocytol 1977;6:465–81. 37. Seylaz J, Hara H, Pinard E, Mraovitch S, MacKenzie ET, Edvinsson L. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J Cereb Blood Flow Metab 1988;8:875–8. 38. Yasui T, Karita K, Izumi H, Tamai M. Correlation between vasodilatation and secretion in the lacrimal gland elicited by stimulation of the cornea and facial nerve root of the cat. Invest Ophthalmol Vis Sci 1997;38:2476–82. 39. Kaji A, Maeda T, Watanabe S. Parasympathetic innervation of cutaneous blood vessels examined by retrograde tracing in the rat lower lip. J Auton Nerv Syst 1991;32:153–8. 40. Yoon KC, Im SK, Seo MS. Changes of tear film and ocular surface in diabetes mellitus. Korean J Ophthalmol 2004;18:68–74. 41. Postorino M, Catalano C, Martorano C, Cutrupi S, Marino C, Cozzupoli P, Scudo P, Zoccali C. Salivary and lacrimal secretion is reduced in patients with ESRD. Am J Kidney Dis 2003;42:722–8. 42. Gibbins IL, Morris JL. Structure of peripheral synapses: autonomic ganglia. Cell Tissue Res 2006;326:205–26. 43. Hokfelt T, Elfvin LG, Elde R, Schultzberg M, Goldstein M, Luft R. Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc Natl Acad Sci USA 1977;74:3587–91. 44. Gibbins IL. Vasomotor, pilomotor and secretomotor neurons distinguished by size and neuropeptide content in superior cervical ganglia of mice. J Auton Nerv Syst 1991;34:171–83. 45. Phillips LK, Rayner CK, Jones KL, Horowitz M. An update on autonomic neuropathy affecting the gastrointestinal tract. Curr Diab Rep 2006;6:417–23. 46. Ding C, He QP, Li PA. Diabetes increases expression of ICAM after a brief period of cerebral ischemia. J Neuroimmunol 2005;161:61–7. 47. Katz ML, Robison WG Jr. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr 2002;34:169–84. 48. Sugaya A, Sugimioto H, Mogi N, Tsujigami H, Deguchi S. Experimental diabetes accelerates accumulation of fluorescent pigments in rat trigeminal neurons. Brain Res 2004;999:132–4. 49. Schmidt RE, Plurad SB, Parvin CA, Roth KA. Effect of diabetes and aging on human sympathetic autonomic ganglia. Am J Pathol 1993; 143:143–53. 50. Ronco C, Grammaticopoulos S, Rosner M, De Cal M, Soni S, Lentini P, Piccini P. Oliguria, creatinine and other biomarkers of acute kidney injury. Contrib Nephrol 2010;164:118–27. 51. Sjöholm A, Nyström T. Inflammation and the etiology of type 2 diabetes. Diabetes Metab Res Rev 2006;22:4–10. 52. Danielle AT de Almeida, Camila PB,. Ethel LBN, Ana Angelica HF. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin. Brazilian Archieves of Biology and Technology 2012;55:527–36. 53. Upchurch GR Jr, Keagy BA, Johnson G Jr. An acute phase reaction in diabetic patients with foot ulcers. Cardiovasc Surg 1997;5: 32–6.
There are 1 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Articles
Authors

Muhamed Faizal This is me

Aijaz Ahmed Khan This is me

Publication Date August 30, 2017
Published in Issue Year 2017 Volume: 11 Issue: 2

Cite

APA Faizal, M., & Khan, A. A. (2017). Effect of streptozotocin-induced diabetes on the autonomic ganglia of albino rats. Anatomy, 11(2), 51-60.
AMA Faizal M, Khan AA. Effect of streptozotocin-induced diabetes on the autonomic ganglia of albino rats. Anatomy. August 2017;11(2):51-60.
Chicago Faizal, Muhamed, and Aijaz Ahmed Khan. “Effect of Streptozotocin-Induced Diabetes on the Autonomic Ganglia of Albino Rats”. Anatomy 11, no. 2 (August 2017): 51-60.
EndNote Faizal M, Khan AA (August 1, 2017) Effect of streptozotocin-induced diabetes on the autonomic ganglia of albino rats. Anatomy 11 2 51–60.
IEEE M. Faizal and A. A. Khan, “Effect of streptozotocin-induced diabetes on the autonomic ganglia of albino rats”, Anatomy, vol. 11, no. 2, pp. 51–60, 2017.
ISNAD Faizal, Muhamed - Khan, Aijaz Ahmed. “Effect of Streptozotocin-Induced Diabetes on the Autonomic Ganglia of Albino Rats”. Anatomy 11/2 (August 2017), 51-60.
JAMA Faizal M, Khan AA. Effect of streptozotocin-induced diabetes on the autonomic ganglia of albino rats. Anatomy. 2017;11:51–60.
MLA Faizal, Muhamed and Aijaz Ahmed Khan. “Effect of Streptozotocin-Induced Diabetes on the Autonomic Ganglia of Albino Rats”. Anatomy, vol. 11, no. 2, 2017, pp. 51-60.
Vancouver Faizal M, Khan AA. Effect of streptozotocin-induced diabetes on the autonomic ganglia of albino rats. Anatomy. 2017;11(2):51-60.

Anatomy is the official journal of Turkish Society of Anatomy and Clinical Anatomy (TSACA).