Year 2019, Volume 13 , Issue 3, Pages 137 - 148 2019-12-31

Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study

Marwa Abd EL-KADER [1] , Hagar A. HASHİSH [2]


Objectives: Diabetic nephropathy is a serious factor in end-stage renal disease worldwide. Sodium-glucose cotransporter 2 inhibitors, the most novel glucose-lowering drug, may have a nephroprotective effect by modulating blood glucose, blood pressure and autophagy. The present work aimed to study the possible protective effect of empagliflozin in Type 2 diabetic nephropathy with special considerations to oxidative stress, fibrosis and ultrastructural modulation including autophagy.

Methods: Thirty-six adult male Sprague-Dawley rats were divided into 3 groups; control, diabetic, and treatment. Type 2 diabetes was induced by pretreatment with nicotinamide followed by single low-dose of streptozotocin (40 mg/kg, i.p). The treatment group received empagliflozin (10 mg/kg/day, intragastric) for 4 weeks. At the end of 4 weeks, parameters of renal function and oxidative stress were analyzed. Kidney samples were collected for histological and ultrastructural studies.

Results: Empagliflozin significantly reduced hyperglycemia, blood urea nitrogen, serum creatinine and oxidative stress which were elevated in the diabetic group. It also decreased renal tissue injury and fibrosis; however, did not lower the increased kidney index and glomerular size. Beside the amelioration of ultrastructure changes, empagliflozin enhanced the autophagy in renal tubular cells, indicated by increased number of autophagic vacuoles.

Conclusion: Empagliflozin provided an efficient, but not complete protection against diabetic nephropathy in streptozotocin- nicotinamide-induced type 2 diabetic rat model. This effect could be related to reduction of hyperglycemia and improvement of cellular defense mechanisms, and reduction of glucose-induced oxidative stress and autophagy.

Diabetes, Nephropathy, Autophagy, empagliflozin
  • Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, Steffes MW. Nephropathy in diabetes. Diabetes Care 2004;27:79–83. 2. Ruggenenti P, Cravedi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol 2010;6:319–30. 3. Liu WJ, Huang WF, Ye L, Chen RH, Yang C, Wu HL, Pan QJ, Liu HF. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur Rev Med Pharmaco 2018;22:3182–9. 4. Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, Sango K, Utsunomiya K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int J Mol Sci 2017;18. pii: E1083. 5. Shen Z, Fang Y, Xing T, Wang F. Diabetic nephropathy: from pathophysiology to treatment. J Diabetes Res 2017;2379432. 6. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011;146:682–95. 7. Gonzalez CD, Lee MS, Marchetti P, Pietropaolo M, Towns R, Vaccaro MI, Watada H, Wiley JW. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011;7:2–11. 8. Yang C, Kaushal V, Shah SV, Kaushal GP. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 2008;294:F777–87. 9. Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, Cohen CD, Pavenstadt H, Kerjaschki D, Mizushima N, Shaw AS, Walz G, Huber TB. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2010;120:1084–96. 10. Jung CH, Jang JE, Park JY. A novel therapeutic agent for type 2 diabetes mellitus: SGLT2 inhibitor. Diabetes Metab J 2014;38:261–73. 11. Syed SH, Gosavi S, Shami W, Bustamante M, Farah Z, Teleb M, Abbas A, Said S, Mukherjee D. A review of sodium glucose co-transporter inhibitors canagliflozin, dapagliflozin and empagliflozin. Cardiovasc Hematol Agents Med Chem 2015;13:105–12. 12. Takakura S, Toyoshi T, Hayashizaki Y, Takasu T. Effect of ipragliflozin, an SGLT2 inhibitor, on progression of diabetic microvascular complications in spontaneously diabetic Torii fatty rats. Life Sci 2016;147:125–31. 13. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 2016;39:165–71. 14. Miller EM. Elements for success in managing Type 2 diabetes with SGLT-2 inhibitors: role of the kidney in glucose homeostasis: implications for SGLT-2 inhibition in the treatment of type 2 diabetes mellitus. J Fam Pract 2017;66:S3–S5. 146 Abd El-kader M, Hashish HA Anatomy • Volume 13 / Issue 3 / December 2019 15. Baker W, Smyth L, Riche D, Bourret E, Chamberlin K, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens 2014; 8:262–75. 16. Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm Metab Res 2015;47:686–92. 17. Shirwaikar A, Rajendran K, Barik R. Effect of aqueous bark extract of Garuga pinnata Roxb in streptozotocin-nicotinamide induced type- II diabetes mellitus. J Ethnopharmacol 2006;107:285–90. 18. Mokhtare B, Cetin M, Ozakar RS, Bayrakceken H. In vitro and in vivo evaluation of alginate and alginatechitosan beads containing metformin hydrochloride. Trop J Pharm Res 2017;16:287–96. 19. Ma ZN, Li YZ, Li W, Yan XT, Yang G, Zhang J, Zhao LC, Yang LM. Nephroprotective effects of saponins from leaves of Panax quinquefolius against cisplatin-induced acute kidney injury. Int J Mol Sci 2017;18:1407. 20. Bancroft JD, Gamble M. Theory and practice of the histological techniques. 5th ed. London: Churchill Livingstone; 2002. p.125–39. 21. Chen Y, Yu Q, Cang-Bao X. A convenient method for quantifying collagen fibers in atherosclerotic lesions by Image software. International Journal of Clinical Experimental Medicine 2017;10: 14904–10. 22. Han E, Shin E, Kim G, Lee JY, Lee YH, Lee BW, Kang ES, Cha BS. Combining SGLT2 Inhibition with a thiazolidinedione additively attenuate the very early phase of diabetic nephropathy progression in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2018;9:412. 23. Johora F, Nurunnabi ASM, Shahriah S, Ahmed R, Ara S. Histomorphometric study of the glomeruli of the kidney in Bangladeshi population. Journal of Bangladesh Society of Physiologist 2014;9:11–16. 24. Dallak M, Bin-Jaliah I, Al-Hashem F, Kamar SS, Abdel Kader DH, Amin SH, Haidara MA, Al-Ani B. Metformin pretreatment ameliorates diabetic nephropathy induced by a combination of high fat diet and streptozotocin in rats. International Journal of Morphology 2018;36:969–74. 25. Abdel-Dayem MM, Hatem MM, Elgendy MS. Histological and immunohistochemical study on nitric oxide synthase and effects of angiotensin receptor blockade in early phase of diabetes in rat kidney. British Journal of Medicine & Medical Research 2014;4:3317– 38. 26. Geng Y, Chen G, Mao X, Wei X, Li X, Fan K, Lu Y, Liu C. Lowprotein calorie-restricted diet attenuates renal injury and facilitates podocyte autophagy in type 2 diabetic rats. International Journal of Clinical and Experimental Medicine 2018;11:9343–52. 27. Reutens AT. Epidemiology of diabetic kidney disease. Med Clin North Am 2013;97:1–18. 28. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, de Boer IH. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 2013;24:302–308. 29. Quaresma M, Coleman MP, Rachet B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971–2011: a populationbased study. Lancet 2015;385:1206–18. 30. Lee KA, Jin HY, Lee NY, Kim YJ, Park TS. Effect of empagliflozin, a selective sodium glucose cotransporter 2 inhibitor, on kidney and peripheral nerves in streptozotocin induced diabetic rats. Diabetes Metab 2018;42:338–42. 31. Rola N, Elias K, Farid N, Inbal D, Farber E, Anam H, Nakhoul N. Sodium-glucose transporter inhibitors and diabetic nephropathy in humans and animal model. J Clin Exp Nephrol 2018;3:2–10. 32. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323–34. 33. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117–28. 34. Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, Hugo C. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Ren Physiol 2014;307:F317–25. 35. Gallo LA, Ward MS, Fotheringham AK, Zhuang A, Borg DJ, Flemming NB, Harvie BM, Kinneally TL, Yeh SM, McCarthy DA, Koepsell H, Vallon V, Pollock C, Panchapakesan U, Forbes JM. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Rep 2016;6:26428. 36. Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 2015;66:255–70. 37. Sano M, Takei M, Shiraishi Y, Suzuki Y. Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res 2016;8:844–47. 38. Garg MC, Ojha S, Bansal DD. Antioxidant status of streptozotocin diabetic rats. Indian J Exp Biol 1996;34:264–66. 39. Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 2005;10:S7–10. 40. Dekkers CCJ, Gansevoort RT, Heerspink HJL. New diabetes therapies and diabetic kidney disease progression: the role of SGLT-2 inhibitors. Curr Diab Rep 2018;18:27. 41. Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, Krolewski AS. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol 2008;19:789–97. 42. Sangoi MB, de Carvalho JA, Tatsch E, Hausen BS, Bollick YS, Londero SW, Duarte T, Scolari R, Duarte MMMF, Premaor MO, Comim FV, Moretto MB, Moresco RN. Urinary inflammatory cytokines as indicators of kidney damage in type 2 diabetic patients. Clin Chim Acta 2016;460:178–83. 43. Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, Sata M. Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocininduced diabetic mouse. Front Cardiovasc Med 2016;3:43. 44. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 2011;22:902–13. 45. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290:1717–21. 46. Yasuda-Yamahara M, Kume S, Tagawa A, Maegawa H, Uzu T. Emerging role of podocyte autophagy in the progression of diabetic nephropathy. Autophagy 2015;11:2385–6. Empagliflozin in prevention in Type 2 diabetes nephropathy 147 Anatomy • Volume 13 / Issue 3 / December 2019 47. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin- Kanasaki M, Araki H, Araki SI, Koya D, Asanuma K, Kim EH, Haneda M, Kajiwara N, Hayashi K, Ohashi H, Ugi S, Maegawa H, Uzu T. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 2016;65:755–67. 48. Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018;75:669–88. 49. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, Dai C, Yang J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One 2013;8: e60546. 50. Miko M, Jakubovsky J, Vrabcova M, Varga. Ultrastructural changes of kidney in diabetic rats. Bratisl Lek Listy 2016;117:161– 5. 51. Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Ren Physiol 2013;304:F156–67.
  • 39. Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 2005;10(2):S7– S10. 40. Dekkers CCJ, Gansevoort RT, Heerspink HJL. New diabetes therapies and diabetic kidney disease progression: the role of sglt-2 inhibitors. Curr Diab Rep 2018;18(5):27. 41. Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, Krolewski AS. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol 2019;19:789–797. 42. Sangoi MB, de Carvalho JA, Tatsch E, Hausen BS, Bollick YS, Londero SW, Duarte T, Scolari R, Duarte MMMF, Premaor MO, Comim FV, Moretto MB, Moresco RN. Urinary inflammatory cytokines as indicators of kidney damage in type 2 diabetic patients. Clin Chim Acta 2016;460:178–183. 43. Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, Sata M. Glycemic control with Ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in Streptozotocininduced diabetic mouse. Front Cardiovasc Med 2016;3:43. 44. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc. Nephrol 2011;22:902–913. 45. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290:1717–1721. 46. Yasuda-Yamahara M, Kume S, Tagawa A, Maegawa H, Uzu T. Emerging role of podocyte autophagy in the progression of diabetic nephropathy. Autophagy 2015;11(12):2385-2386. 47. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki SI, Koya D, Asanuma K, Kim EH, Haneda M, Kajiwara N, Hayashi K, Ohashi H, Ugi S, Maegawa H, Uzu T. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 2016;65(3):755-767. 48. Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018;75(4):669-688. 49. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, Dia C, Yang J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One 2013;8(4):e60546. 50. Miko M, Jakubovsky J, Vrabcova M, Varga. Ultrastructural changes of kidney in diabetic rats. Bratisl Med J 2016;117 (3):161-165. 51. Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Ren. Physiol 2013;304:F156–F167.
Primary Language en
Subjects Health Care Sciences and Services
Journal Section Original Articles
Authors

Author: Marwa Abd EL-KADER
Institution: Department of Anatomy and Embryology, School of Medicine, Mansoura University
Country: Egypt


Author: Hagar A. HASHİSH (Primary Author)
Institution: Faculty of Medicine, Mansoura University
Country: Egypt


Dates

Publication Date : December 31, 2019

Bibtex @research article { anatomy708905, journal = {Anatomy}, issn = {1307-8798}, eissn = {1308-8459}, address = {}, publisher = {Turkish Society of Anatomy and Clinical Anatomy (TSACA)}, year = {2019}, volume = {13}, pages = {137 - 148}, doi = {}, title = {Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study}, key = {cite}, author = {Hashi̇sh, Hagar A.} }
APA El-kader, M , Hashi̇sh, H . (2019). Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study . Anatomy , 13 (3) , 137-148 . Retrieved from https://dergipark.org.tr/en/pub/anatomy/issue/53646/708905
MLA El-kader, M , Hashi̇sh, H . "Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study" . Anatomy 13 (2019 ): 137-148 <https://dergipark.org.tr/en/pub/anatomy/issue/53646/708905>
Chicago El-kader, M , Hashi̇sh, H . "Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study". Anatomy 13 (2019 ): 137-148
RIS TY - JOUR T1 - Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study AU - Marwa Abd El-kader , Hagar A. Hashi̇sh Y1 - 2019 PY - 2019 N1 - DO - T2 - Anatomy JF - Journal JO - JOR SP - 137 EP - 148 VL - 13 IS - 3 SN - 1307-8798-1308-8459 M3 - UR - Y2 - 2019 ER -
EndNote %0 Anatomy Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study %A Marwa Abd El-kader , Hagar A. Hashi̇sh %T Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study %D 2019 %J Anatomy %P 1307-8798-1308-8459 %V 13 %N 3 %R %U
ISNAD El-kader, Marwa Abd , Hashi̇sh, Hagar A. . "Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study". Anatomy 13 / 3 (December 2020): 137-148 .
AMA El-kader M , Hashi̇sh H . Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study. Anatomy. 2019; 13(3): 137-148.
Vancouver El-kader M , Hashi̇sh H . Potential role of empagliflozin in prevention of nephropathy in streptozotocin-nicotinamideinduced type 2 diabetes: an ultrastructural study. Anatomy. 2019; 13(3): 137-148.