Research Article
BibTex RIS Cite
Year 2020, Volume: 14 Issue: 3, 165 - 170, 30.12.2020

Abstract

References

  • Rush S, Bremer J, Foresto C, Rubin AM, Anderson PI. A magnetic resonance imaging study to define optimal needle length for humeral head IO devices. J Spec Oper Med 2012;12:77–82.
  • Polat O, Oguz AB, Eneyli MG, Comert A, Acar HI, Tuccar E. Applied anatomy for tibial intraosseous access in adults: a radioanatomical study. Clin Anat 2018;31:593–7.
  • Kovar J, Gillum L. Alternate route: the humerus bone – a viable option for IO access. JEMS 2010;35:52–9.
  • Hazani R, Engineer NJ, Cooney D, Wilhelmi BJ. Anatomic landmarks for the first dorsal compartment. Eplasty 2008;8:e53.
  • Smith J, Rizzo M, Finnoff JT, Sayeed YA, Michaud J, Martinoli C. Sonographic appearance of the posterior interosseous nerve at the wrist. J Ultrasound Med 2011;30:1233–9.
  • Ikiz ZAA, Üçerler H. Anatomic characteristics and clinical importance of the superficial branch of the radial nerve. Surg Radiol Anat 2004;26:453–8.
  • Smith DK. Dorsal carpal ligaments of the wrist: normal appearance on multiplanar reconstructions of threedimensional Fourier transform MR imaging. AJR Am J Roentgenol 1993;161:119–25.
  • Dornhofer P, Kellar JZ. Intraosseous vascular access. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. PMID: 32119260.
  • Blouin D, Gegel BT, Johnson D, Garcia-Blanco JC. Effects of intravenous, sternal, and humerus intraosseous administration of Hextend on time of administration and hemodynamics in a hypovolemic swine model. Am J Disaster Med 2016;11:183–92.
  • Pasley J, Miller CHT, DuBose JJ, Shackelford SA, Fang R, Boswell K, et al. Intraosseous infusion rates under high pressure: a cadaveric comparison of anatomic sites. J Trauma Acute Care Surg 2015;78:295–9.
  • Rausch S, Klos K, Gras F, Skulev HK, Popp A, Hofmann GO, Mückley T. Utility of the cortical thickness of the distal radius as a predictor of distal-radius bone density. Arch Trauma Res 2013;2:11– 5.
  • Bloom RA, Pogrund H, Libson E. Soft-tissue thickness of the wrist. Clin Radiol 1984;35:321–2.
  • Ye C, Guo Y, Zheng Y, Wu Z, Chen K, Zhang X, Xiao L, Chen Z. Distal radial cortical bone thickness correlates with bone mineral density and can predict osteoporosis: a cohort study. Injury 2020;51: 2617–21.
  • Gendron B, Cronin A, Monti J, Brigg A. Military medic performance with employment of a commercial intraosseous infusion device: a randomized, crossover study. Mil Med 2018;183:e216–22.
  • Warren DW, Kissoon N, Sommerauer JF, Rieder MJ. Comparison of fluid infusion rates among peripheral intravenous and humerus, femur, malleolus, and tibial intraosseous sites in normovolemic and hypovolemic piglets. Ann Emerg Med 1993;183–6.
  • Chan WY, Chong LR. Anatomical variants of Lister’s tubercle: a new morphological classification based on magnetic resonance imaging. Korean J Radiol 2017;18:957–63.
  • Philbeck TE, Miller LJ, Montez D, Puga T. Hurts so good. Easing IO pain and pressure. JEMS 2010;35:58–62.
  • Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed 2013;26:489–506.
  • Treece GM, Gee AH, Mayhew PM, Poole KE. High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal 2010;14:276–90.
  • Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013;2013:213234.
  • Sadat-Ali M, Elshaboury E, Al-Omran AS, Azam MQ, Syed A, Gullenpet AH. Tibial cortical thickness: a dependable tool for assessing osteoporosis in the absence of dual energy X-ray absorptiopmetry. Int J Appl Basic Med Res 2015;5:21–4.
  • Lamas C, Llusà M, Méndez A, Proubasta I, Carrera A, Forcada P. Intraosseous vascularity of the distal radius: anatomy and clinical implications in distal radius fractures. Hand 2009;4:418–23.

Radioanatomical examination of the dorsal tubercle and surrounding regions for intraosseous infusions

Year 2020, Volume: 14 Issue: 3, 165 - 170, 30.12.2020

Abstract

Objectives: The aim of the study was to determine the soft tissue thickness overlying the dorsal tubercle and the relationship with adjacent anatomical structures in the distal radius for using this area as an alternative intraosseous route.
Methods: Contrast-enhanced MR images of 56 adult patients (28 females, 28 males) without any wrist pathology were evaluated. The shape of dorsal tubercle and its relations with neighboring tendons and vessels with a diameter larger than 2 mm was identified on the axial T1-weighted sections. The soft tissue thickness above the most protruding point of the dorsal tubercle, the distance of the dorsal tubercle to closest tendon on the radial and ulnar sides, as well as its distance to the bone edges on the ulnar and radial sides, and the cortical bone thickness of the radius was evaluated.
Results: The dorsal tubercle had sharp edges in 40 cases (71.4%), blunt in 12 cases (21.4%), and hump in 4 (%7.1) cases. Branches of dorsal venous plexus were found on its surface in 11 cases, extensor pollicis longus tendon only was found superficial to the dorsal tubercle in 7 cases while both extensor pollicis longus and dorsal venous branches were found in 2 cases.
Conclusion: Dorsal tubercle of the distal radius can be considered as an important alternative route for IO infusions since it can be easily accessed without having a risk of injury to important structures, and can provide effective flow.

References

  • Rush S, Bremer J, Foresto C, Rubin AM, Anderson PI. A magnetic resonance imaging study to define optimal needle length for humeral head IO devices. J Spec Oper Med 2012;12:77–82.
  • Polat O, Oguz AB, Eneyli MG, Comert A, Acar HI, Tuccar E. Applied anatomy for tibial intraosseous access in adults: a radioanatomical study. Clin Anat 2018;31:593–7.
  • Kovar J, Gillum L. Alternate route: the humerus bone – a viable option for IO access. JEMS 2010;35:52–9.
  • Hazani R, Engineer NJ, Cooney D, Wilhelmi BJ. Anatomic landmarks for the first dorsal compartment. Eplasty 2008;8:e53.
  • Smith J, Rizzo M, Finnoff JT, Sayeed YA, Michaud J, Martinoli C. Sonographic appearance of the posterior interosseous nerve at the wrist. J Ultrasound Med 2011;30:1233–9.
  • Ikiz ZAA, Üçerler H. Anatomic characteristics and clinical importance of the superficial branch of the radial nerve. Surg Radiol Anat 2004;26:453–8.
  • Smith DK. Dorsal carpal ligaments of the wrist: normal appearance on multiplanar reconstructions of threedimensional Fourier transform MR imaging. AJR Am J Roentgenol 1993;161:119–25.
  • Dornhofer P, Kellar JZ. Intraosseous vascular access. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. PMID: 32119260.
  • Blouin D, Gegel BT, Johnson D, Garcia-Blanco JC. Effects of intravenous, sternal, and humerus intraosseous administration of Hextend on time of administration and hemodynamics in a hypovolemic swine model. Am J Disaster Med 2016;11:183–92.
  • Pasley J, Miller CHT, DuBose JJ, Shackelford SA, Fang R, Boswell K, et al. Intraosseous infusion rates under high pressure: a cadaveric comparison of anatomic sites. J Trauma Acute Care Surg 2015;78:295–9.
  • Rausch S, Klos K, Gras F, Skulev HK, Popp A, Hofmann GO, Mückley T. Utility of the cortical thickness of the distal radius as a predictor of distal-radius bone density. Arch Trauma Res 2013;2:11– 5.
  • Bloom RA, Pogrund H, Libson E. Soft-tissue thickness of the wrist. Clin Radiol 1984;35:321–2.
  • Ye C, Guo Y, Zheng Y, Wu Z, Chen K, Zhang X, Xiao L, Chen Z. Distal radial cortical bone thickness correlates with bone mineral density and can predict osteoporosis: a cohort study. Injury 2020;51: 2617–21.
  • Gendron B, Cronin A, Monti J, Brigg A. Military medic performance with employment of a commercial intraosseous infusion device: a randomized, crossover study. Mil Med 2018;183:e216–22.
  • Warren DW, Kissoon N, Sommerauer JF, Rieder MJ. Comparison of fluid infusion rates among peripheral intravenous and humerus, femur, malleolus, and tibial intraosseous sites in normovolemic and hypovolemic piglets. Ann Emerg Med 1993;183–6.
  • Chan WY, Chong LR. Anatomical variants of Lister’s tubercle: a new morphological classification based on magnetic resonance imaging. Korean J Radiol 2017;18:957–63.
  • Philbeck TE, Miller LJ, Montez D, Puga T. Hurts so good. Easing IO pain and pressure. JEMS 2010;35:58–62.
  • Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed 2013;26:489–506.
  • Treece GM, Gee AH, Mayhew PM, Poole KE. High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal 2010;14:276–90.
  • Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013;2013:213234.
  • Sadat-Ali M, Elshaboury E, Al-Omran AS, Azam MQ, Syed A, Gullenpet AH. Tibial cortical thickness: a dependable tool for assessing osteoporosis in the absence of dual energy X-ray absorptiopmetry. Int J Appl Basic Med Res 2015;5:21–4.
  • Lamas C, Llusà M, Méndez A, Proubasta I, Carrera A, Forcada P. Intraosseous vascularity of the distal radius: anatomy and clinical implications in distal radius fractures. Hand 2009;4:418–23.
There are 22 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Articles
Authors

Selda Aksoy 0000-0002-7324-7165

Mehmet Ali Güner 0000-0002-9782-8044

İnanç Güvenç 0000-0001-8202-2446

Sedat Bilge 0000-0002-0669-2859

Onur Tezel This is me 0000-0002-3337-2965

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 14 Issue: 3

Cite

APA Aksoy, S., Güner, M. A., Güvenç, İ., Bilge, S., et al. (2020). Radioanatomical examination of the dorsal tubercle and surrounding regions for intraosseous infusions. Anatomy, 14(3), 165-170.
AMA Aksoy S, Güner MA, Güvenç İ, Bilge S, Tezel O. Radioanatomical examination of the dorsal tubercle and surrounding regions for intraosseous infusions. Anatomy. December 2020;14(3):165-170.
Chicago Aksoy, Selda, Mehmet Ali Güner, İnanç Güvenç, Sedat Bilge, and Onur Tezel. “Radioanatomical Examination of the Dorsal Tubercle and Surrounding Regions for Intraosseous Infusions”. Anatomy 14, no. 3 (December 2020): 165-70.
EndNote Aksoy S, Güner MA, Güvenç İ, Bilge S, Tezel O (December 1, 2020) Radioanatomical examination of the dorsal tubercle and surrounding regions for intraosseous infusions. Anatomy 14 3 165–170.
IEEE S. Aksoy, M. A. Güner, İ. Güvenç, S. Bilge, and O. Tezel, “Radioanatomical examination of the dorsal tubercle and surrounding regions for intraosseous infusions”, Anatomy, vol. 14, no. 3, pp. 165–170, 2020.
ISNAD Aksoy, Selda et al. “Radioanatomical Examination of the Dorsal Tubercle and Surrounding Regions for Intraosseous Infusions”. Anatomy 14/3 (December 2020), 165-170.
JAMA Aksoy S, Güner MA, Güvenç İ, Bilge S, Tezel O. Radioanatomical examination of the dorsal tubercle and surrounding regions for intraosseous infusions. Anatomy. 2020;14:165–170.
MLA Aksoy, Selda et al. “Radioanatomical Examination of the Dorsal Tubercle and Surrounding Regions for Intraosseous Infusions”. Anatomy, vol. 14, no. 3, 2020, pp. 165-70.
Vancouver Aksoy S, Güner MA, Güvenç İ, Bilge S, Tezel O. Radioanatomical examination of the dorsal tubercle and surrounding regions for intraosseous infusions. Anatomy. 2020;14(3):165-70.

Anatomy is the official journal of Turkish Society of Anatomy and Clinical Anatomy (TSACA).