Research Article
BibTex RIS Cite
Year 2025, Volume: 4 Issue: 1, 27 - 47
https://doi.org/10.71133/anatphar.1594005

Abstract

References

  • [1] Chen J, He P, Bai H, He S, Zhang T, Zhang X, Dong F. Poly (β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sensors and Actuators, B:, 2017; 252: 9–16.
  • [2] Wang SF, Xie FR, Hu F. Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sensors and Actuators, B:, 2007; 123: 495–500.
  • [3] Goyal RN, Singh SP. Voltammetric determination of paracetamol at C60 modified glassy carbon electrode. Electrochimica Acta, 2006; 51: 3008–3012.
  • [4] Carvalho RMD, Freire RS, Rath S, Kubota LT. Effects of EDTA on signal stability during electrochemical detection of acetaminophen. Journal of pharmaceutical and biomedical analysis, 2004; 34(5): 871–878.
  • [5] Goyal RN, Rana AR, Aziz MA, Oyama DM. Effect of gold nanoparticle attached multi-walled carbon nano tube-layered indium tin oxide in monitoring the effect of PCM on the release of epinephrine. Analytica Chimica Acta, 2011; 693(1-2): 35–40.
  • [6] Pradhan S, Das S, Biswas S, Das DK, Bhar R, Bandyopadhyay R, Pramanik P. Chemical synthesis of nanoparticles of nickel telluride and cobalt telluride and its electrochemical applications for determination of uric acid and adenine. Electrochimica Acta, 2017; 238: 185–193.
  • [7] Kumar Y, Pradhan S, Pramanik S, Bandhyopadhyay R, Das DK, Pramanik P. Efficient electrochemical detection of guanine, uric acid and their mixture by composite of nano-particles of lanthanides ortho-ferrite XFeO3 (X¼ La, Gd, Pr, Dy, Sm, Ce and Tb). Journal of Electroanalytical Chemistry, 2018; 830: 95–105.
  • [8] Gadallah MI, Ali HRH, Askal HF, Saleh GA. Poly (bromocresol green) flakes-decorated pencil graphite electrode for selective electrochemical sensing applications and pharmacokinetic studies. Materials Science and Engineering: C, 2019; 102: 634-645.
  • [9] Talluri MVNK, Bairwa MK, Dugga HHT, Srinivas R. Development and validation of RP-HPLC and ultraviolet spectrophotometric methods of analysis for simultaneous determination of paracetamol and lornoxicam in pharmaceutical dosage forms. Journal of liquid chromatography & related technologies, 2012; 35(1): 129–140.
  • [10] Easwaramoorthy D, Yu YC, Huang HJ. Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Analytica Chimica Acta, 2001; 439: 95–100.
  • [11] Speed DJ, Dickson SJ, Cairns ER, Kim ND. Analysis of paracetamol using solid phase extraction, deuterated internal standards, and gas chromatography–mass spectrometry. Journal of analytical toxicology, 2001; 25(3): 198–202.
  • [12] Jensen LS, Valentine J, Milne RW, Evans AM. The quantification of paracetamol, paracetamol glucuronide and paracetamol sulphate in plasma and urine using a single high-performance liquid chromatography assay. Journal of pharmaceutical and biomedical analysis, 2004; 34: 585–593.
  • [13] Manjunatha JG, Swamy BK, Mamatha GP, Chandra U, Niranjana E, Sherigara BS. Cyclic voltammetric studies of dopamine at lamotrigine and TX-100 modified carbon paste electrode. International Journal of Electrochemical Science, 2009; 4(2): 187-196.
  • [14] Raril C, Manjunatha JG, Tigari G. Low-cost voltammetric sensor based on an anionic surfactant modified carbon nanocomposite material for the rapid determination of curcumin in natural food supplement. Instrumentation Science & Technology, 2020; 48(5): 561-582.
  • [15] Manjunatha JG. Electrochemical polymerized graphene paste electrode and application to catechol sensing. The Open Chemical Engineering Journal, 2019; 13(1).
  • [16] Raoof JB, Ojani R, Beitollahi H. Electrocatalytic determination of ascorbic acid at chemically modified carbon paste electrode with 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one. International Journal of Electrochemical Science, 2007; 2(7): 534-548.
  • [17] Mahmoudi Moghaddam H, Beitollahi H, Tajik S, Sheikhshoaie I, Biparva P. Fabrication of novel TiO2 nanoparticles/Mn(III) salen doped carbon paste electrode: application as electrochemical sensor for the determination of hydrazine in the presence of phenol. Environmental Monitoring and Assessment, 2015; 187: 1-12.
  • [18] Ardakani MM, Taleat Z, Beitollahi H, Salavati-Niasari M, Mirjalili BBF, Taghavinia N. Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex–TiO2 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry, 2008; 624(1-2): 73-78.
  • [19] Mazloum-Ardakani M, Beitollahi H, Mohseni MAS, Benvidi A, Naeimi H, Nejati-Barzoki M, Taghavinia N. Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2, 2′-[1, 2 butanediylbis (nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010; 76(1): 82-87.
  • [20] Umar Y, Pramanik P, Das DK. Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon, 2019; 5(7): e02031.
  • [21] Gharous M, Bounab L, Pereira FJ, Choukairi M, López R, Aller AJ. Electrochemical Kinetics and Detection of Paracetamol by Stevensite-Modified Carbon Paste Electrode in Biological Fluids and Pharmaceutical Formulations. International Journal of Molecular Sciences, 2023; 24(14): 11269.
  • [22] Naik TSK, Swamy BK, Ramamurthy PC, Chetankumar K. Poly (L-leucine) modified carbon paste electrode as an electrochemical sensor for the detection of paracetamol in presence of folic acid. Materials Science for Energy Technologies, 2020; 3: 626-632.
  • [23] Matt SB, Raghavendra S, Shivanna M, et al. Electrochemical Detection of Paracetamol by Voltammetry Techniques Using Pure Zirconium Oxide Nanoparticle Based Modified Carbon Paste Electrode. Journal of Inorganic and Organometallic Polymers and Materials, 2021; 31: 511–519.
  • [24] Mangaiyarkarasi R, Premlatha S, Khan R, Pratibha R, Umadevi SJJOML. Electrochemical performance of a new imidazolium ionic liquid crystal and carbon paste composite electrode for the sensitive detection of paracetamol. Journal of Molecular Liquids, 2020; 319: 114255.
  • [25] Haghshenas E, Madrakian T, Afkhami A. A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. Materials Sciences and Engineering: C, 2015; 57: 205-214.
  • [26] Zine A, Ferkhi M, Khaled A, Savan EK. A2BO4±δ as new materials for electrocatalytic detection of paracetamol and diclofenac drugs. Electrocatalysis, 2022; 13(5): 524–538.
  • [27] Nayak S, Manjunatha JG, Moulya KP, et al. New voltammetric sensing technique for determination of paracetamol by L-phenylalanine based carbon paste electrode. Monatshefte für Chemie-Chemical Monthly, 2024; 155(2): 155-163.
  • [28] Pushpanjali PA, Manjunatha JG, Hareesha N, D'Souza ES, Charithra MM, Prinith NS. Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly (L-Leucine) layered carbon nanotube paste electrode. Surfaces and Interfaces, 2021; 24: 101154.
  • [29] Mekersi M, Ferkhi M, Savan EK. Electrochemical biodetection of glucose using La0.6Sr0.4Co0.8Fe0.2O3 and La1,7Sr0,3CuO4 Nano-Particles modified with black carbon deposited on glassy carbon electrode. Microchemical Journal, 2023: 109346.
  • [30] Mekersi M, Savan EK, Ferkhi M. Electrochemical simultaneous determination of nitrate ions in water using modified glassy carbon electrode based on La1.7Sr0.3CuO4 and La0.6Sr0.4Co0.8Fe0.2O3 nanomaterials and black carbon sensors. Ionics, 2024: 1-18.
  • [31] Ferkhi M, Khelili S, Zerroual L, Ringuedé A, Cassir M. Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1−xCuxO4+δ materials as new cathodes for solid oxide fuel cells. Electrochimica Acta, 2009; 54(26): 6341-6346.
  • [32] Ferkhi M, Ringuedé A, Khaled A, Zerroual L, Cassir M. La1.98Ni04±δ, a new cathode material for solid oxide fuel cell: Impedance spectroscopy study and compatibility with gadolinia-doped ceria and yttria-stabilized zirconia electrolytes. Electrochimica Acta, 2012; 75: 80-87.
  • [33] Ferkhi M, Yahia HA. Electrochemical and morphological characterizations of La2⿿xNiO4±d (x= 0.01, 0.02, 0.03 and 0.05) as new cathodes materials for IT-SOFC. Materials Research Bulletin, 2016; 83: 268-274.
  • [34] Ferkhi M, Rekaik M, Khaled A, Cassir M, Pireaux JJ. Neodymium nickelate Nd2-xSrxNi1-yCoyO4±d (x and y= 0 or 0.05) as cathode materials for the oxygen reduction reaction. Electrochimica Acta, 2017; 229: 281-290.
  • [35] Amira S, Ferkhi M, Khaled A, Mauvy F, Grenier GC, Houssiau L, Pireaux JJ. Carbon-based lanthanum nickelate material La2−x−yNdxPryNiO4+δ (x= 0, 0.3, and 0.5; y= 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media. Ionics, 2019; 25: 3809-3822.
  • [36] Amira S, Ferkhi M, Belghobsi M, Khaled A, Mauvy F, Grenier JC. Synthesis, characterization, and electrochemical behavior of a new Nd1.9Sr0.1Ni0.9Co0.1O4±δ material as electrocatalyst for the oxygen reduction reaction. Ionics, 2019; 25: 3799-3807.
  • [37] Khaled A, Rekaik M, Ferkhi M, Cassir M. New La2Ni1-xO4±δ (0.01≤ x≤ 0.1) Materials as Cathode for Solid Oxide Fuel Cells. Analytical and Bioanalytical Electrochemistry, 2019; 11(11): 1517-1535.
  • [38] Amira S, Ferkhi M, Khaled A, Pireaux JJ. Electrochemical properties of La2BO4+ δ/C electrocatalysts and study of the mechanism of the oxygen reduction reaction in alkaline medium. Journal of the Iranian Chemical Society, 2022; 1-17.
  • [39] Amira S, Ferkhi M, Khaled A, Mauvy F, Bassat JM, Cassir M, Grenier JC. Development of an innovative interfacial layer adapted to La2BO4±δ (B: Ni, Mn, Co) IT-SOC oxygen electrodes. Materials Research Bulletin, 2023; 112400.
  • [40] Amira S, Ferkhi M, Mauvy F, Fourcade S, Bassat JM, Grenier JC. La1.5Nd0. 3Pr0.2NiO4. 16: A New Cathode Material for IT-Solid Oxide Fuel Cells. Electrocatalysis, 2023; 1-15.
  • [41] Liotta LF, Puleo F, La Parola V, et al. La0.6Sr0.4FeO3‐δ and La0.6Sr0.4Co0.2Fe0.8O3‐δ perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis, 2015; 27(3): 684–692.
  • [42] Zhang Y, Nie J, Wei H, Xu H, Wang Q, Cong Y, Wu X. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sensors and Actuators, B: Chemical, 2018; 258: 1107-1116.
  • [43] Weheabby S, Wu Z, Al-Hamry A, Pašti IA, Anurag A, Dentel D, Kanoun O. Paracetamol detection in environmental and pharmaceutical samples using multi-walled carbon nanotubes decorated with silver nanoparticles. Microchemical Journal, 2023; 193: 109192.
  • [44] Mekersi M, Ferkhi M, Khaled A, Maouche N, Foudia M, Savan EK. Electrochemical Bio-Monitoring of the Analgesic Drug Paracetamol, the Antipsychotic Sulpiride, and the Antibiotic Bromhexine Hydrochloride Using Modified Carbon Paste Electrode Based on Ca0.7La0.3Fe0.3Ni0.7O3 Nano-Sized Particles and Black Carbon. Surfaces and Interfaces, 2024; 53: 104941.

Development of a Sensitive Electrochemical Sensor for the Simultaneous Quantification of Acetaminophen Traces onto Carbon Paste Electrode Modified with Black Carbon and La0.6Sr0.4Co0.8Fe0.2O3 Nano-Sized Particles

Year 2025, Volume: 4 Issue: 1, 27 - 47
https://doi.org/10.71133/anatphar.1594005

Abstract

Recently, the development of an advanced electrochemical sensor has received tremendous attention in the field of drug monitoring. The La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) nano-sized oxides were synthesized by a simple sol-gel citrate method, modified with black carbon (BC) and prepared as a carbon paste electrode (CPE) for the simultaneous determination of paracetamol (PCM) traces presence in PBS electrolyte through cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) as sensing techniques. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Ferrocyanide test were characterization techniques. The calculated crystallite size d, was found to be 208.317 nm by XRD and 65.05 nm by SEM analysis. In conclusion, the modified prepared sensor LSCF/BC/CPE demonstrates a very satisfactory response, sensitivity, and selectivity towards PCM molecules compared with literature with a very low detection limit of 36 nM, high sensitivity of 75 µA.µM−1.cm−2, with a wide linear range from 0.1 µM to 180 µM by DPV technique. The modified LSCF/BC/CPE sensor demonstrated excellent results in the real pharmaceutical sample with a very good recovery of 94.56 % and a satisfactory relative standard deviation of 3.26 %.

References

  • [1] Chen J, He P, Bai H, He S, Zhang T, Zhang X, Dong F. Poly (β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sensors and Actuators, B:, 2017; 252: 9–16.
  • [2] Wang SF, Xie FR, Hu F. Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sensors and Actuators, B:, 2007; 123: 495–500.
  • [3] Goyal RN, Singh SP. Voltammetric determination of paracetamol at C60 modified glassy carbon electrode. Electrochimica Acta, 2006; 51: 3008–3012.
  • [4] Carvalho RMD, Freire RS, Rath S, Kubota LT. Effects of EDTA on signal stability during electrochemical detection of acetaminophen. Journal of pharmaceutical and biomedical analysis, 2004; 34(5): 871–878.
  • [5] Goyal RN, Rana AR, Aziz MA, Oyama DM. Effect of gold nanoparticle attached multi-walled carbon nano tube-layered indium tin oxide in monitoring the effect of PCM on the release of epinephrine. Analytica Chimica Acta, 2011; 693(1-2): 35–40.
  • [6] Pradhan S, Das S, Biswas S, Das DK, Bhar R, Bandyopadhyay R, Pramanik P. Chemical synthesis of nanoparticles of nickel telluride and cobalt telluride and its electrochemical applications for determination of uric acid and adenine. Electrochimica Acta, 2017; 238: 185–193.
  • [7] Kumar Y, Pradhan S, Pramanik S, Bandhyopadhyay R, Das DK, Pramanik P. Efficient electrochemical detection of guanine, uric acid and their mixture by composite of nano-particles of lanthanides ortho-ferrite XFeO3 (X¼ La, Gd, Pr, Dy, Sm, Ce and Tb). Journal of Electroanalytical Chemistry, 2018; 830: 95–105.
  • [8] Gadallah MI, Ali HRH, Askal HF, Saleh GA. Poly (bromocresol green) flakes-decorated pencil graphite electrode for selective electrochemical sensing applications and pharmacokinetic studies. Materials Science and Engineering: C, 2019; 102: 634-645.
  • [9] Talluri MVNK, Bairwa MK, Dugga HHT, Srinivas R. Development and validation of RP-HPLC and ultraviolet spectrophotometric methods of analysis for simultaneous determination of paracetamol and lornoxicam in pharmaceutical dosage forms. Journal of liquid chromatography & related technologies, 2012; 35(1): 129–140.
  • [10] Easwaramoorthy D, Yu YC, Huang HJ. Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Analytica Chimica Acta, 2001; 439: 95–100.
  • [11] Speed DJ, Dickson SJ, Cairns ER, Kim ND. Analysis of paracetamol using solid phase extraction, deuterated internal standards, and gas chromatography–mass spectrometry. Journal of analytical toxicology, 2001; 25(3): 198–202.
  • [12] Jensen LS, Valentine J, Milne RW, Evans AM. The quantification of paracetamol, paracetamol glucuronide and paracetamol sulphate in plasma and urine using a single high-performance liquid chromatography assay. Journal of pharmaceutical and biomedical analysis, 2004; 34: 585–593.
  • [13] Manjunatha JG, Swamy BK, Mamatha GP, Chandra U, Niranjana E, Sherigara BS. Cyclic voltammetric studies of dopamine at lamotrigine and TX-100 modified carbon paste electrode. International Journal of Electrochemical Science, 2009; 4(2): 187-196.
  • [14] Raril C, Manjunatha JG, Tigari G. Low-cost voltammetric sensor based on an anionic surfactant modified carbon nanocomposite material for the rapid determination of curcumin in natural food supplement. Instrumentation Science & Technology, 2020; 48(5): 561-582.
  • [15] Manjunatha JG. Electrochemical polymerized graphene paste electrode and application to catechol sensing. The Open Chemical Engineering Journal, 2019; 13(1).
  • [16] Raoof JB, Ojani R, Beitollahi H. Electrocatalytic determination of ascorbic acid at chemically modified carbon paste electrode with 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one. International Journal of Electrochemical Science, 2007; 2(7): 534-548.
  • [17] Mahmoudi Moghaddam H, Beitollahi H, Tajik S, Sheikhshoaie I, Biparva P. Fabrication of novel TiO2 nanoparticles/Mn(III) salen doped carbon paste electrode: application as electrochemical sensor for the determination of hydrazine in the presence of phenol. Environmental Monitoring and Assessment, 2015; 187: 1-12.
  • [18] Ardakani MM, Taleat Z, Beitollahi H, Salavati-Niasari M, Mirjalili BBF, Taghavinia N. Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex–TiO2 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry, 2008; 624(1-2): 73-78.
  • [19] Mazloum-Ardakani M, Beitollahi H, Mohseni MAS, Benvidi A, Naeimi H, Nejati-Barzoki M, Taghavinia N. Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2, 2′-[1, 2 butanediylbis (nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010; 76(1): 82-87.
  • [20] Umar Y, Pramanik P, Das DK. Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon, 2019; 5(7): e02031.
  • [21] Gharous M, Bounab L, Pereira FJ, Choukairi M, López R, Aller AJ. Electrochemical Kinetics and Detection of Paracetamol by Stevensite-Modified Carbon Paste Electrode in Biological Fluids and Pharmaceutical Formulations. International Journal of Molecular Sciences, 2023; 24(14): 11269.
  • [22] Naik TSK, Swamy BK, Ramamurthy PC, Chetankumar K. Poly (L-leucine) modified carbon paste electrode as an electrochemical sensor for the detection of paracetamol in presence of folic acid. Materials Science for Energy Technologies, 2020; 3: 626-632.
  • [23] Matt SB, Raghavendra S, Shivanna M, et al. Electrochemical Detection of Paracetamol by Voltammetry Techniques Using Pure Zirconium Oxide Nanoparticle Based Modified Carbon Paste Electrode. Journal of Inorganic and Organometallic Polymers and Materials, 2021; 31: 511–519.
  • [24] Mangaiyarkarasi R, Premlatha S, Khan R, Pratibha R, Umadevi SJJOML. Electrochemical performance of a new imidazolium ionic liquid crystal and carbon paste composite electrode for the sensitive detection of paracetamol. Journal of Molecular Liquids, 2020; 319: 114255.
  • [25] Haghshenas E, Madrakian T, Afkhami A. A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. Materials Sciences and Engineering: C, 2015; 57: 205-214.
  • [26] Zine A, Ferkhi M, Khaled A, Savan EK. A2BO4±δ as new materials for electrocatalytic detection of paracetamol and diclofenac drugs. Electrocatalysis, 2022; 13(5): 524–538.
  • [27] Nayak S, Manjunatha JG, Moulya KP, et al. New voltammetric sensing technique for determination of paracetamol by L-phenylalanine based carbon paste electrode. Monatshefte für Chemie-Chemical Monthly, 2024; 155(2): 155-163.
  • [28] Pushpanjali PA, Manjunatha JG, Hareesha N, D'Souza ES, Charithra MM, Prinith NS. Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly (L-Leucine) layered carbon nanotube paste electrode. Surfaces and Interfaces, 2021; 24: 101154.
  • [29] Mekersi M, Ferkhi M, Savan EK. Electrochemical biodetection of glucose using La0.6Sr0.4Co0.8Fe0.2O3 and La1,7Sr0,3CuO4 Nano-Particles modified with black carbon deposited on glassy carbon electrode. Microchemical Journal, 2023: 109346.
  • [30] Mekersi M, Savan EK, Ferkhi M. Electrochemical simultaneous determination of nitrate ions in water using modified glassy carbon electrode based on La1.7Sr0.3CuO4 and La0.6Sr0.4Co0.8Fe0.2O3 nanomaterials and black carbon sensors. Ionics, 2024: 1-18.
  • [31] Ferkhi M, Khelili S, Zerroual L, Ringuedé A, Cassir M. Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1−xCuxO4+δ materials as new cathodes for solid oxide fuel cells. Electrochimica Acta, 2009; 54(26): 6341-6346.
  • [32] Ferkhi M, Ringuedé A, Khaled A, Zerroual L, Cassir M. La1.98Ni04±δ, a new cathode material for solid oxide fuel cell: Impedance spectroscopy study and compatibility with gadolinia-doped ceria and yttria-stabilized zirconia electrolytes. Electrochimica Acta, 2012; 75: 80-87.
  • [33] Ferkhi M, Yahia HA. Electrochemical and morphological characterizations of La2⿿xNiO4±d (x= 0.01, 0.02, 0.03 and 0.05) as new cathodes materials for IT-SOFC. Materials Research Bulletin, 2016; 83: 268-274.
  • [34] Ferkhi M, Rekaik M, Khaled A, Cassir M, Pireaux JJ. Neodymium nickelate Nd2-xSrxNi1-yCoyO4±d (x and y= 0 or 0.05) as cathode materials for the oxygen reduction reaction. Electrochimica Acta, 2017; 229: 281-290.
  • [35] Amira S, Ferkhi M, Khaled A, Mauvy F, Grenier GC, Houssiau L, Pireaux JJ. Carbon-based lanthanum nickelate material La2−x−yNdxPryNiO4+δ (x= 0, 0.3, and 0.5; y= 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media. Ionics, 2019; 25: 3809-3822.
  • [36] Amira S, Ferkhi M, Belghobsi M, Khaled A, Mauvy F, Grenier JC. Synthesis, characterization, and electrochemical behavior of a new Nd1.9Sr0.1Ni0.9Co0.1O4±δ material as electrocatalyst for the oxygen reduction reaction. Ionics, 2019; 25: 3799-3807.
  • [37] Khaled A, Rekaik M, Ferkhi M, Cassir M. New La2Ni1-xO4±δ (0.01≤ x≤ 0.1) Materials as Cathode for Solid Oxide Fuel Cells. Analytical and Bioanalytical Electrochemistry, 2019; 11(11): 1517-1535.
  • [38] Amira S, Ferkhi M, Khaled A, Pireaux JJ. Electrochemical properties of La2BO4+ δ/C electrocatalysts and study of the mechanism of the oxygen reduction reaction in alkaline medium. Journal of the Iranian Chemical Society, 2022; 1-17.
  • [39] Amira S, Ferkhi M, Khaled A, Mauvy F, Bassat JM, Cassir M, Grenier JC. Development of an innovative interfacial layer adapted to La2BO4±δ (B: Ni, Mn, Co) IT-SOC oxygen electrodes. Materials Research Bulletin, 2023; 112400.
  • [40] Amira S, Ferkhi M, Mauvy F, Fourcade S, Bassat JM, Grenier JC. La1.5Nd0. 3Pr0.2NiO4. 16: A New Cathode Material for IT-Solid Oxide Fuel Cells. Electrocatalysis, 2023; 1-15.
  • [41] Liotta LF, Puleo F, La Parola V, et al. La0.6Sr0.4FeO3‐δ and La0.6Sr0.4Co0.2Fe0.8O3‐δ perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis, 2015; 27(3): 684–692.
  • [42] Zhang Y, Nie J, Wei H, Xu H, Wang Q, Cong Y, Wu X. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sensors and Actuators, B: Chemical, 2018; 258: 1107-1116.
  • [43] Weheabby S, Wu Z, Al-Hamry A, Pašti IA, Anurag A, Dentel D, Kanoun O. Paracetamol detection in environmental and pharmaceutical samples using multi-walled carbon nanotubes decorated with silver nanoparticles. Microchemical Journal, 2023; 193: 109192.
  • [44] Mekersi M, Ferkhi M, Khaled A, Maouche N, Foudia M, Savan EK. Electrochemical Bio-Monitoring of the Analgesic Drug Paracetamol, the Antipsychotic Sulpiride, and the Antibiotic Bromhexine Hydrochloride Using Modified Carbon Paste Electrode Based on Ca0.7La0.3Fe0.3Ni0.7O3 Nano-Sized Particles and Black Carbon. Surfaces and Interfaces, 2024; 53: 104941.
There are 44 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry
Journal Section Research Articles
Authors

Mosbah Ferkhi 0000-0003-3708-1986

Mouna Mekersi This is me 0000-0002-6697-0574

Ebru Kuyumcu Savan 0000-0002-8851-0907

Publication Date
Submission Date November 30, 2024
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

EndNote Ferkhi M, Mekersi M, Kuyumcu Savan E Development of a Sensitive Electrochemical Sensor for the Simultaneous Quantification of Acetaminophen Traces onto Carbon Paste Electrode Modified with Black Carbon and La0.6Sr0.4Co0.8Fe0.2O3 Nano-Sized Particles. Anatolian Journal of Pharmaceutical Sciences 4 1 27–47.

Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.