Review
BibTex RIS Cite

Phytotherapeutic Approaches in Breast Cancer: Biochemical and Clinical Perspectives

Year 2025, Volume: 4 Issue: 3, 1 - 1
https://doi.org/10.71133/anatphar.1687703

Abstract

Breast cancer remains the most prevalent cancer type in women, posing a major public health challenge due to its rising incidence and the significant strain it places on healthcare systems. Although conventional therapies remain effective, the rise in drug resistance, coupled with undesirable side effects and a decline in patient well-being, has prompted increasing attention toward complementary and alternative treatment optionsIn this regard, phytotherapy has gained significant scientific interest as a promising field of research. This review comprehensively evaluates the therapeutic effects and biochemical mechanisms of selected medicinal plants on breast cancer, based on current literature. A total of 18 phytotherapeutic plants targeting breast cancer-related cellular signaling pathways were selected from up-to-date studies. Their active constituents, apoptotic and antiproliferative effects, potential interactions with chemotherapeutic agents, and molecular targets were systematically analyzed. The examined plants primarily modulate NF-κB, PI3K/Akt, MAPK, JNK, and caspase pathways to suppress tumor growth, inhibit metastasis, and enhance chemotherapeutic efficacy. Some plants also offer advantages against multidrug resistance. Phytotherapeutic agents are increasingly recognized not just for their complementary roles but also for their potential as standalone therapeutic options in breast cancer care. However, further in-depth experimental and clinical research is crucial to connect these promising results with their practical application in clinical practice.

References

  • 1. Canadian Cancer Statistics 2023., ON: Canadian Cancer Society; 2023. Available at: cancer.ca/Canadian-Cancer-Statistics-2023-EN November 19 2023 [Internet].
  • 2. Canada S. Deaths and age-specific mortality rates, by selected grouped causes2023 2023-12-04 [cited 2023 De 14, 2023]; 2023(Dec 14, 2023). Available from: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310039201
  • 3. Ginsburg, O., Yip, C. H., Brooks, A., Cabanes, A., Caleffi, M., Dunstan Yataco, J. A., Gyawali, B., McCormack, V., McLaughlin de Anderson, M., Mehrotra, R., & Mohar, A. (2020). Breast cancer early detection: A phased approach to implementation. Cancer, 126, 2379–2393. https://doi.org/10.1002/cncr.32887
  • 4. Wadasadawala T, Mohanty SK, Sen S, Kanala TS, Maiti S, et al. Out-of-pocket payment and financial risk protection for breast cancer treatment: a prospective study from India. Lancet Reg Health Southeast Asia. 2024;24:100346.
  • 5. Majeed W, Aslam B, Javed I. et al. Breast cancer: major risk factors and recent developments in treatment. APJCP. 2014;15:3353–3358. doi: 10.7314/apjcp.2014.15.8.3353
  • 6. Milosevic, M., Jankovic, D., Milenkovic, A. and Stojanov, D. (2018) Early Diagnosis and Detection of Breast Cancer. Technology and Health Care, 26, 729-759. https://doi.org/10.3233/thc-181277
  • 7. Glechner, A., Wagner, G., Mitus, J.W., Teufer, B., Klerings, I., Böck, N., et al. (2023) Mammography in Combination with Breast Ultrasonography versus Mammography for Breast Cancer Screening in Women at Average Risk. Cochrane Database of Systematic Reviews, No. 3, CD009632. https://doi.org/10.1002/14651858.cd009632.pub3
  • 8. Hester, R.H., Hortobagyi, G.N. and Lim, B. (2021) Inflammatory Breast Cancer: Early Recognition and Diagnosis Is Critical. American Journal of Obstetrics and Gynecology, 225, 392-396. https://doi.org/10.1016/j.ajog.2021.04.217
  • 9. Rojas, K. and Stuckey, A. (2016) Breast Cancer Epidemiology and Risk Factors. Clinical Obstetrics & Gynecology, 59, 651-672. https://doi.org/10.1097/grf.0000000000000239 10. Lee, C.I., Chen, L.E. and Elmore, J.G. (2017) Risk-Based Breast Cancer Screening. Medical Clinics of North America, 101, 725-741. https://doi.org/10.1016/j.mcna.2017.03.005
  • 11. Da Costa Vieira, R.A., Biller, G., Uemura, G., Ruiz, C.A. and Curado, M.P. (2017) Breast Cancer Screening in Developing Countries. Clinics, 72, 244-253. https://doi.org/10.6061/clinics/2017(04)09
  • 12. Iranmakani, S., Mortezazadeh, T., Sajadian, F. et al. (2020) A Review of Various Modalities in Breast Imaging: Technical Aspects and Clinical Outcomes. Egyptian Journal of Radiology and Nuclear Medicine, 51, 1-22. https://doi.org/10.1186/s43055-020-00175-5
  • 13. Wang, L. (2017) Early Diagnosis of Breast Cancer. Sensors, 17, Article 1572. https://doi.org/10.3390/s17071572
  • 14. Dhankhar R.Vyas S.P.Jain A.K.Arora S.Rath G.Goyal A.K. Advances in novel drug delivery strategies for breast cancer therapy. Artif Cells Blood Substit Immobil Biotechnol. 2010; 38(5): 230–249.
  • 15. Matsen C.B.Neumayer L.A. Breast cancer: a review for the general surgeon. JAMA Surg. 2013; 148(10): 971–979.
  • 16. Akram M.Siddiqui S.A. Breast cancer management: past, present and evolving. Indian J Cancer. 2012; 49(3): 277–282.
  • 17. Goldhirsch A, Winer EP, Coates AS, et al; Panel members. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013; 24(9): 2206–2223.
  • 18. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Peto R, Davies C, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012; 379(9814): 432–444.
  • 19. Callahan R.Hurvitz S. HER2-positive breast cancer: current management of early, advanced, and recurrent disease. Curr Opin Obstet Gynecol. 2011; 23(1): 37–43.
  • 20. Dhannikula AB, Panchagnula R. Lokalized Paclitaxel Delivery. International Journal of Pharmaceutics 1999; 183:85-100.
  • 21. G.M. Cragg, J.M. Pezzuto Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents Med. Princ. Pr., 25 (suppl 2) (2016), pp. 41-59, 10.1159/000443404
  • 22. M. Greenwell, P.K.S.M. Rahman Medicinal plants: their use in anticancer treatment Int. J. Pharm. Sci. Res, 6 (2015), pp. 4103-4112, 10.13040/IJPSR.0975-8232.6(10).4103-12
  • 23. Nagykálnai T., Landherr L., and Nagy A. C., Vitamin D and breast cancer, Orvosi Hetilap. (2014) 155, no. 28, 1091–1096, 2-s2.0-84904123283, https://doi.org/10.1556/OH.2014.29906.
  • 24.Bonofiglio, D.; Giordano, C.; De Amicis, F.; Lanzino, M.; Andò, S. Natural products as promising anti-tumoral agents in breast cancer: Mechanisms of action and molecular targets. Mini Rev. Med. Chem. 2016, 16, 596–604.
  • 25. Rossi R. E., Pericleous M., Mandair D., Whyand T., and Caplin M. E., The role of dietary factors in prevention and progression of breast cancer, Anticancer Research. (2014) 34, no. 12, 6861–6875.
  • 26. Ma H., Carpenter C. L., Sullivan-Halley J., and Bernstein L., The roles of herbal remedies in survival and quality of life among long-term breast cancer survivors - results of a prospective study, BMC Cancer. (2011) 11, article no. 222, 2-s2.0-79957882812, https://doi.org/10.1186/1471-2407-11-222.
  • 27. McLay J. S., Stewart D., George J., Rore C., and Heys S. D., Complementary and alternative medicines use by Scottish women with breast cancer. What, why and the potential for drug interactions?, European Journal of Clinical Pharmacology. (2012) 68, no. 5, 811–819, 2-s2.0-84864288945, https://doi.org/10.1007/s00228-011-1181-6.
  • 28. Bright-Gbebry M., Makambi K. H., Rohan J. P., Llanos A. A., Rosenberg L., Palmer J. R., and Adams-Campbell L. L., Use of multivitamins, folic acid and herbal supplements among breast cancer survivors: The black women′s health study, BMC Complementary and Alternative Medicine. (2011) 11, article no. 30, 2-s2.0-79955948323, https://doi.org/10.1186/1472-6882-11-30.
  • 29. Craig W. J., Health-promoting properties of common herbs, Am J Clin Nutr. (1999) 70, no. 3, 491S–499S.
  • 30. Driggins S. N., Myles E. L., and Gary T., The anti-prolific effect of Echinacea Pallida on BT-549 cancer cell line, Proc Amer Assoc Cancer Res. (2004) 45.
  • 31. Huntimer E. D., Halaweish F. T., and Chase C. C. L., Proliferative activity of Echinacea angustifolia root extracts on cancer cells: Interference with doxorubicin cytotoxicity, Chemistry and Biodiversity. (2006) 3, no. 6, 695–703, 2-s2.0-33745768683, https://doi.org/10.1002/cbdv.200690071.
  • 32. Modarai M., Gertsch J., Suter A., Heinrich M., and Kortenkamp A., Cytochrome P450 inhibitory action of Echinacea preparations differs widely and co-varies with alkylamide content, Journal of Pharmacy and Pharmacology. (2007) 59, no. 4, 567–573, 2-s2.0-34250156690, https://doi.org/10.1211/jpp.59.4.0012.
  • 33. Penzak S. R., Robertson S. M., Hunt J. D., Chairez C., Malati C. Y., Alfaro R. M., Stevenson J. M., and Kovacs J. A., Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter Lopinavir-Ritonavir exposure in healthy subjects, Pharmacotherapy. (2010) 30, no. 8, 797–805, https://doi.org/10.1592/phco.30.8.797, 2-s2.0-77955436236.
  • 34. Goey A. K. L., Meijerman I., Rosing H., Burgers J. A., Mergui-Roelvink M., Keessen M., Marchetti S., Beijnen J. H., and Schellens J. H. M., The effect of echinacea purpurea on the pharmacokinetics of docetaxel, British Journal of Clinical Pharmacology. (2013) 76, no. 3, 467–474, 2-s2.0-84882617694, https://doi.org/10.1111/bcp.12159.
  • 35. CAM-CANCER, Echinacea spp, 2015, http://www.cam-cancer.org/CAM-Summaries/Herbal-products/Echinacea-spp/Does-it-work.
  • 36. Edwards S. E., Rocha I. C., Williamson E. M., and Heinrich M., Phytopharmacy: An Evidence-Based Guide to Herbal Medicinal Products, 2015, John Wiley & Sons.
  • 37. Mukherjee B., Telang N., and Wong G. Y. C., Growth inhibition of estrogen receptor positive human breast cancer cells by Taheebo from the inner bark of Tabebuia avellandae tree, International Journal of Molecular Medicine. (2009) 24, no. 2, 253–260, 2-s2.0-70349314605, https://doi.org/10.3892/ijmm_00000228.
  • 38. Pink J. J., Wuerzberger-Davis S., Tagliarino C., Planchon S. M., Yang X., Froelich C. J., and Boothman D. A., Activation of a cysteine protease in MCF-7 and T47D breast cancer cells during β-lapachone-mediated apoptosis, Experimental Cell Research. (2000) 255, no. 2, 144–155, 2-s2.0-0034653956, https://doi.org/10.1006/excr.1999.4790.
  • 39. Park H. J., Ahn K.-J., Ahn S.-D. et al., Susceptibility of cancer cells to beta-lapachone is enhanced by ionizing radiation, International Journal of Radiation Oncology, Biology, Physics. (2005) 61, no. 1, 212–219, https://doi.org/10.1016/j.ijrobp.2004.09.018.
  • 40. Bey E. A., Reinicke K. E., Srougi M. C., Varnes M., Anderson V. E., Pink J. J., Li L. S., Patel M., Cao L., Moore Z., Rommel A., Boatman M., Lewis C., Euhus D. M., Bornmann W. G., Buchsbaum D. J., Spitz D. R., Gao J., and Boothman D. A., Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers, Molecular Cancer Therapeutics. (2013) 12, no. 10, 2110–2120, 2-s2.0-84885647211, https://doi.org/10.1158/1535-7163.MCT-12-0962.
  • 41. Ahn K. J., Lee H. S., Bai S. K., and Song C. W., Enhancement of radiation effect using beta-lapachone and underlying mechanism, Radiation Oncology Journal. (2013) 31, no. 2, 57–65, 2-s2.0-84880357365, https://doi.org/10.3857/roj.2013.31.2.57.
  • 42. Lai H.-W., Chien S.-Y., Kuo S.-J., Tseng L.-M., Lin H.-Y., Chi C.-W., and Chen D.-R., The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: an in vitro and in vivo comparison study with herceptin, Evidence-Based Complementary and Alternative Medicine. (2012) 2012, 12, https://doi.org/10.1155/2012/486568, 486568, 2-s2.0-80053546170.
  • 43. Abu-Dahab R., Abdallah M. R., Kasabri V., Mhaidat N. M., and Afifi F. U., Mechanistic studies of antiproliferative effects of salvia triloba and salvia dominica (Lamiaceae) on breast cancer cell lines (MCF7 and T47D), Zeitschrift für Naturforschung. (2015) 69c, 443–451.
  • 44. Wang X., Bastow K. F., Sun C.-M., Lin Y.-L., Yu H.-J., Don M.-J., Wu T.-S., Nakamura S., and Lee K.-H., Antitumor agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza, Journal of Medicinal Chemistry. (2004) 47, no. 23, 5816–5819, 2-s2.0-7444239691, https://doi.org/10.1021/jm040112r.
  • 45. Wang X., Wei Y., Yuan S., Liu G., Lu Y., Zhang J., and Wang W., Potential anticancer activity of tanshinone IIA against human breast cancer, International Journal of Cancer. (2005) 116, no. 5, 799–807, 2-s2.0-23244463302, https://doi.org/10.1002/ijc.20880.
  • 46. Cai J., Chen S., Zhang W., Zheng X., Hu S., Pang C., Lu J., Xing J., and Dong Y., Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway, Phytomedicine. (2014) 21, no. 12, 1725–1732, 2-s2.0-84907204851, https://doi.org/10.1016/j.phymed.2014.08.007.
  • 47. Fu P., Du F., Chen W., Yao M., Lv K., and Liu Y., Tanshinone IIA blocks epithelial-mesenchymal transition through HIF-1α downregulation, reversing hypoxia-induced chemotherapy resistance in breast cancer cell lines, Oncology Reports. (2014) 31, no. 6, 2561–2568, 2-s2.0-84902140549, https://doi.org/10.3892/or.2014.3140.
  • 48. Riva L., Coradini D., Di Fronzo G., De Feo V., De Tommasi N., De Simone F., and Pizza C., The antiproliferative effects of Uncaria tomentosa extracts and fractions on the growth of breast cancer cell line, Anticancer Research. (2001) 21, no. 4A, 2457–2461.
  • 49. CAM-CANCER, Cat′s Claw (Uncaria spp), 2015, http://www.cam-cancer.org/CAM-Summaries/Herbal-products/Cat-s-claw-Uncaria-spp/What-is-it.
  • 50. Santos Araujo Mdo C., Farias I. L., Gutierres J. et al., Uncaria tomentosa—adjuvant treatment for breast cancer: clinical trial, Evidence-Based Complementary and Alternative Medicine. (2012) 2012, 8, 676984, https://doi.org/10.1155/2012/676984.
  • 51. Sheng Y., Pero R. W., and Wagner H., Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from Uncaria tomentosa, Phytomedicine. (2000) 7, no. 2, 137–143, 2-s2.0-0034108493, https://doi.org/10.1016/S0944-7113(00)80086-0.
  • 52. Eberlin S., dos Santos L. M. B., and Queiroz M. L. S., Uncaria tomentosa extract increases the number of myeloid progenitor cells in the bone marrow of mice infected with Listeria monocytogenes, International Immunopharmacology. (2005) 5, no. 7-8, 1235–1246, https://doi.org/10.1016/j.intimp.2005.03.001, 2-s2.0-19444372526.
  • 53. Budán F., Szabõ I., Varjas T., Nowrasteh G., Dávid T., Gergely P., Varga Z., Molnár K., Kádár B., Orsõs Z., Kiss I., and Ember I., Mixtures of Uncaria and Tabebuia extracts are potentially chemopreventive in CBA/Ca mice: A long-term experiment, Phytotherapy Research. (2011) 25, no. 4, 493–500, 2-s2.0-79953173618, https://doi.org/10.1002/ptr.3281.
  • 54. Alam S., Katiyar D., Goel R., Vats A., and Mittal A., Role of herbals in cancer management, The Journal of Phytopharmacology. (2013) 2, 46–51.
  • 55. Milner J. A., Garlic: its anticarcinogenic and antitumorigenic properties, Nutrition Reviews. (1996) 54, no. 11, S82–S86, 2-s2.0-0030424068.
  • 56. Liu Y., Zhu P., Wang Y., Wei Z., Tao L., Zhu Z., Sheng X., Wang S., Ruan J., Liu Z., Cao Y., Shan Y., Sun L., Wang A., Chen W., and Lu Y., Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppressing MMP2/9 by blocking NF-κB and ERK/MAPK signaling pathways, PLoS ONE. (2015) 10, no. 4, 2-s2.0-84957798102, https://doi.org/10.1371/journal.pone.0123781, e0123781.
  • 57. Tsubura A., Lai Y.-C., Kuwata M., Uehara N., and Yoshizawa K., Anticancer effects of garlic and garlic-derived compounds for breast cancer control, Anti-Cancer Agents in Medicinal Chemistry. (2011) 11, no. 3, 249–253, https://doi.org/10.2174/187152011795347441, 2-s2.0-79954500271.
  • 58. Wargovich M. J., Woods C., Hollis D. M., and Zander M. E., Herbals, cancer prevention and health, Journal of Nutrition. (2001) 131, no. 11, 3034S–3036S.
  • 59. Pourzand A., Tajaddini A., Pirouzpanah S., Asghari-Jafarabadi M., Samadi N., Ostadrahimi A.-R., and Sanaat Z., Associations between dietary alliumvegetables and risk of breast cancer: A hospital-based matched case-control study, Journal of Breast Cancer. (2016) 19, no. 3, 292–300, 2-s2.0-84992135177, https://doi.org/10.4048/jbc.2016.19.3.292.
  • 60. Kiesel V. A. and Stan S. D., Diallyl trisulfide, a chemopreventive agent from Allium vegetables, inhibits alpha-secretases in breast cancer cells, Biochemical and Biophysical Research Communications. (2017) 484, no. 4, 833–838, https://doi.org/10.1016/j.bbrc.2017.01.184.
  • 61. Cox M. C., Low J., Lee J., Walshe J., Denduluri N., Berman A., Permenter M. G., Petros W. P., Price D. K., Figg W. D., Sparreboom A., and Swain S. M., Influence of garlic (Allium sativum) on the pharmacokinetics of docetaxel, Clinical Cancer Research. (2006) 12, no. 15, 4636–4640, 2-s2.0-33748087822, https://doi.org/10.1158/1078-0432.CCR-06-0388.
  • 62. Thompson L. U., Robb P., Serraino M., and Cheung F., Mammalian Lignan Production From Various Foods, Nutrition and Cancer. (1991) 16, no. 1, 43–52, 2-s2.0-0025745357, https://doi.org/10.1080/01635589109514139.
  • 63. Mabrok H. B., Klopfleisch R., Ghanem K. Z., Clavel T., Blaut M., and Loh G., Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer, Carcinogenesis. (2012) 33, no. 1, 203–208, 2-s2.0-84855413278, https://doi.org/10.1093/carcin/bgr256.
  • 64. Lee J. and Cho K., Flaxseed sprouts induce apoptosis and inhibit growth in MCF-7 and MDA-MB-231 human breast cancer cells, In Vitro Cellular and Developmental Biology - Animal. (2012) 48, no. 4, 244–250, 2-s2.0-84862813308, https://doi.org/10.1007/s11626-012-9492-1.
  • 65. Sorice A., Guerriero E., Volpe M. G., Capone F., La Cara F., Ciliberto G., Colonna G., Costantini S., and McPhee D. J., Differential response of two human breast cancer cell lines to the phenolic extract from flaxseed oil, Molecules. (2016) 21, no. 3, article no. 319, 2-s2.0-84963611562, https://doi.org/10.3390/molecules21030319.
  • 66. Saggar J. K., Chen J., Corey P., and Thompson L. U., The effect of secoisolariciresinol diglucoside and flaxseed oil, alone and in combination, on MCF-7 tumor growth and signaling pathways, Nutrition and Cancer. (2010) 62, no. 4, 533–542, 2-s2.0-77951996148, https://doi.org/10.1080/01635580903532440.
  • 67. Jungeström M. B., Thompson L. U., and Dabrosin C., Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo, Clinical Cancer Research. (2007) 13, no. 3, 1061–1067, 2-s2.0-33847392879, https://doi.org/10.1158/1078-0432.CCR-06-1651.
  • 68. Mason J. K. and Thompson L. U., Flaxseed and its lignan and oil components: Can they play a role in reducing the risk of and improving the treatment of breast cancer?, Applied Physiology, Nutrition and Metabolism. (2014) 39, no. 6, 663–678, 2-s2.0-84901494136, https://doi.org/10.1139/apnm-2013-0420.
  • 69. Chen J., Saggar J. K., Corey P., and Thompson L. U., Flaxseed cotyledon fraction reduces tumour growth and sensitises tamoxifen treatment of human breast cancer xenograft (MCF-7) in athymic mice, British Journal of Nutrition. (2011) 105, no. 3, 339–347, 2-s2.0-79951599190, https://doi.org/10.1017/S0007114510003557.
  • 70. Thompson L. U., Chen J. M., Li T., Strasser-Weippl K., and Goss P. E., Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer, Clinical Cancer Research. (2005) 11, no. 10, 3828–3835, 2-s2.0-18844389202, https://doi.org/10.1158/1078-0432.CCR-04-2326.
  • 71. Mason J. K., Fu M.-H., Chen J., Yu Z., and Thompson L. U., Dietary flaxseed-trastuzumab interactive effects on the growth of HER2-overexpressing human breast tumors (BT-474), Nutrition and Cancer. (2013) 65, no. 3, 451–459, 2-s2.0-84876158399, https://doi.org/10.1080/01635581.2013.756921.
  • 72. McCann S. E., Edge S. B., Hicks D. G., Thompson L. U., Morrison C. D., Fetterly G., Andrews C., Clark K., Wilton J., and Kulkarni S., A pilot study comparing the effect of flaxseed, aromatase inhibitor, and the combination on breast tumor biomarkers, Nutrition and Cancer. (2014) 66, no. 4, 566–575, 2-s2.0-84899953791, https://doi.org/10.1080/01635581.2014.894097.
  • 73. Chen J., Saggar J. K., Ward W. E., and Thompson L. U., Effects of flaxseed lignan and oil on bone health of breast-tumor-bearing mice treated with or without tamoxifen, Journal of Toxicology and Environmental Health - Part A: Current Issues. (2011) 74, no. 12, 757–768, 2-s2.0-79956369901, https://doi.org/10.1080/15287394.2011.567950.
  • 74. Krup A., Prakash L. H., and Harini A., Pharmacological activities of turmeric (Curcuma longa linn): a reviw, Journal of Homeopathy & Ayurvedic Medicine. (2013) 2, 133–136.
  • 75. Liu D. and Chen Z., The effect of curcumin on breast cancer cells, Journal of Breast Cancer. (2013) 16, no. 2, 133–137, https://doi.org/10.4048/jbc.2013.16.2.133, 2-s2.0-84879931794.
  • 76. Kunnumakkara A. B., Anand P., and Aggarwal B. B., Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins, Cancer Letters. (2008) 269, no. 2, 199–225, https://doi.org/10.1016/j.canlet.2008.03.009.
  • 77. Cine N., Limtrakul P., Sunnetci D., Nagy B., and Savli H., Effects of curcumin on global gene expression profiles in the highly invasive human breast carcinoma cell line MDA-MB 231: a gene network-based microarray analysis, Experimental and Therapeutic Medicine. (2013) 5, no. 1, 23–27, https://doi.org/10.3892/etm.2012.754, 2-s2.0-84869458637.
  • 78. Zhong Z. F., Tan W., Tian K., Yu H., Qiang W., and Wang Y., Combined effects of furanodiene and doxorubicin on the migration and invasion of MDA-MB-231 breast cancer cells in vitro, Oncology Reports. (2017) 37, no. 4, 2016–2024, https://doi.org/10.3892/or.2017.5435.
  • 79. Zhan Y., Chen Y., Liu R., Zhang H., and Zhang Y., Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling, Archives of Pharmacal Research. (2014) 37, no. 8, 1086–1095, https://doi.org/10.1007/s12272-013-0311-3, 2-s2.0-84889071343.
  • 80. Fan H., Liang Y., Jiang B., Li X., Xun H., Sun J., He W., Lau H. T., and Ma X., Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells, Oncology Reports. (2016) 35, no. 5, 2651–2656, 2-s2.0-84964053961, https://doi.org/10.3892/or.2016.4682.
  • 81. Carroll C. E., Ellersieck M. R., and Hyder S. M., Curcumin inhibits MPA-induced secretion of VEGF from T47-D human breast cancer cells, Menopause. (2008) 15, no. 3, 570–574, 2-s2.0-43249100098, https://doi.org/10.1097/gme.0b013e31814fae5d.
  • 82. Chakraborty G., Jain S., Kale S. et al., Curcumin suppresses breast tumour angiogenesis by abrogating osteopontin-induced VEGF expression, Molecular Medicine Reports. (2008) 1, no. 5, 641–646.
  • 83. Bayet-Robert M., Kwiatowski F., Leheurteur M., Gachon F., Planchat E., Abrial C., Mouret-Reynier M., Durando X., Barthomeuf C., and Chollet P., Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer, Cancer Biology & Therapy. (2010) 9, no. 1, 8–14, https://doi.org/10.4161/cbt.9.1.10392.
  • 84. Somasundaram S., Edmund N. A., Moore D. T., Small G. W., Shi Y. Y., and Orlowski R. Z., Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer, Cancer Research. (2002) 62, no. 13, 3868–3875.
  • 85. Yallapu M. M., Jaggi M., and Chauhan S. C., Curcumin nanoformulations: a future nanomedicine for cancer, Drug Discovery Today. (2012) 17, no. 1-2, 71–80, https://doi.org/10.1016/j.drudis.2011.09.009, 2-s2.0-84855837427.
  • 86. Cai Y., Sun Z., Fang X., Fang X., Xiao F., Wang Y., and Chen M., Synthesis, characterization and anti-cancer activity of Pluronic F68–curcumin conjugate micelles, Drug Delivery. (2016) 23, no. 7, 2587–2595, 2-s2.0-84991660173, https://doi.org/10.3109/10717544.2015.1037970.
  • 87. Bimonte S., Barbieri A., Palma G., Rea D., Luciano A., D′Aiuto M., Arra C., and Izzo F., Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer, BioMed Research International. (2015) 2015, 2-s2.0-84927144570, https://doi.org/10.1155/2015/878134, 878134.
  • 88. Mason P., Dietary Supplements, 2007, 3rd edition, Pharmaceutical Press.
  • 89.Zaveri N. T., Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications, Life Sciences. (2006) 78, no. 18, 2073–2080, https://doi.org/10.1016/j.lfs.2005.12.006, 2-s2.0-33644928754.
  • 90. Thangapazham R. L., Passi N., and Maheshwari R. K., Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells, Cancer Biology and Therapy. (2007) 6, no. 12, 1938–1943, https://doi.org/10.4161/cbt.6.12.4974.
  • 91.Thangapazham R. L., Singh A. K., Sharma A., Warren J., Gaddipati J. P., and Maheshwari R. K., Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo, Cancer Letters. (2007) 245, no. 1-2, 232–241, 2-s2.0-33845636448, https://doi.org/10.1016/j.canlet.2006.01.027.
  • 92.Farabegoli F., Papi A., Bartolini G., Ostan R., and Orlandi M., (-)-epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line, Phytomedicine. (2010) 17, no. 5, 356–362, https://doi.org/10.1016/j.phymed.2010.01.001, 2-s2.0-76749101143.
  • 93.Zhang G., Wang Y., Zhang Y. et al., Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy, Current Molecular Medicine. (2012) 12, no. 2, 163–176.
  • 94.Luo T., Wang J., Yin Y., Hua H., Jing J., Sun X., Li M., Zhang Y., and Jiang Y., (-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma, Breast Cancer Research. (2010) 12, no. 1, article R8, https://doi.org/10.1186/bcr2473, 2-s2.0-77956038678.
  • 95.Li Y., Yuan Y.-Y., Meeran S. M., and Tollefsbol T. O., Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells, Molecular Cancer. (2010) 9, article no. 274, 2-s2.0-77957784810, https://doi.org/10.1186/1476-4598-9-274.
  • 96.Wu A. H. and Butler L. M., Green tea and breast cancer, Molecular Nutrition and Food Research. (2011) 55, no. 6, 921–930, 2-s2.0-79958058693, https://doi.org/10.1002/mnfr.201100006.
  • 97.Wang Z., Wang N., Han S., Wang D., Mo S., Yu L., Huang H., Tsui K., Shen J., and Chen J., Dietary Compound Isoliquiritigenin Inhibits Breast Cancer Neoangiogenesis via VEGF/VEGFR-2 Signaling Pathway, PLoS ONE. (2013) 8, no. 7, 2-s2.0-84879814057, https://doi.org/10.1371/journal.pone.0068566, e68566.
  • 98.Zhang M., Holman C. D. J., Huang J.-P., and Xie X., Green tea and the prevention of breast cancer: A case-control study in Southeast China, Carcinogenesis. (2007) 28, no. 5, 1074–1078, 2-s2.0-34447107463, https://doi.org/10.1093/carcin/bgl252.
  • 99.Lazzeroni M., Guerrieri-Gonzaga A., Gandini S., Johansson H., Serrano D., Cazzaniga M., Aristarco V., Macis D., Mora S., Caldarella P., Pagani G., Pruneri G., Riva A., Petrangolini G., Morazzoni P., DeCensi A., and Bonanni B., A presurgical study of lecithin formulation of green tea extract in women with early breast cancer, Cancer Prevention Research (Phila). (2017) 10, no. 6, 363–370, https://doi.org/10.1158/1940-6207.CAPR-16-0298.
  • 100.Lecumberri E., Dupertuis Y. M., Miralbell R., and Pichard C., Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy, Clinical Nutrition. (2013) 32, no. 6, 894–903, 2-s2.0-84887623713, https://doi.org/10.1016/j.clnu.2013.03.008.
  • 101.Coleman C. I., Hebert J. H., and Reddy P., The effects of Panax ginseng on quality of life, Journal of Clinical Pharmacy and Therapeutics. (2003) 28, no. 1, 5–15, 2-s2.0-0037293219, https://doi.org/10.1046/j.1365-2710.2003.00467.x.
  • 102.Kang J.-H., Song K.-H., Woo J.-K., Park M. H., Rhee M. H., Choi C., and Oh S. H., Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells, Plant Foods for Human Nutrition. (2011) 66, no. 3, 298–305, https://doi.org/10.1007/s11130-011-0242-4, 2-s2.0-80051787458.
  • 103.Kim B. M., Kim D., Park J., Na H., and Surh Y., Ginsenoside Rg3 Induces apoptosis of human breast cancer (MDA-MB-231) cells, Journal of Cancer Prevention. (2013) 18, no. 2, 177–185, https://doi.org/10.15430/JCP.2013.18.2.177.
  • 104.Kwak J. H., Park J. Y., Lee D., Kwak J. Y., Park E. H., Kim K. H., Park H.-J., Kim H. Y., Jang H. J., Ham J., Hwang G. S., Yamabe N., and Kang K. S., Inhibitory effects of ginseng sapogenins on the proliferation of triple negative breast cancer MDA-MB-231 cells, Bioorganic and Medicinal Chemistry Letters. (2014) 24, no. 23, 5409–5412, 2-s2.0-84910135809, https://doi.org/10.1016/j.bmcl.2014.10.041.
  • 105.Miao M., Liu Q., and Liu Y. R., Chemo-sensitivity enhancing effects of Shengai injection on various chemotherapeutic drugs, Chinese Traditional and Herbal Drugs. (2013) 44, 875–876.
  • 106.Bao P.-P., Lu W., Cui Y., Zheng Y., Gu K., Chen Z., Zheng W., and Shu X. O., Ginseng and Ganoderma lucidum use after breast cancer diagnosis and quality of life: a report from the Shanghai breast cancer survival study, PLoS ONE. (2012) 7, no. 6, https://doi.org/10.1371/journal.pone.0039343, e39343, 2-s2.0-84862657892.
  • 107.Cui Y., Shu X.-O., Gao Y.-T., Cai H., Tao M.-H., and Zheng W., Association of ginseng use with survival and quality of life among breast cancer patients, American Journal of Epidemiology. (2006) 163, no. 7, 645–653, 2-s2.0-33645305415, https://doi.org/10.1093/aje/kwj087.
  • 108.Baber R., Hickey M., and Kwik M., Therapy for menopausal symptoms during and after treatment for breast cancer: Safety considerations, Drug Safety. (2005) 28, no. 12, 1085–1100, 2-s2.0-28844503193, https://doi.org/10.2165/00002018-200528120-00004.
  • 109.Henneicke-von Zepelin H. H., 60 years of Cimicifuga racemosa medicinal products: Clinical research milestones, current study findings and current development, Wiener Medizinische Wochenschrift. (2017) 167, no. 7-8, 147–159, https://doi.org/10.1007/s10354-016-0537-z.
  • 110.Sun H.-Y., Liu B.-B., Hu J.-Y., Xu L.-J., Chan S.-W., Chan C.-O., Mok D. K. W., Zhang D.-M., Ye W.-C., and Chen S.-B., Novel cycloartane triterpenoid from Cimicifuga foetida (Sheng ma) induces mitochondrial apoptosis via inhibiting Raf/MEK/ERK pathway and Akt phosphorylation in human breast carcinoma MCF-7 cells, Chinese Medicine (United Kingdom). (2016) 11, no. 1, article no. 1, 2-s2.0-84953861902, https://doi.org/10.1186/s13020-015-0073-6.
  • 111.Kong Y., Li F., Nian Y., Zhou Z., Yang R., Qiu M.-H., and Chen C., KHF16 is a leading structure from Cimicifuga foetida that suppresses breast cancer partially by inhibiting the NF-κb signaling pathway, Theranostics. (2016) 6, no. 6, 875–886, 2-s2.0-84984788526, https://doi.org/10.7150/thno.14694.
  • 112.Yue G. G.-L., Xie S., Lee J. K.-M., Kwok H.-F., Gao S., Nian Y., Wu X.-X., Wong C.-K., Qiu M.-H., and Lau C. B.-S., New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment, Scientific Reports. (2016) 6, 2-s2.0-84991060271, https://doi.org/10.1038/srep35263, 35263.
  • 113.Davis V. L., Jayo M. J., Ho A., Kotlarczyk M. P., Hardy M. L., Foster W. G., and Hughes C. L., Black cohosh increases metastatic mammary cancer in transgenic mice expressing c-erbB2, Cancer Research. (2008) 68, no. 20, 8377–8383, 2-s2.0-54249097482, https://doi.org/10.1158/0008-5472.CAN-08-1812.
  • 114.Maroof H., Hassan Z. M., Mobarez A. M., and Mohamadabadi M. A., Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model, Journal of Clinical Immunology. (2012) 32, no. 6, 1353–1359, 2-s2.0-84878233113, https://doi.org/10.1007/s10875-012-9708-x.
  • 115.Wuttke W., Seidlová-Wuttke D., and Gorkow C., The Cimicifuga preparation BNO 1055 vs. conjugated estrogens in a double-blind placebo-controlled study: Effects on menopause symptoms and bone markers, Maturitas. (2003) 44, S67–S77, 2-s2.0-0037436823, https://doi.org/10.1016/S0378-5122(02)00350-X.
  • 116.Henneicke-von Zepelin H. H., Meden H., Kostev K., Schröder-Bernhardi D., Stammwitz U., and Becher H., Isopropanolic black cohosh extract and recurrence-free survival after breast cancer, Int. Journal of Clinical Pharmacology and Therapeutics. (2007) 45, no. 3, 143–154, https://doi.org/10.5414/CPP45143.
  • 117.Nißlein T. and Freudenstein J., Coadministration of the aromatase inhibitor formestane and an isopropanolic extract of black cohosh in a rat model of chemically induced mammary carcinoma, Planta Medica. (2007) 73, no. 4, 318–322, 2-s2.0-34250306869, https://doi.org/10.1055/s-2007-967130.
  • 118.Gurley B. J., Gardner S. F., Hubbard M. A., Williams D. K., Gentry W. B., Khan I. A., and Shah A., In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes, Clinical Pharmacology and Therapeutics. (2005) 77, no. 5, 415–426, https://doi.org/10.1016/j.clpt.2005.01.009, 2-s2.0-19144363905.
  • 119.Gurley B. J., Swain A., Hubbard M. A., Williams D. K., Barone G., Hartsfield F., Tong Y., Carrier D. J., Cheboyina S., and Battu S. K., Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: Effects of milk thistle, black cohosh, goldenseal, kava kava, St. John′s wort, and Echinacea, Molecular Nutrition and Food Research. (2008) 52, no. 7, 755–763, 2-s2.0-53249123498, https://doi.org/10.1002/mnfr.200600300.
  • 120.Büssing A., Biological and pharmacological properties of Viscum album L, Mistletoe. The Genus Viscum, 2000, Harwood Academic Publishers, Amsterdam, The Netherlands.
  • 121.Pryme I. F., Bardocz S., Pusztai A., and Ewen S. W. B., Suppression of growth of tumour cell lines in vitro and tumours in vivo by mistletoe lectins, Histology and Histopathology. (2006) 21, no. 3, 285–299.
  • 122.Harmsma M., Ummelen M., Dignef W., Tusenius K. J., and Ramaekers F. C. S., Effects of mistletoe (Viscum album L.) extracts Iscador on cell cycle and survival of tumour cells, Arzneimittelforschung. (2006) 56, no. 6A, 474–482.
  • 123.Ramaekers F. C. S., Harmsma M., Tusenius K. J., Schutte B., Werner M., and Ramos M., Mistletoe extracts (Viscum album L.) Iscador interact with the cell cycle machinery and target survival mechanisms in cancer cells, Medicina. (2007) 67, no. 2, 79–84, 2-s2.0-34548489890.
  • 124.Gardin N. E., Immunological response to mistletoe (Viscum album L.) in cancer patients: a four-case series, Phytotherapy Research. (2009) 23, no. 3, 407–411, https://doi.org/10.1002/ptr.2643, 2-s2.0-61449189674.
  • 125.Son G. S., Ryu W. S., Kim H. Y., Woo S. U., Park K. H., and Bae J. W., Immunologic response to mistletoe extract (Viscum album L.) after conventional treatment in patients with operable breast cancer, Journal of Breast Cancer. (2010) 13, no. 1, 14–18, 2-s2.0-77953196147, https://doi.org/10.4048/jbc.2010.13.1.14.
  • 126.Kelter G., Schierholz J. M., Fischer I. U., and Fiebig H. H., Cytotoxic activity and absence of tumour growth stimulation of standardized mistletoe extracts in human tumour models in vitro, Anticancer Research. (2007) 1A, 223–233.
  • 127.Hong C.-E., Park A.-K., and Lyu S.-Y., Synergistic anticancer effects of lectin and doxorubicin in breast cancer cells, Molecular and Cellular Biochemistry. (2014) 394, no. 1-2, 225–235, 2-s2.0-84939888480, https://doi.org/10.1007/s11010-014-2099-y.
  • 128.Beuth J., Ko H. L., Schneider H. et al., Intratumoural application of standardized mistletoe extracts down regulates tumour weight via decreased cell proliferation, increased apoptosis and necrosis in a murine model, Anticancer Research. (2006) 26, no. 6B, 4451–4456.
  • 129. Tröger W., Zdrale Z., Tišma N., and Matijašević M., Additional therapy with a mistletoe product during adjuvant chemotherapy of breast cancer patients improves quality of life: an open randomized clinical pilot trial, Evidence-Based Complementary and Alternative Medicine. (2014) 2014, 9, https://doi.org/10.1155/2014/430518, 430518.
  • 130.Beuth J., Schneider B., and Schierholz J. M., mpact of complementary treatment of breast cancer patients with standardized mistletoe extract during aftercare: a controlled multicenter comparative epidemiological cohort study, Anticancer Research. (2008) 28, no. 1B, 523–527, 2-s2.0-40549134157.
  • 131.Coelho de Souza, G.; Haas, A.P.S.; von Poser, G.L.; Schapoval, E.E.S.; Elisabetsky, E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J. Ethnopharmacol. 2004, 90, 135–143.
  • 132.Lopez-Vinyallonga, S.; Arakaki, M.; Garcia-Jacas, N.; Susanna, A.; Gitzendanner, M.A.; Soltis, D.E.; Soltis, P. Isolation and characterization of novel microsatellite markers for Arctium minus (Compositae). Am. J. Bot. 2010, 97, e4–e6.
  • 133.Lou, C.; Zhu, Z.; Zhao, Y.; Zhu, R.; Zhao, H. Arctigenin, a lignan from Arctium lappa L., inhibits metastasis of human breast cancer cells through the downregulation of MMP-2/-9 and heparanase in MDA-MB-231 cells. Oncol. Rep. 2017, 37, 179–184.
  • 134.Hsieh, C.; Kuo, P.; Hsu, Y.; Huang, Y.; Tsai, E.; Hsu, Y. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic. Biol. Med. 2014, 67, 159–170.
  • 135.Maxwell, T.; Chun, S.Y.; Lee, K.S.; Kim, S.; Nam, K.S. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int. J. Oncol. 2017, 50, 727–735.
  • 136.Ghafari, F.; Rajabi, M.R.; Mazoochi, T.; Taghizadeh, M.; Nikzad, H.; Atlasi, M.A.; Taherian, A. Comparing apoptosis and necrosis effects of Arctium Lappa root extract and doxorubicin on MCF7 and MDA-MB-231 cell lines. Asian Pac. J. Cancer Prev. 2017, 18, 795–802.
  • 137.Feng, T.; Cao, W.; Shen, W.; Zhang, L.; Gu, X.; Guo, Y.; Tsai, H.I.; Liu, X.; Li, J.; Zhang, J.; et al. Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget 2017, 8, 329–344.
  • 138.Yarnell, E.; Abascal, K. Nigella sativa: Holy herb of the Middle East. Altern. Complement. Ther. 2011, 17, 99–105.
  • 139.Al-Jassir, M.S. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem. 1992, 45, 239–242.
  • 140.Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305.
  • 141.Rajput, S.; Kumar, B.N.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G (1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci. 2013, 93, 783–790.
  • 142.Motaghed, M.; Al-Hassan, F.M.; Hamid, S.S. Cellular responses with thymoquinone treatment in human breast cancer cell line MCF-7. Pharmacogn. Res. 2013, 5, 200–206.
  • 143.Dilshad, A.; Abulkhair, O.; Nemenqani, D.; Tamimi, W. Antiproliferative properties of methanolic extract of Nigella sativa against the MDA-MB-231 cancer cell line. Asian Pac. J. Cancer Prev. 2012, 13, 5839–5842.
  • 144.Alhazmi, M.I.; Hasan, T.N.; Shafi, G.; Al-Assaf, A.H.; Alfawaz, M.A.; Alshatwi, A.A. Roles of p53 and caspases in induction of apoptosis in MCF-7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds. Asian Pac. J. Cancer Prev. 2014, 15, 9655–9660.
  • 145.Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F.; et al. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front Pharmacol. 2018, 9, 1294.
  • 146.Korak, T.; Ergül, E.; Sazci, A. Nigella sativa and cancer: A review focusing on breast cancer, inhibition of metastasis and enhancement of natural killer cell cytotoxicity. Curr. Pharm. Biotechnol. 2020.
  • 147.Ait Mbarek, L.; Ait Mouse, H.; Elabbadi, N.; Bensalah, M.; Gamouh, A.; Aboufatima, R.; Benharre, A.; Chait, A.; Kamal, M.; Dalal, A.; et al. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz. J. Med. Biol. Res. 2007, 40, 839–847.
  • 148.Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 2015, 6, 19580–19591.
  • 149.Kabil, N.; Bayraktar, R.; Kahraman, N.; Mokhlis, H.A.; Calin, G.A.; Lopez-Berestein, G.; Ozpolat, B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat. 2018, 171, 593–605.
  • 150.Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS ONE 2013, 8, e75356.
  • 151.Ong, Y.S.; Yazan, L.S.; Ng, W.K.; Noordin, M.M.; Sapuan, S.; Foo, J.B.; Tor, Y.S. Acute and subacute toxicity profiles of thymoquinone-loaded nanostructured lipid carrier in BALB/c mice. Int. J. Nanomed. 2016, 11, 5905–5915.
  • 152.Suddek, G.M. Protective role of thymoquinone against liver damage induced by tamoxifen in female rats. Can. J. Physiol. Pharmacol. 2014, 92, 640–644.
  • 153.Tao, C.; Taylor, C.M. Rubiaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2011; Volume 19, pp. 147–174.
  • 154.Lin, J.M.; Li, Q.Y.; Chen, H.W.; Lin, H.; Lai, Z.J.; Peng, J. Hedyotis diffusa Willd extract suppresses proliferation and induces apoptosis via IL-6-inducible STAT3 pathway inactivation in human colorectal cancer cells. Oncol. Lett. 2015, 9, 1962–1970.
  • 155.Zhang, P.Y.; Zhang, B.; Gu, J.; Hao, L.; Hu, F.F.; Han, C.H. The study of the effect of Hedyotis diffusa on the proliferation and the apoptosis of the cervical tumor in nude mouse model. Cell Biochem. Biophys. 2015, 72, 783–789.
  • 156.Meng, Q.X.; Roubin, H.R.; Hanranhan, R.J. Ethnopharmacological and bioactivity guided investigation of five TCM anticancer herbs. J. Ethnopharmacol. 2013, 148, 229–238.
  • 157.Chao, T.H.; Fu, P.K.; Chang, C.H.; Chang, S.N.; Mao, F.C.; Lin, C.H. Prescription patterns of Chinese herbal products for post-surgery colon cancer patients in Taiwan. J. Ethnopharmacol. 2014, 156, 702–708.
  • 158.Yeh, Y.C.; Chen, H.Y.; Yang, S.H.; Lin, Y.H.; Chiu, J.H.; Lin, Y.H.; Chen, C.L. Hedyotis diffusa combined with scutellaria barbata Are the core treatment of Chinese herbal medicine used for breast cancer patients: A population-based Study. Evid. Based Complement Alternat. Med. 2014, 2014.
  • 159.Dong, Q.; Ling, B.; Gao, B.; Maley, J.; Sammynaiken, R.; Yang, J. Hedyotis diffusa water extract diminished the cytotoxic effects of chemotherapy drugs against human breast cancer MCF7 cells. Nat. Prod. Commun. 2014, 9, 699–700.
  • 160.Liu, Z.; Liu, M.; Liu, M.; Li, J.C. Methyl anthraquinone from Hedyotis diffusa WILLD induces Ca2+-mediated apoptosis in human breast cancer cells. Toxicol. In Vitro 2010, 24, 142–147.
  • 161.Shi, Y.; Wang, C.H.; Gong, X.G. Apoptosis-inducing effects of two anthraquinones from Hedyotis diffusa Wild. Biol. Pharm. Bull. 2008, 31, 1075–1078.
  • 162.Chen SG., XF H. Wai Ke Zheng Zong. Beijing: People’s Health Press; 2007.
  • 163.Tao GY., Balunas MJ. Current therapeutic role and medicinal potential of Scutellaria barbata in traditional Chinese medicine and Western research. J Ethnopharmacol. 2016;182:170-180.doi:10.1016/j.jep.2016.02.012
  • 164.T.T. Ma, G.L. Zhang, C.F. Dai, B.R. Zhang, K.X. Cao, C.G. Wang, G.W. Yang, X.M. Wang Scutellaria barbata and Hedyotis diffusa herb pair for breast cancer treatment: potential mechanism based on network pharmacology J. Ethnopharmacol., 5 (3999 259) (2020), Article 112929
  • 165.R. Chen, J. He, X. Tong, L. Tang, M. Liu The hedyotis diffusa willd. (Rubiaceae): a review on phytochemistry, pharmacology, quality control and pharmacokinetics Molecules, 21 (6) (2016)
  • 166.Li S, Chou G, Hseu Y, Yang H, Kwan H, Yu Z. Isolation of anticancer constituents from flos genkwa (Daphne genkwa Sieb.et Zucc.) through bioassay-guided procedures. Chem Cent J 2013; 7: 159
  • 167.Van Minh N, Han BS, Choi HY, Byun J, Park JS, Kim WG. Genkwalathins A and B, new lathyrane-type diterpenes from Daphne genkwa . Nat Prod Res 2018; 32: 1782-1790
  • 168.Shao ZY, Shang Q, Zhao NX, Zhang SJ, Xia GP, Bai XX, Dong HL, Han YM. Daphnane diterpene esters from flower buds of Daphne genkwa and their cytotoxic effects on cancer cells. Zhong Cao Yao 2013; 44: 128-132
  • 169.Li F, Sun Q, Hong L, Li L, Wu Y, Xia M, Ikejima T, Peng Y, Song S. Daphnane-type diterpenes with inhibitory activities against human cancer cell lines from Daphne genkwa . Bioorg Med Chem Lett 2013; 23: 2500-2504
  • 170.Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 2013; 39: 935-946
  • 171.Zheng N, Zhang P, Huang H, Liu W, Hayashi T, Zang L, Zhang Y, Liu L, Xia M, Tashiro S, Onodera S, Ikejima T. ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J Pharmacol Sci 2015; 128: 97-107
  • 172.Fan S, Li L, Chen S, Yu Y, Qi M, Tashiro S, Onodera S, Ikejima T. Silibinin induced-autophagic and apoptotic death is associated with an increase in reactive oxygen and nitrogen species in HeLa cells. Free Radic Res 2011; 45: 1307-1324
  • 173.Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47-59
  • 174.Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol 2003; 15: 725-731
  • 175.Pero ME, Zullo G, Esposito L, Iannuzzi A, Lombardi P, De Canditiis C, Neglia G, Gasparrini B. Inhibition of apoptosis by caspase inhibitor Z-VAD-FMK improves cryotolerance of in vitro derived bovine embryos. Theriogenology 2018; 108: 127-135
  • 176.T. Wu, B.G. Harder, P.K. Wong, J.E. Lang, D.D. Zhang Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy? Mol. Carcinog., 54 (2015), pp. 1494-1502
  • 177.V.R. Bovilla, M.G. Kuruburu, V.G. Bettada, J. Krishnamurthy, O.A. Sukocheva, R.K. Thimmulappa, et al. Targeted Inhibition of Anti-Inflammatory Regulator Nrf2 Results in Breast Cancer Retardation In Vitro and In Vivo Biomedicines, 9 (2021), p. 1119
  • 178.V.R. Bovilla, M.G. Kuruburu, V.G. Bettada, J. Krishnamurthy, O.A. Sukocheva, R.K. Thimmulappa, et al. Targeted Inhibition of Anti-Inflammatory Regulator Nrf2 Results in Breast Cancer Retardation In Vitro and In Vivo Biomedicines, 9 (2021), p. 1119
  • 179.J.P. Evans, B.K. Winiarski, P.A. Sutton, R.P. Jones, L. Ressel, C.A. Duckworth, et al. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer Oncotarget, 9 (2018), pp. 27104-27116
  • 180.Y. Yang, Z. Tian, R. Guo, F. Ren Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways Oxid. Med Cell Longev., 2020 (2020), Article 9867595
  • 181.J. Chandrasekaran, J. Balasubramaniam, A. Sellamuthu, A. Ravi An in vitro study on the reversal of epithelial to mesenchymal transition by brusatol and its synergistic properties in triple-negative breast cancer cells J. Pharm. Pharm., 73 (2021), pp. 749-757
  • 182.Man et al., 2012 S. Man, W. Gao, C. Wei, C. Liu Anticancer drugs from traditional toxic Chinese medicines Phytother Res., 26 (2012), pp. 1449-1465, 10.1002/ptr.4609
  • 183.Watanabe et al., 2017 S. Watanabe, T. Suzuki, F. Hara, T. Yasui, N. Uga, A. Naoe Polyphyllin D, a steroidal saponin in Paris polyphylla, induces apoptosis and necroptosis cell death of neuroblastoma cells Pediatr. Surg. Int., 33 (2017), pp. 713-719, 10.1007/s00383-017-4069-4
  • 184.Liu et al., 2017 J. Liu, Y. Zhang, L. Chen, F. Yu, X. Li, T. Dan, J. Zhao, S. Zhou Polyphyllin I induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway Acta Biochim. Biophys. Sin., 49 (2017), pp. 479-486, 10.1093/abbs/gmx033
  • 185.Wu et al., 2014 L. Wu, Q. Li, Y. Liu Polyphyllin D induces apoptosis in K562/A02 cells through G2/M phase arrest J. Pharm. Pharmacol., 66 (2014), pp. 713-721, 10.1111/jphp.12188
  • 186.Bao et al., 2021 Y. Bao, C. Qian, M.-Y. Liu, F. Jiang, X. Jiang, H. Liu, Z. Zhang, F. Sun, N. Fu, Z. Hou, et al. PRKAA/AMPKα phosphorylation switches the role of RASAL2 from a suppressor to an activator of autophagy Autophagy (2021), pp. 1-15, 10.1080/15548627.2021.1886767
  • 187.Maiuri et al., 2007 C. Maiuri, G. Le Toumelin, A. Criollo, J.C. Rain, F. Gautier, P. Juin, E. Tasdemir, G. Pierron, K. Troulinaki, N. Tavernarakis, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1 EMBO J., 26 (2007), pp. 2527-2539, 10.1038/sj.emboj.7601689
  • 188.Pattingre et al., 2005 S. Pattingre, A. Tassa, X. Qu, R. Garuti, X.H. Liang, N. Mizushima, M. Packer, M.D. Schneider, B. Levine Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy Cell, 122 (2005), pp. 927-939, 10.1016/j.cell.2005.07.002
  • 189.Shi et al., 2015 Y.-M. Shi, L. Yang, Y.-D. Geng, C. Zhang, L.-Y. Kong Polyphyllin I induced-apoptosis is enhanced by inhibition of autophagy in human hepatocellular carcinoma cells Phytomedicine, 22 (2015), pp. 1139-1149, 10.1016/j.phymed.2015.08.014
  • 190.Qasim, M. T., Thijail, H. A., Hameed, L. A., & Mohammed, Z. I. (2025). The Therapeutic Potential of Curcuma longa (Turmeric) in the Management of Breast Cancer in Female Rats: Mechanisms and Molecular Targets. Asian Pacific Journal of Cancer Biology, 10(3), 633-637.
  • 191.Fasinu, P. S., & Rapp, G. K. (2019). Herbal interaction with chemotherapeutic drugs—a focus on clinically significant findings. Frontiers in oncology, 9, 1356.
  • 192.Bazrafshani, M. S., Pardakhty, A., Kalantari Khandani, B., Tajadini, H., Ghazanfari Pour, S., Hashemi, S., ... & Sharifi, H. (2023). The prevalence and predictors of herb-drug interactions among Iranian cancer patients during chemotherapy courses. BMC Complementary Medicine and Therapies, 23(1), 41.
There are 191 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Cancer Biology
Journal Section Research Articles
Authors

Mustafa Orhan Tunçel 0000-0002-8999-2223

Publication Date November 17, 2025
Submission Date April 30, 2025
Acceptance Date October 8, 2025
Published in Issue Year 2025 Volume: 4 Issue: 3

Cite

EndNote Tunçel MO Phytotherapeutic Approaches in Breast Cancer: Biochemical and Clinical Perspectives. Anatolian Journal of Pharmaceutical Sciences 4 3 1–1.

Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.