Research Article
BibTex RIS Cite

In Vitro Evaluation of Antibiotic Efficacy Against Biofilms Formed by Staphylococci Isolated from Catheter Samples

Year 2025, Volume: 39 Issue: 3, 94 - 104, 31.12.2025
https://doi.org/10.54962/ankemderg.1740650

Abstract

Staphylococci are among the most common causes of catheter-related infections, with their ability to form biofilms posing a significant challenge to effective treatment. In this study, the antibiotic resistance profiles and biofilm formation capacities of Staphylococcus strains isolated from blood catheter samples were evaluated in vitro. Antibiotic susceptibility of a total of 65 isolates was determined using the VITEK-2 automated system and broth microdilution method. The mass of biofilm formed by the isolates was evaluated using the crystal violet staining method and classified according to the optical density (OD) values obtained. It was found that 54.8% of the isolates were biofilm-positive (BP). BP strains were more resistant to most antibiotics compared to biofilm-negative (BN) strains, this difference was statistically significant for ciprofloxacin and tetracycline (p<0.05). In BP strains, minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) values against
oxacillin, vancomycin, and daptomycin were compared, and MBEC values were higher than MIC values. Moreover, MBEC50 values were observed to increase as biofilm mass increased. Daptomycin demonstrated superior biofilm eradication potential, especially in weak and moderate biofilms. These findings suggest that treatment strategies based solely on MIC values may be insufficient in infections caused by BP staphylococci and that MBEC analysis should be considered to guide more effective antimicrobial therapy.

Ethical Statement

This study was approved by the Non-Interventional Clinical Research Ethics Committee of Çukurova University Faculty of Medicine (03.04.2015, Decision No: 7).

Supporting Institution

This study was supported by the Çukurova University Rectorate Research Fund under the project number DKT-2016-7334.

Project Number

DKT-2016-7334

References

  • Aghmiyuni ZF, Ahmadi MH, Saderi H. Relationship between the strength of biofilm production and the presence of pvl and mecA genes in Staphylococcus aureus isolated from skin and soft tissue infections. Heliyon. 2024 Dec;10(23):e40524. https://doi.org/10.1016/j.heliyon.2024.e40524
  • Antunes ALS, Bonfanti JW, Perez LRR, et al. High vancomycin resistance among biofilms produced by Staphylococcus species isolated from central venous catheters. Mem Inst Oswaldo Cruz. 2011;106(1):51-5. https://doi.org/10.1590/s0074-02762011000100008
  • Antunes ALS, Trentin DS, Bonfanti JW, Pinto CCF, Perez LRR, Macedo AJ, et al. Application of a feasible method for determination of biofilm antimicrobial susceptibility in staphylococci. APMIS. 2010;118(11):873-7. https://doi.org/ 10.1111/j.1600-0463.2010.02681.x
  • Assefa M, Amare A. Biofilm-associated multi-drug resistance in hospital-acquired infections: a review. Infect Drug Resist. 2022;15:5061-8. https://doi.org/10.2147/IDR.S379502
  • Bahçeci İ. Staphylococcus aureus suşlarında antimikrobiyal direnç: üç yıllık çalışma (S. aureus bakteriyemisi ve antimikrobiyal direnç). RMJ. 2023;1(4):6-19.
  • Bauer J, Siala W, Tulkens PM, Van Bambeke F. A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2013;57(6):2726-37. https://doi.org/10.1128/AAC.00181-13.
  • Bayındır Bilman F, Can F, Kaya M, Yazıcı AC. Investigation of biofilm-associated antibiotic susceptibilities of methicillin-resistant staphylococci isolated from catheter-related nosocomial infections. Mikrobiyol Bul. 2013;47(3):401-16. https://doi.org/10.5578/mb.5637
  • Boudjemaa R, Briandet R, Revest M, et al. New insight into daptomycin bioavailability and localization in Staphylococcus aureus biofilms by dynamic fluorescence imaging. Antimicrob Agents Chemother. 2016;60(8):4983-90. https://doi.org/10.1128/AAC.00735-16
  • Chen X, Thomsen TR, Winkler H, Xu Y. Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol. 2020;20(1):264. https://doi.org/10.1186/s12866-020-01947-9
  • Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; CLSI document M100. 27th ed. Wayne, PA: CLSI; 2017.
  • Domínguez-Herrera J, Docobo-Pérez F, López-Rojas R, et al. Efficacy of daptomycin versus vancomycin in an experimental model of foreign-body and systemic infection caused by biofilm producers and methicillin-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother. 2012;56(2):613-7. https://doi.org/10.1128/AAC.05606-11
  • Fang H, Hedin G. Rapid screening and identification of methicillin-resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay. J Clin Microbiol. 2003;41(7):2894-9. https://doi.org/10.1128/JCM.41.7.2894-2899.2003
  • Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34-40. https://doi.org/10.1016/j.tim.2004.11.010
  • Gaire U, Thapa Shrestha U, Adhikari S, et al. Antibiotic susceptibility, biofilm production, and detection of mecA gene among Staphylococcus aureus isolates from different clinical specimens. Diseases. 2021;9(4):80. https://doi.org/10.3390/diseases9040080
  • González-Vázquez R, Córdova-Espinoza MG, Escamilla-Gutiérrez A, et al. Detection of mecA genes in hospital-acquired MRSA and SOSA strains associated with biofilm formation. Pathogens. 2024;13(3):212. https://doi.org/10.3390/pathogens13030212
  • Gümüş HH. Prevalence and resistance trends of Gram-positive cocci Staphylococcus aureus and Enterococcus spp. in a tertiary care hospital. Cukurova Med J. 2023;48(3):1177-86. https://doi.org/10.17826/cumj.1350843
  • Gündüz A, Mansur A. Kan kültürlerinden izole edilen Staphylococcus aureus’un antibakteriyel direnç oranları: 8 yıllık retrospektif değerlendirme. J Med Top Updates. 2024;3(3):85-95. https://doi.org/10.58651/jomtu.1581336
  • He Y, Zhao H, Wei Y, Gan X, Ling Y, Ying Y. Retrospective analysis of microbial colonization patterns in central venous catheters, 2013-2017. J Healthc Eng. 2019;2019:1-7. https://doi.org/10.1155/2019/8632701
  • Hebeisen UP, Atkinson A, Marschall J, Buetti N. Catheter-related bloodstream infections with coagulase-negative staphylococci: are antibiotics necessary if the catheter is removed? Antimicrob Resist Infect Control. 2019;8(1):21. https://doi.org/10.1186/s13756-019-0474-x
  • Jayaweera JAAS, Sivakumar D. Asymptomatic central line-associated bloodstream infections in children implanted with long-term indwelling central venous catheters in a teaching hospital, Sri Lanka. BMC Infect Dis. 2020;20(1):457. https://doi.org/10.1186/s12879-020-05190-5
  • Li P, Yin R, Cheng J, Lin J. Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention. Int J Mol Sci. 2023;24(14):11680. https://doi.org/10.3390/ijms241411680
  • Marquès C, Tasse J, Pracros A, et al. Effects of antibiotics on biofilm and unattached cells of a clinical Staphylococcus aureus isolate from bone and joint infection. J Med Microbiol. 2015;64(9):1021-6. https://doi.org/10.1099/jmm.0.000125
  • Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic strategies against biofilm infections. Life. 2023;13(1):172. https://doi.org/10.3390/life13010172
  • Mulla S, Kumar A, Rajdev S. Comparison of MIC with MBEC assay for in vitro antimicrobial susceptibility testing in biofilm forming clinical bacterial isolates. Adv Microbiol. 2016;6(2):73-8. https://doi.org/10.4236/aim.2016.62007
  • Orhan Z, Kayış A, Küçük B, Doğaner A, Aral M. Antimicrobial resistance in staphylococci isolated from various clinical specimens of inpatients in intensive care units: a 4-year evaluation. Turk J Intensive Care. 2024;22(1):24-30. https://doi.org/10.4274/tybd.galenos.2023.60352
  • Pandian Maharaja, Pasupathy Sekar. A study of biofilm formation in indwelling catheter devices in ICU & PICU of SRM Medical College Hospital and Research Centre. Int J Life Sci Pharma Res. 2018;8(4):21-5. https://doi.org/10.22376/ijpbs/lpr.2018.8.4.L21-25
  • Pinto M, Borges V, Nascimento M, et al. Insights on catheter-related bloodstream infections: a prospective observational study on the catheter colonization and multidrug resistance. J Hosp Infect. 2022;123:43-51. https://doi.org/10.1016/j.jhin.2022.01.025
  • Rosenthal VD, Maki DG, Jamulitrat S, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. Am J Infect Control. 2010;38(2):95-104.e2. https://doi.org/10.1016/j.ajic.2009.12.004.
  • Sahal G, Bilkay IS. Multi-drug resistance in strong biofilm forming clinical isolates of Staphylococcus epidermidis. Braz J Microbiol. 2014;45(2):539-44. https://doi.org/10.1590/s1517-83822014005000042
  • Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3). https://doi.org/10.1128/MMBR.00026-19
  • Shin HJ, Yang S, Lim Y. Antibiotic susceptibility of Staphylococcus aureus with different degrees of biofilm formation. J Anal Sci Technol. 2021;12(1):41. https://doi.org/10.1186/s40543-021-00294-2
  • Stepanovic S, Vukovic D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • Sutrave S, Kikhney J, Schmidt J, et al. Effect of daptomycin and vancomycin on Staphylococcus epidermidis biofilms: an in vitro assessment using fluorescence in situ hybridization. PLoS One. 2019;14(8):e0221786. https://doi.org/10.1371/journal.pone.0221786
  • Tel O, Aslantaş Ö, Keskin O, Yılmaz E, Demir C. Investigation of the antibiotic resistance and biofilm formation of Staphylococcus aureus strains isolated from gangrenous mastitis of ewes. Acta Vet Hung. 2012;60(2):189-97. https://doi.org/10.1556/AVet.2012.016
  • Tuladhar RS, Shrestha R, Lekhak S, Chaudhary M, Manandhar S. Antibiotic resistance profile of biofilm producing staphylococci isolated from different clinical samples. J Inst Sci Technol. 2023;28(2):35-42. https://doi.org/10.3126/jist.v28i2.52739
  • Oliveira A, Pinheiro-Hubinger L, Pereira VC, et al. Staphylococcal biofilm on the surface of catheters: electron microscopy evaluation of the inhibition of biofilm growth by RNAIII inhibiting peptide. Antibiotics. 2021;10(7):879. https://doi.org/10.3390/antibiotics10070879
  • Öcal D, Tekeli A, Dolapçı İ. Investigation of biofilm formation properties of coagulase-negative staphylococci isolated from catheter-related bloodstream infections. Mikrobiyol Bul. 2022;56(3):506-24. https://doi.org/10.5578/mb.20229710.
  • Öcal DN, Dolapçı İ, Karahan ZC, Tekeli A. Investigation of biofilm formation properties of Staphylococcus isolates. Mikrobiyol Bul. 2017;51(1):10-9. https://doi.org/10.5578/mb.46552.

Kateter Örneklerinden İzole Edilen Stafilokoklar Tarafından Üretilen Biyofilmlere Karşı Antibiyotik Etkinliğinin İn Vitro Değerlendirilmesi

Year 2025, Volume: 39 Issue: 3, 94 - 104, 31.12.2025
https://doi.org/10.54962/ankemderg.1740650

Abstract

Stafilokoklar, kateterle ilişkili enfeksiyonların en yaygın etkenlerindendir ve biyofilm oluşturma yetenekleri bu enfeksiyonların tedavisini zorlaştıran önemli bir virülans faktörüdür. Bu çalışmada, kan kateteri örneklerinden izole edilen Staphylococcus suşlarının antibiyotik direnç profilleri ile biyofilm oluşturma kapasiteleri in vitro olarak değerlendirildi. Toplam 65 izolatın antibiyotik duyarlılığı VITEK-2 otomatik sistemi ve sıvı mikrodilüsyon yöntemi ile belirlendi. İzolatların oluşturduğu biyofilm kütle miktarı kristal viyole boyama yöntemiyle değerlendirildi ve elde edilen optik dansite (OD) değerlerine göre sınıflandırıldı. İzolatların %54.8'inin biyofilm pozitif (BP) olduğu tespit edildi. BP suşlar, biyofilm negatif (BN) suşlara göre çoğu antibiyotiğe daha dirençli bulundu, bu fark siprofloksasin ve tetrasiklin için istatistiksel olarak anlamlı idi (p<0.05). BP suşlarda oksasilin, vankomisin ve daptomisine karşı minimum inhibitör konsantrasyonu (MİK) ve minimum biyofilm eradikasyon konsantrasyonu (MBEK) değerleri karşılaştırıldı, MBEK değerlerinin MİK değerlerine göre yüksek olduğu görüldü. Ayrıca, biyofilm kütlesi arttıkça MBEK50 değerlerinin de arttığı gözlemlendi. Özellikle zayıf ve orta dereceli biyofilmlerde daptomisinin eradikasyon potansiyelinin daha yüksek olduğu belirlendi. Bu bulgular, BP stafilokokların etken olduğu enfeksiyonlarda sadece MİK değerlerine dayalı tedavi stratejilerinin yetersiz kalabileceğini ve tedavinin daha etkili olarak yönlendirilebilmesi için MBEK analizlerinin dikkate alınması gerektiğini düşündürmektedir.

Ethical Statement

Bu çalışma, Çukurova Üniversitesi Tıp Fakültesi Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu onayı (03.04.2015-Karar No: 7) ile gerçekleştirilmiştir.

Supporting Institution

Bu çalışma, Çukurova Üniversitesi Rektörlüğü Araştırma Fonu tarafından DKT-2016-7334 numaralı proje kapsamında desteklenmiştir.

Project Number

DKT-2016-7334

References

  • Aghmiyuni ZF, Ahmadi MH, Saderi H. Relationship between the strength of biofilm production and the presence of pvl and mecA genes in Staphylococcus aureus isolated from skin and soft tissue infections. Heliyon. 2024 Dec;10(23):e40524. https://doi.org/10.1016/j.heliyon.2024.e40524
  • Antunes ALS, Bonfanti JW, Perez LRR, et al. High vancomycin resistance among biofilms produced by Staphylococcus species isolated from central venous catheters. Mem Inst Oswaldo Cruz. 2011;106(1):51-5. https://doi.org/10.1590/s0074-02762011000100008
  • Antunes ALS, Trentin DS, Bonfanti JW, Pinto CCF, Perez LRR, Macedo AJ, et al. Application of a feasible method for determination of biofilm antimicrobial susceptibility in staphylococci. APMIS. 2010;118(11):873-7. https://doi.org/ 10.1111/j.1600-0463.2010.02681.x
  • Assefa M, Amare A. Biofilm-associated multi-drug resistance in hospital-acquired infections: a review. Infect Drug Resist. 2022;15:5061-8. https://doi.org/10.2147/IDR.S379502
  • Bahçeci İ. Staphylococcus aureus suşlarında antimikrobiyal direnç: üç yıllık çalışma (S. aureus bakteriyemisi ve antimikrobiyal direnç). RMJ. 2023;1(4):6-19.
  • Bauer J, Siala W, Tulkens PM, Van Bambeke F. A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2013;57(6):2726-37. https://doi.org/10.1128/AAC.00181-13.
  • Bayındır Bilman F, Can F, Kaya M, Yazıcı AC. Investigation of biofilm-associated antibiotic susceptibilities of methicillin-resistant staphylococci isolated from catheter-related nosocomial infections. Mikrobiyol Bul. 2013;47(3):401-16. https://doi.org/10.5578/mb.5637
  • Boudjemaa R, Briandet R, Revest M, et al. New insight into daptomycin bioavailability and localization in Staphylococcus aureus biofilms by dynamic fluorescence imaging. Antimicrob Agents Chemother. 2016;60(8):4983-90. https://doi.org/10.1128/AAC.00735-16
  • Chen X, Thomsen TR, Winkler H, Xu Y. Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol. 2020;20(1):264. https://doi.org/10.1186/s12866-020-01947-9
  • Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; CLSI document M100. 27th ed. Wayne, PA: CLSI; 2017.
  • Domínguez-Herrera J, Docobo-Pérez F, López-Rojas R, et al. Efficacy of daptomycin versus vancomycin in an experimental model of foreign-body and systemic infection caused by biofilm producers and methicillin-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother. 2012;56(2):613-7. https://doi.org/10.1128/AAC.05606-11
  • Fang H, Hedin G. Rapid screening and identification of methicillin-resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay. J Clin Microbiol. 2003;41(7):2894-9. https://doi.org/10.1128/JCM.41.7.2894-2899.2003
  • Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34-40. https://doi.org/10.1016/j.tim.2004.11.010
  • Gaire U, Thapa Shrestha U, Adhikari S, et al. Antibiotic susceptibility, biofilm production, and detection of mecA gene among Staphylococcus aureus isolates from different clinical specimens. Diseases. 2021;9(4):80. https://doi.org/10.3390/diseases9040080
  • González-Vázquez R, Córdova-Espinoza MG, Escamilla-Gutiérrez A, et al. Detection of mecA genes in hospital-acquired MRSA and SOSA strains associated with biofilm formation. Pathogens. 2024;13(3):212. https://doi.org/10.3390/pathogens13030212
  • Gümüş HH. Prevalence and resistance trends of Gram-positive cocci Staphylococcus aureus and Enterococcus spp. in a tertiary care hospital. Cukurova Med J. 2023;48(3):1177-86. https://doi.org/10.17826/cumj.1350843
  • Gündüz A, Mansur A. Kan kültürlerinden izole edilen Staphylococcus aureus’un antibakteriyel direnç oranları: 8 yıllık retrospektif değerlendirme. J Med Top Updates. 2024;3(3):85-95. https://doi.org/10.58651/jomtu.1581336
  • He Y, Zhao H, Wei Y, Gan X, Ling Y, Ying Y. Retrospective analysis of microbial colonization patterns in central venous catheters, 2013-2017. J Healthc Eng. 2019;2019:1-7. https://doi.org/10.1155/2019/8632701
  • Hebeisen UP, Atkinson A, Marschall J, Buetti N. Catheter-related bloodstream infections with coagulase-negative staphylococci: are antibiotics necessary if the catheter is removed? Antimicrob Resist Infect Control. 2019;8(1):21. https://doi.org/10.1186/s13756-019-0474-x
  • Jayaweera JAAS, Sivakumar D. Asymptomatic central line-associated bloodstream infections in children implanted with long-term indwelling central venous catheters in a teaching hospital, Sri Lanka. BMC Infect Dis. 2020;20(1):457. https://doi.org/10.1186/s12879-020-05190-5
  • Li P, Yin R, Cheng J, Lin J. Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention. Int J Mol Sci. 2023;24(14):11680. https://doi.org/10.3390/ijms241411680
  • Marquès C, Tasse J, Pracros A, et al. Effects of antibiotics on biofilm and unattached cells of a clinical Staphylococcus aureus isolate from bone and joint infection. J Med Microbiol. 2015;64(9):1021-6. https://doi.org/10.1099/jmm.0.000125
  • Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic strategies against biofilm infections. Life. 2023;13(1):172. https://doi.org/10.3390/life13010172
  • Mulla S, Kumar A, Rajdev S. Comparison of MIC with MBEC assay for in vitro antimicrobial susceptibility testing in biofilm forming clinical bacterial isolates. Adv Microbiol. 2016;6(2):73-8. https://doi.org/10.4236/aim.2016.62007
  • Orhan Z, Kayış A, Küçük B, Doğaner A, Aral M. Antimicrobial resistance in staphylococci isolated from various clinical specimens of inpatients in intensive care units: a 4-year evaluation. Turk J Intensive Care. 2024;22(1):24-30. https://doi.org/10.4274/tybd.galenos.2023.60352
  • Pandian Maharaja, Pasupathy Sekar. A study of biofilm formation in indwelling catheter devices in ICU & PICU of SRM Medical College Hospital and Research Centre. Int J Life Sci Pharma Res. 2018;8(4):21-5. https://doi.org/10.22376/ijpbs/lpr.2018.8.4.L21-25
  • Pinto M, Borges V, Nascimento M, et al. Insights on catheter-related bloodstream infections: a prospective observational study on the catheter colonization and multidrug resistance. J Hosp Infect. 2022;123:43-51. https://doi.org/10.1016/j.jhin.2022.01.025
  • Rosenthal VD, Maki DG, Jamulitrat S, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. Am J Infect Control. 2010;38(2):95-104.e2. https://doi.org/10.1016/j.ajic.2009.12.004.
  • Sahal G, Bilkay IS. Multi-drug resistance in strong biofilm forming clinical isolates of Staphylococcus epidermidis. Braz J Microbiol. 2014;45(2):539-44. https://doi.org/10.1590/s1517-83822014005000042
  • Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3). https://doi.org/10.1128/MMBR.00026-19
  • Shin HJ, Yang S, Lim Y. Antibiotic susceptibility of Staphylococcus aureus with different degrees of biofilm formation. J Anal Sci Technol. 2021;12(1):41. https://doi.org/10.1186/s40543-021-00294-2
  • Stepanovic S, Vukovic D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • Sutrave S, Kikhney J, Schmidt J, et al. Effect of daptomycin and vancomycin on Staphylococcus epidermidis biofilms: an in vitro assessment using fluorescence in situ hybridization. PLoS One. 2019;14(8):e0221786. https://doi.org/10.1371/journal.pone.0221786
  • Tel O, Aslantaş Ö, Keskin O, Yılmaz E, Demir C. Investigation of the antibiotic resistance and biofilm formation of Staphylococcus aureus strains isolated from gangrenous mastitis of ewes. Acta Vet Hung. 2012;60(2):189-97. https://doi.org/10.1556/AVet.2012.016
  • Tuladhar RS, Shrestha R, Lekhak S, Chaudhary M, Manandhar S. Antibiotic resistance profile of biofilm producing staphylococci isolated from different clinical samples. J Inst Sci Technol. 2023;28(2):35-42. https://doi.org/10.3126/jist.v28i2.52739
  • Oliveira A, Pinheiro-Hubinger L, Pereira VC, et al. Staphylococcal biofilm on the surface of catheters: electron microscopy evaluation of the inhibition of biofilm growth by RNAIII inhibiting peptide. Antibiotics. 2021;10(7):879. https://doi.org/10.3390/antibiotics10070879
  • Öcal D, Tekeli A, Dolapçı İ. Investigation of biofilm formation properties of coagulase-negative staphylococci isolated from catheter-related bloodstream infections. Mikrobiyol Bul. 2022;56(3):506-24. https://doi.org/10.5578/mb.20229710.
  • Öcal DN, Dolapçı İ, Karahan ZC, Tekeli A. Investigation of biofilm formation properties of Staphylococcus isolates. Mikrobiyol Bul. 2017;51(1):10-9. https://doi.org/10.5578/mb.46552.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Clinical Microbiology
Journal Section Research Article
Authors

Yağmur Ekenoğlu Merdan 0000-0002-9551-1473

Filiz Kibar 0000-0003-2983-2399

Akgün Yaman 0000-0003-3309-3074

Project Number DKT-2016-7334
Submission Date July 14, 2025
Acceptance Date September 12, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 39 Issue: 3

Cite

Vancouver Ekenoğlu Merdan Y, Kibar F, Yaman A. Kateter Örneklerinden İzole Edilen Stafilokoklar Tarafından Üretilen Biyofilmlere Karşı Antibiyotik Etkinliğinin İn Vitro Değerlendirilmesi. ANKEM Derg. 2025;39(3):94-104.

88x31.png

This work is licensed under a https://creativecommons.org/licenses/by-nc-nd/4.0/ license.