Research Article
BibTex RIS Cite

Investigation of the Antimicrobial and Antibiofilm Activity of the Cationic Steroid Antibiotic CSA-44 on Vancomycin-Resistant Enterococcus faecalis Isolates

Year 2024, Volume: 38 Issue: 3, 112 - 121, 31.12.2024
https://doi.org/10.54962/ankemderg.1533332

Abstract

Enterococcus faecalis, which has emerged as a highly feared agent in present day’s clinics, possesses these attributes as a result of its high-level antibiotic resistance. Despite being exposed to significant antibiotic stress, they persist in their existence as a result of these resistance characteristics, leading to infections that are challenging to treat. In addition to the ability to display natural and acquired resistance to common and widely used molecules such as cephalosporins, penicillins, and trimethoprim/sulfamethoxazole, the acquired resistance to glycopeptides makes treatment increasingly challenging. In recent years, there has been a gradual increase in the resistance to vancomycin molecules, which can be employed as a last resort. It has become essential to explore all potential alternatives to antibiotics in order to resolve this crisis.
In this study, it was aimed to investigate the antibacterial and antibiofilm effects of CSA-44, a new cationic peptide derivative molecule, against E. faecalis isolates. Antimicrobial susceptibilities of these bacteria were determined with an automated system and evaluated in accordance with EUCAST criteria. Subsequently, minimum inhibitory concentration (MIC) values of ceragenin CSA-44 were determined by broth microdilution method. The time-kill kinetics of the molecule were determined. Antibiofilm activity of CSA-44 was determined by crystal violet method. The antibiofilm activity, was also imaged with scanning electron microscopy (SEM).
CSA-44 MIC values were found in the range 2-4 µg/mL. When MIC doses were administered, it was determined that CSA-44 inhibited bacterial biofilms by up to 50% depending on the isolate. The molecules exhibited bactericidal activity during the 3-6-hour period when applied at 2MIC and MIC concentrations. However, at MIC concentrations, the quantity of bacteria increased again as the incubation time prolonged. It was imaged with SEM that the molecule inhibits the bacterial biofilm and causes damage to the membrane.
Since this study shows that cationic steroid antibiotics can be effective on resistant E. faecalis isolates, it would be appropriate to conduct new studies examining the toxicological and pharmacodynamic properties.

Supporting Institution

This study was supported by Izmir Kâtip Çelebi University Scientific Research Projects Coordination Unit with the project number 2019-GAP-ECZF-0006.

Project Number

2019-GAP-ECZF-0006

References

  • 1. Alaoui Mdarhri AH, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M et al. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel). 2022;11(12):1826. https://doi.org/10.3390/antibiotics11121826.
  • 2. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6(12):1543-75. https://doi.org/10.3390/ph6121543.
  • 3. Bozkurt-Guzel C, Savage PB, Akcali A, Ozbek-Celik B. Potential synergy activity of the novel ceragenin, CSA-13, against carbapenem-resistant Acinetobacter baumannii strains isolated from bacteremia patients. Biomed Res Int. 2014;2014:710273. https://doi.org/10.1155/2014/710273
  • 4. Brinkwirth S, Ayobami O, Eckmanns T, Markwart R. Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020. Euro Surveill. 2021;26(45):2001628. https://doi.org/10.2807/1560-7917.ES.2021.26.45.2001628
  • 5. Czarnowski M, Słowińska M, Sawieljew M, Wnorowska U, Daniluk T, Król G et al. Efficacy of Ceragenins in Controlling the Growth of Oral Microorganisms: Implications for Oral Hygiene Management. Pharmaceuticals. 2024;17(2):204. https://doi.org/10.3390/ph17020204
  • 6. Epand RF, Pollard JE, Wright JO, Savage PB, Epand RM. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents Chemother. 2010;54(9):3708-13. https://doi.org/10.1128/AAC.00380-10
  • 7. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org.
  • 8. Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol. 1991;173(9):3000-09. https://doi.org/10.1128/jb.173.9.3000-3009.1991
  • 9. Greco I, Emborg AP, Jana B, Molchanova N, Oddo A, Damborg P et al. Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections. Sci Rep. 2019; 9:3679. https://doi.org/10.1038/s41598-019-39042-3
  • 10. Hacioglu M, Yilmaz FN, Oyardi O, Bozkurt Guzel C, Inan N, Savage PB et al. Antimicrobial Activity of Ceragenins against Vancomycin-Susceptible and -Resistant Enterococcus spp. Pharmaceuticals. 2023;16(12):1643. https://doi.org/10.3390/ph16121643
  • 11. Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5(11):1663-74. https://doi.org/10.2217/fmb.10.125
  • 12. Huan Y, Kong Q, Mou H and Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11:582779. https://doi.org/10.3389/fmicb.2020.582779
  • 13. Kahraman Vatansever S, Tekintas Y, Cilli FF, Hosgor Limoncu M. Effect of Predator Bacteria Bdellovibrio bacteriovorus on Clinical Pathogens and Biofilms. Indian J Microbiol. 2023;63:139-45. https://doi.org/10.1007/s12088-023-01071-y
  • 14. Karasiński M, Wnorowska U, Durnaś B, Król G, Daniluk T, Skłodowski K et al. Ceragenins and Ceragenin-Based Core-Shell Nanosystems as New Antibacterial Agents against Gram-Negative Rods Causing Nosocomial Infections. Pathogens. 2023;12(11):1346. https://doi.org/10.3390/pathogens12111346.
  • 15. Lai XZ, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R et al. Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc Chem Res. 2008;41(10):1233-40. https://doi.org/10.1021/ar700270t
  • 16. Li C, Lewis MR, Gilbert AB, Noel MD, Scoville DH, Allman GW et al. Antimicrobial activities of amine- and guanidine-functionalized cholic acid derivatives. Antimicrob Agents Chemother. 1999;43(6):1347-9. https://doi.org/10.1128/AAC.43.6.1347
  • 17. Marothi YA, Agnihotri H, Dubey D. Enterecoccal resistance-Overview. Ind Journal of medical Microbiology. Indian J Med Microbiol. 2005;23(4),214-9. https://doi.org/10.1016/S0255-0857(21)02524-X
  • 18. Oyardı O, Savage PB, Akcalı A, Erturan Z, Bozkurt-Guzel C. Ceragenins exhibiting promising antimicrobial activity against various multidrug resistant Gram negative bacteria. Istanbul J Pharm 2018;48(3):68-72. https://doi.org/10.26650/IstanbulJPharm.2018.400730
  • 19. Ozbek-Celik B, Damar-Celik D, Mataraci-Kara E, Bozkurt-Guzel C, Savage PB. Comparative In Vitro Activities of First and Second-Generation Ceragenins Alone and in Combination with Antibiotics Against Multidrug-Resistant Klebsiella pneumoniae Strains. Antibiotics (Basel). 2019;27:8(3):130. https://doi.org/10.3390/antibiotics8030130
  • 20. Öztürk İ, Tekintaş Y, Temel A, Ermertcan Ş, Kurutepe S, Hoşgör Limoncu M. In vitro effects of antibiofilm agents and antibiotics on coagulase-negative staphylococci. J Res Pharm. 2020;24(6):821-32. https://doi.org/10.35333/jrp.2020.241
  • 21. Paganelli FL, Willems RJ, Jansen P, Hendrickx A, Zhang X, Bonten MJ et al. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. mBio. 2013;4(2):e00154. https://doi.org/10.1128/mBio.00154-13
  • 22. Paprocka P, Durnaś B, Mańkowska A, Skłodowski K, Król G, Zakrzewska M, et al. New β-Lactam Antibiotics and Ceragenins - A Study to Assess Their Potential in Treatment of Infections Caused by Multidrug-Resistant Strains of Pseudomonas aeruginosa. Infect Drug Resist. 2021;25(14):5681-98. https://doi.org/10.2147/IDR.S338827.
  • 23. Piktel E, Pogoda K, Roman M, Niemirowicz K, Tokajuk G, Wróblewska M et al. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep. 2007;7:44452. https://doi.org/10.1038/srep44452
  • 24. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015;2015:759348. https://doi.org/10.1155/2015/759348
  • 25. Som A, Vemparala S, Ivanov I, Tew GN. Synthetic mimics of antimicrobial peptides. Biopolymers. 2008;90(2):83-93. https://doi.org/10.1002/bip.20970
  • 26. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • 27. Tokajuk J, Deptuła P, Chmielewska SJ, Skłodowski K, Mierzejewska ŻA, Grądzka-Dahlke M et al. Ceragenin CSA-44 as a Means to Control the Formation of the Biofilm on the Surface of Tooth and Composite Fillings. Pathogens. 2022;11(5):491. https://doi.org/10.3390/pathogens11050491
  • 28. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. PT. 2015;40(4):277-83.
  • 29. Vila-Farrés X, Callarisa AE, Gu X, Savage PB, Giralt E, Vila J. CSA-131, a ceragenin active against colistin-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clinical isolates. Int J Antimicrob Agents. 2015;46(5):568-71. https://doi.org/10.1016/j.ijantimicag.2015.08.003
  • 30. Yang Y, Li W, Hou B, Zhang C. Quorum sensing LuxS/autoinducer-2 inhibits Enterococcus faecalis biofilm formation ability. J Appl Oral Sci. 2018;26:e20170566. https://doi.org/10.1590%2F1678-7757-2017-0566
  • 31. Yilmaz FN, Öksüz L, Demir ES, Döşler S, Savage PB, Güzel ÇB. Efficacy of Ceragenins Alone and in Combinations with Antibiotics Against Multidrug-Resistant Gram Negative Pathogens from Bloodstream Infections. Curr Microbiol. 2023;80:327. https://doi.org/10.1007/s00284-023-03443-5

VANKOMİSİN DİRENÇLİ ENTEROCOCCUS FAECALIS İZOLATLARI ÜZERİNDE KATYONİK STEROİD ANTİBİYOTİK CSA-44’ÜN ANTİMİKROBİYAL VE ANTİBİYOFİLM AKTİVİTESİNİN İNCELENMESİ

Year 2024, Volume: 38 Issue: 3, 112 - 121, 31.12.2024
https://doi.org/10.54962/ankemderg.1533332

Abstract

Günümüz kliniklerinde oldukça korkulan bir etken olmaya başlayan Enterococcus faecalis, bu özelliklerini gösterdikleri yüksek antibiyotik direncine borçludur. Ağır antibiyotik stresine maruz kalmalarına rağmen bu direnç özellikleri sayesinde yaşamlarına devam ederek sağaltımı zor enfeksiyonlara neden olmaktadırlar. Sefalosporinler, penisilinler ve trimetoprim/sülfametoksazol gibi oldukça sık ve yaygın kullanılan moleküllere karşı doğal ve kazanılmış direnç gösterebilmesine ek olarak glikopeptitlere karşı ortaya çıkan kazanılmış direnç tedaviyi giderek zorlaşmasına neden olmaktadır. Son seçenek olarak kullanılabilecek vankomisine karşı görülen direncin son yıllarda giderek arttığı rapor edilmiştir. Yaşanan bu krizin aşılmasında antibiyotiklere alternatif olabilecek tüm metotların denenmesi bir zorunluluk haline gelmiştir.
Bu çalışmada, yeni katyonik peptid türevi bir molekül olan CSA-44’ün E. faecalis izolatlarına karşı antibakteriyel ve antibiyofilm etkilerinin araştırılması amaçlandı. Bu bakterilerin antimikrobiyal duyarlılıkları otomatize sistemle belirlenerek EUCAST kriterleri doğrultusunda değerlendirildi. Daha sonra seragenin CSA-44 minimum inhibe edici konsantrasyon (MİK) değerleri sıvı mikrodilüsyon metoduyla saptandı. Molekülün zamana bağlı öldürme kinetikleri tespit edildi. CSA-44’ün antibiyofilm aktivitesi kristal viyole metoduyla saptandı. Biyofilme olan etkinlik ayrıca taramalı elektron mikroskobuyla (SEM) görüntülendi.
CSA-44’ün MİK değerleri 2-4 µg/mL aralığında saptandı. MİK dozları uygulandığında CSA-44’ün bakteri biyofilmlerini izolata bağlı olarak %50’ye varan oranlarda inhibe ettiği belirlendi. Moleküllerin 2MİK ve MİK konsantrasyonlarında uygulandığında 3-6 saat aralığında bakterisidal etkinlik gösterdiği gözlendi. Ancak, MİK konsantrasyonlarda inkübasyon uzadığında yeniden bakteri miktarında artış olduğu saptandı. Molekülün bakteriyel biyofilmi inhibe ettiği ve membranda hasara neden olduğu SEM ile görüntülendi.
Katyonik steroid antibiyotiklerin, dirençli E. faecalis izolatları üzerinde etkili olabileceği bu çalışma tarafından gösterdiğinden, toksikolojik ve farmakodinamik özellikleri inceleyen yeni çalışmaların yapılması uygun olacaktır.

Supporting Institution

Bu çalışma İzmir Kâtip Çelebi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2019-GAP-ECZF-0006 numaralı projeyle desteklenmiştir.

Project Number

2019-GAP-ECZF-0006

References

  • 1. Alaoui Mdarhri AH, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M et al. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel). 2022;11(12):1826. https://doi.org/10.3390/antibiotics11121826.
  • 2. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6(12):1543-75. https://doi.org/10.3390/ph6121543.
  • 3. Bozkurt-Guzel C, Savage PB, Akcali A, Ozbek-Celik B. Potential synergy activity of the novel ceragenin, CSA-13, against carbapenem-resistant Acinetobacter baumannii strains isolated from bacteremia patients. Biomed Res Int. 2014;2014:710273. https://doi.org/10.1155/2014/710273
  • 4. Brinkwirth S, Ayobami O, Eckmanns T, Markwart R. Hospital-acquired infections caused by enterococci: a systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020. Euro Surveill. 2021;26(45):2001628. https://doi.org/10.2807/1560-7917.ES.2021.26.45.2001628
  • 5. Czarnowski M, Słowińska M, Sawieljew M, Wnorowska U, Daniluk T, Król G et al. Efficacy of Ceragenins in Controlling the Growth of Oral Microorganisms: Implications for Oral Hygiene Management. Pharmaceuticals. 2024;17(2):204. https://doi.org/10.3390/ph17020204
  • 6. Epand RF, Pollard JE, Wright JO, Savage PB, Epand RM. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents Chemother. 2010;54(9):3708-13. https://doi.org/10.1128/AAC.00380-10
  • 7. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org.
  • 8. Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol. 1991;173(9):3000-09. https://doi.org/10.1128/jb.173.9.3000-3009.1991
  • 9. Greco I, Emborg AP, Jana B, Molchanova N, Oddo A, Damborg P et al. Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections. Sci Rep. 2019; 9:3679. https://doi.org/10.1038/s41598-019-39042-3
  • 10. Hacioglu M, Yilmaz FN, Oyardi O, Bozkurt Guzel C, Inan N, Savage PB et al. Antimicrobial Activity of Ceragenins against Vancomycin-Susceptible and -Resistant Enterococcus spp. Pharmaceuticals. 2023;16(12):1643. https://doi.org/10.3390/ph16121643
  • 11. Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5(11):1663-74. https://doi.org/10.2217/fmb.10.125
  • 12. Huan Y, Kong Q, Mou H and Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11:582779. https://doi.org/10.3389/fmicb.2020.582779
  • 13. Kahraman Vatansever S, Tekintas Y, Cilli FF, Hosgor Limoncu M. Effect of Predator Bacteria Bdellovibrio bacteriovorus on Clinical Pathogens and Biofilms. Indian J Microbiol. 2023;63:139-45. https://doi.org/10.1007/s12088-023-01071-y
  • 14. Karasiński M, Wnorowska U, Durnaś B, Król G, Daniluk T, Skłodowski K et al. Ceragenins and Ceragenin-Based Core-Shell Nanosystems as New Antibacterial Agents against Gram-Negative Rods Causing Nosocomial Infections. Pathogens. 2023;12(11):1346. https://doi.org/10.3390/pathogens12111346.
  • 15. Lai XZ, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R et al. Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc Chem Res. 2008;41(10):1233-40. https://doi.org/10.1021/ar700270t
  • 16. Li C, Lewis MR, Gilbert AB, Noel MD, Scoville DH, Allman GW et al. Antimicrobial activities of amine- and guanidine-functionalized cholic acid derivatives. Antimicrob Agents Chemother. 1999;43(6):1347-9. https://doi.org/10.1128/AAC.43.6.1347
  • 17. Marothi YA, Agnihotri H, Dubey D. Enterecoccal resistance-Overview. Ind Journal of medical Microbiology. Indian J Med Microbiol. 2005;23(4),214-9. https://doi.org/10.1016/S0255-0857(21)02524-X
  • 18. Oyardı O, Savage PB, Akcalı A, Erturan Z, Bozkurt-Guzel C. Ceragenins exhibiting promising antimicrobial activity against various multidrug resistant Gram negative bacteria. Istanbul J Pharm 2018;48(3):68-72. https://doi.org/10.26650/IstanbulJPharm.2018.400730
  • 19. Ozbek-Celik B, Damar-Celik D, Mataraci-Kara E, Bozkurt-Guzel C, Savage PB. Comparative In Vitro Activities of First and Second-Generation Ceragenins Alone and in Combination with Antibiotics Against Multidrug-Resistant Klebsiella pneumoniae Strains. Antibiotics (Basel). 2019;27:8(3):130. https://doi.org/10.3390/antibiotics8030130
  • 20. Öztürk İ, Tekintaş Y, Temel A, Ermertcan Ş, Kurutepe S, Hoşgör Limoncu M. In vitro effects of antibiofilm agents and antibiotics on coagulase-negative staphylococci. J Res Pharm. 2020;24(6):821-32. https://doi.org/10.35333/jrp.2020.241
  • 21. Paganelli FL, Willems RJ, Jansen P, Hendrickx A, Zhang X, Bonten MJ et al. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. mBio. 2013;4(2):e00154. https://doi.org/10.1128/mBio.00154-13
  • 22. Paprocka P, Durnaś B, Mańkowska A, Skłodowski K, Król G, Zakrzewska M, et al. New β-Lactam Antibiotics and Ceragenins - A Study to Assess Their Potential in Treatment of Infections Caused by Multidrug-Resistant Strains of Pseudomonas aeruginosa. Infect Drug Resist. 2021;25(14):5681-98. https://doi.org/10.2147/IDR.S338827.
  • 23. Piktel E, Pogoda K, Roman M, Niemirowicz K, Tokajuk G, Wróblewska M et al. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep. 2007;7:44452. https://doi.org/10.1038/srep44452
  • 24. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015;2015:759348. https://doi.org/10.1155/2015/759348
  • 25. Som A, Vemparala S, Ivanov I, Tew GN. Synthetic mimics of antimicrobial peptides. Biopolymers. 2008;90(2):83-93. https://doi.org/10.1002/bip.20970
  • 26. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • 27. Tokajuk J, Deptuła P, Chmielewska SJ, Skłodowski K, Mierzejewska ŻA, Grądzka-Dahlke M et al. Ceragenin CSA-44 as a Means to Control the Formation of the Biofilm on the Surface of Tooth and Composite Fillings. Pathogens. 2022;11(5):491. https://doi.org/10.3390/pathogens11050491
  • 28. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. PT. 2015;40(4):277-83.
  • 29. Vila-Farrés X, Callarisa AE, Gu X, Savage PB, Giralt E, Vila J. CSA-131, a ceragenin active against colistin-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clinical isolates. Int J Antimicrob Agents. 2015;46(5):568-71. https://doi.org/10.1016/j.ijantimicag.2015.08.003
  • 30. Yang Y, Li W, Hou B, Zhang C. Quorum sensing LuxS/autoinducer-2 inhibits Enterococcus faecalis biofilm formation ability. J Appl Oral Sci. 2018;26:e20170566. https://doi.org/10.1590%2F1678-7757-2017-0566
  • 31. Yilmaz FN, Öksüz L, Demir ES, Döşler S, Savage PB, Güzel ÇB. Efficacy of Ceragenins Alone and in Combinations with Antibiotics Against Multidrug-Resistant Gram Negative Pathogens from Bloodstream Infections. Curr Microbiol. 2023;80:327. https://doi.org/10.1007/s00284-023-03443-5
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Bacteriology
Journal Section Research Articles
Authors

Yamaç Tekintaş 0000-0001-9437-7527

İsmail Öztürk 0000-0002-2669-3090

Aybala Temel 0000-0003-1549-7219

Süreyya Gül Yurtsever 0000-0002-4421-230X

Mine Hoşgör Limoncu 0000-0002-4892-8639

Project Number 2019-GAP-ECZF-0006
Publication Date December 31, 2024
Submission Date August 20, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024 Volume: 38 Issue: 3

Cite

Vancouver Tekintaş Y, Öztürk İ, Temel A, Gül Yurtsever S, Hoşgör Limoncu M. VANKOMİSİN DİRENÇLİ ENTEROCOCCUS FAECALIS İZOLATLARI ÜZERİNDE KATYONİK STEROİD ANTİBİYOTİK CSA-44’ÜN ANTİMİKROBİYAL VE ANTİBİYOFİLM AKTİVİTESİNİN İNCELENMESİ. ANKEM Derg. 2024;38(3):112-21.

88x31.png

This work is licensed under a https://creativecommons.org/licenses/by-nc-nd/4.0/ license.