Research Article
BibTex RIS Cite

İdrar Kültürlerinden İzole Edilen Nonfermentatif Bakterilerin Dağılım Özelliklerinin ve Antibiyotik Direncinin Analizi

Year 2020, Volume: 34 Issue: 2, 48 - 56, 31.08.2020
https://doi.org/10.5222/ankem.2020.048

Abstract

Nonfermentatif bakteriler altta yatan hastalığı olan ve hastanede yatan hastalarda önemli üriner sistem enfeksiyonu etkenleridir. Bu çalışmada idrar kültürlerinden izole edilen nonfermentatif bakterilerin dağılımının ve antibiyotik direnç profillerinin incelenmesi amaçlanmıştır.
Hacettepe Üniversitesi Tıp Fakültesi Hastanesi Klinik Mikrobiyoloji Laboratuvarı’nda Ekim 2017-Ekim 2019 tarihleri arasında idrar örneklerinden izole edilen 1.395 nonfermentatif bakteri retrospektif olarak incelenmiştir. Bakterilerin tanımlanması konvansiyonel yöntemler ve MALDI-TOF MS ile yapılmıştır. Antibiyotik duyarlılık testleri BD Phoenix otomatize sistemi, disk difüzyon, gradiyent test ve sıvı mikrodilüsyon ile gerçekleştirilmiştir.
Çalışma süresinde idrar kültürlerinden izole edilen bakterilerin % 6,6’sını nonfermentatif bakteriler oluşturmuşlardır. Nonfermentatif bakteriler arasında en sık Pseudomonas spp. (% 68,3) izole edilmiş, bunu sırası ile Acinetobacter spp. (% 18,8) ve Stenotrophomonas maltophilia (% 9,6) izlemiştir. Diğer izole edilen nonfermentatif bakteriler ise Achromobacter spp. (n=16), Burkholderia spp. (n=6), Alcaligenes faecalis (n=5), Delftia acidovorans (n=5), Chryseobacterium indologenes (n=3), Elizabethkingia meningoseptica (n=3), Myroides spp. (n=2), Comamonas kerstersii (n=1), Cupriavidus spp. (n=1), Ralstonia pickettii (n=1), Roseomonas mucosa (n=1) ve Sphingomonas paucimobilis’tir (n=1). Antibiyotik direnç profilleri değerlendirildiğinde en yüksek direnç oranları Acinetobacter baumannii/calcoaceticus kompleks izolatlarında saptanmıştır.
Nonfermentatif bakterilerin ciddi enfeksiyonlara neden olmaları ve bu bakterilerde yüksek antibiyotik direnç oranlarının saptanması nedeniyle her merkez belirli aralıklar ile nonfermentatif bakterilerin dağılımını ve antimikrobiyal direnç paternlerini tespit etmelidir.

Ethical Statement

Yazarlar tarafından herhangi bir çıkar çatışması bildirilmemiştir.

References

  • Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Frontiers in Microbiology. 2017;8:2276-93. https://doi.org/10.3389/fmicb.2017.02276
  • Almuzara M, Cittadini R, Estraviz ML, Ellis A, Vay C. First report of Comamonas kerstersii causing urinary tract infection. New Microbes New Infect. 2018;24:4-7. https://doi.org/10.1016/j.nmni.2018.03.003
  • Bhuyar G, Jain S, Shah H, Mehta V. Urinary tract infection by Chryseobacterium indologenes. Indian Journal of Medical Microbiology. 2012;30(3):370-2. https://doi.org/10.4103/0255-0857.99511
  • Boinett CJ, Cain AK, Hawkey J, Do Hoang NT, Khanh NNT, Thanh DP, et al. Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii. Microbial Genomics. 2019;5(2): e000246. https://doi.org/10.1099/mgen.0.000246
  • CDC. Antibiotic Resistance Threats in the United States. 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (Erişim tarihi: Ocak 2020)
  • Chin CY, Tipton KA, Farokhyfar M, Burd EM, Weiss DS, Rather PN. A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nature Microbiology. 2018;3(5):563-9. https://doi.org/10.1038/s41564-018-0151-5
  • Cikman A, Parlak M, Bayram Y, Guducuoglu H, Berktas M. Antibiotics resistance of Stenotrophomonas maltophilia strains isolated from various clinical specimens. Afr Health Sci. 2016;16(1):149-52. https://doi.org/10.4314/ahs.v16i1.20
  • Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 2008;9(4):R74. https://doi.org/10.1186/gb-2008-9-4-r74
  • Dé I, Rolston KVI, Han XY. Clinical significance of roseomonas species isolated from catheter and blood samples: Analysis of 36 cases in patients with cancer. Clin Infect Dis. 2004;38(11):1579-84. https://doi.org/10.1086/420824
  • del Mar Ojeda-Vargas M, Suarez-Alonso A, de Los Angeles Perez-Cervantes M, Suarez-Gil E, MonzonMoreno C. Urinary tract infection associated with Comamonas acidovorans. Clin Microbiol Infect. 1999;5(7):443-4. https://doi.org/10.1111/j.1469-0691.1999.tb00170.x
  • Enoch DA, Birkett CI, Ludlam HA. Non-fermentative Gram-negative bacteria. Int J Antimicrob Agents. 2007;29(5):S33-S41. https://doi.org/10.1016/S0924-8579(07)72176-3
  • EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. 2019. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables. pdf (Erişim tarihi: Ocak 2020)
  • Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-84. https://doi.org/10.1038/nrmicro3432
  • Gajdacs M, Burian K, Terhes G. Resistance levels and epidemiology of non-fermenting gram-negative bacteria in urinary tract infections of inpatients and outpatients (RENFUTI): A 10-Year Epidemiological Snapshot. Antibiotics (Basel). 2019;8(3):143-55. https://doi.org/10.3390/antibiotics8030143
  • Hagiya H, Ogawa H, Takahashi Y, Hasegawa K, Iwamuro M, Otsuka F. A Nephrostomy-associated urinary tract infection caused by elizabethkingia meningoseptica. Intern Med. 2015;54(24):3233-6. https://doi.org/10.2169/internalmedicine.54.4998
  • Hsueh PR, Teng LJ, Yang PC, et al. Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis. 1998;26(3):676-81. https://doi.org/10.1086/514595
  • Hu SH, Yuan SX, Qu H, et al. Antibiotic resistance mechanisms of Myroides sp. J Zhejiang Univ Sci B. 2016;17(3):188-99. https://doi.org/10.1631/jzus.B1500068
  • Jachna-Sawicka K, Gospodarek E. [Evaluation of occurrence of Alcaligenes faecalis in clinical samples of patients of the university hospital in Bydgoszcz]. Med Dosw Mikrobiol. 2009;61(1):87-92.
  • Jefferies JMC, Cooper T, Yam T, et al. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit - a systematic review of risk factors and environmental sources. Journal of Medical Microbiology. 2012;61(8):1052-61. https://doi.org/10.1099/jmm.0.044818-0
  • Jimenez-Guerra G, Heras-Canas V, Gutierrez-Soto M,, et al. Urinary tract infection by Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives. J Med Microbiol. 2018;67(6):790-7. https://doi.org/10.1099/jmm.0.000742
  • Kam SK, Lee WS, Ou TY, Teng SO, Chen FL. Delftia acidovorans bacteremia associated with ascending urinary tract infections proved by molecular method. Journal of Experimental & Clinical Medicine. 2012;4(3):180-2. https://doi.org/10.1016/j.jecm.2012.04.010
  • Karlowsky JA, Lagace-Wiens PR, Simner PJ, et al. Antimicrobial resistance in urinary tract pathogens in Canada from 2007 to 2009: CANWARD surveillance study. Antimicrob Agents Chemother. 2011;55(7):3169-75. https://doi.org/10.1128/AAC.00066-11
  • Kobayashi T, Nakamura I, Fujita H, et al. First case report of infection due to Cupriavidus gilardii in a patient without immunodeficiency: a case report. BMC Infect Dis. 2016;16:493. https://doi.org/10.1186/s12879-016-1838-y
  • Lee KW, Lee ST, Cho H. Burkholderia cepacia causing nosocomial urinary tract infection in children. Child Kidney Dis. 2015;19(2):143-7. https://doi.org/10.3339/chikd.2015.19.2.143
  • Li FK, Chan KW, Chan TM, Lai KN. Burkholderia urinary tract infection after renal transplantation. Transplant Infectious Disease. 2003;5(1):59-61. https://doi.org/10.1034/j.1399-3062.2003.00006.x
  • Lu PL, Liu YC, Toh HS, et al. Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the AsiaPacific region: 2009-2010 results from the study for monitoring antimicrobial resistance erends (SMART). Int J Antimicrob Agents. 2012;40 Suppl:S37-43. https://doi.org/10.1016/S0924-8579(12)70008-0
  • Matar GM. Editorial: Pseudomonas and Acinetobacter: From drug resistance to pathogenesis. Front Cell Infect Microbiol. 2018;8:68. https://doi.org/10.3389/fcimb.2018.00068
  • Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:1756287219832172. https://doi.org/10.1177/1756287219832172
  • Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach D. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel). 2013;6(11):1335-46. https://doi.org/10.3390/ph6111335
  • Omar A, Camara M, Fall S, et al. Chryseobacterium indologenes in a woman with acute leukemia in Senegal: a case report. Journal of Medical Case Reports. 2014;8(1):138-42. https://doi.org/10.1186/1752-1947-8-138
  • Orme J, Rivera-Bonilla T, Loli A, Blattman NN. Native valve endocarditis due to Ralstonia pickettii: A case report and literature review. Case Rep Infect Dis. 2015;2015:324675. https://doi.org/10.1155/2015/324675
  • Raghavan S, Thomas B, Shastry BA. Elizabethkingia meningoseptica: emerging multidrug resistance in a nosocomial pathogen. BMJ Case Reports. 2017;2017:bcr-2017-221076. https://doi.org/10.1136/bcr-2017-221076
  • Ryan MP, Adley CC. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect. 2010;75(3):153-7. https://doi.org/10.1016/j.jhin.2010.03.007
  • Tandogdu Z, Wagenlehner FM. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016;29(1):73-9. https://doi.org/10.1097/QCO.0000000000000228
  • Tena D, Gonzalez-Praetorius A, Perez-Balsalobre M, Sancho O, Bisquert J. Urinary tract infection due to Achromobacter xylosoxidans: report of 9 cases. Scand J Infect Dis. 2008;40(2):84-7. https://doi.org/10.1080/00365540701558714
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobialresistant pathogens associated with healthcareassociated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-301. https://doi.org/10.1017/ice.2016.174
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clinical Microbiology Reviews. 2017;30(1):409-47. https://doi.org/10.1128/CMR.00058-16

Analysis of the Distribution Characteristics and Antibiotic Resistance of Nonfermentative Bacteria Isolated from Urine Cultures

Year 2020, Volume: 34 Issue: 2, 48 - 56, 31.08.2020
https://doi.org/10.5222/ankem.2020.048

Abstract

Nonfermentative bacteria are an important cause of urinary tract infection in patients with underlying disease and hospitalization. The aim of this study was to investigate the distribution and antibiotic resistance profiles of nonfermentative bacteria isolated from urine cultures. Nonfermentative bacteria (n=1,395) isolated from urine samples in the Clinical Microbiology Laboratory of Hacettepe University Faculty of Medicine Hospital between October 2017 and October 2019 were examined retrospectively. The bacteria were identified by conventional methods and MALDI-TOF MS. Antibiotic susceptibility tests were performed with BD Phoenix automated system, disc diffusion, gradient test and broth microdilution. During the study period, 6.6 % of the bacteria isolated from urine cultures were nonfermentative bacteria. Among the nonfermentative bacteria, Pseudomonas spp. (68.3 %) was the most common, followed by Acinetobacter spp. (18.8 %) and Stenotrophomonas maltophilia (9.6 %) respectively. Others were Achromobacter spp. (n=16), Burkholderia spp. (n=6), Alcaligenes faecalis (n=5), Delftia acidovorans (n=5), Chryseobacterium indologenes (n=3), Elizabethkingia meningoseptica (n=3), Myroides spp. (n=2), Comamonas kerstersii (n=1), Cupriavidus spp. (n=1), Ralstonia pickettii (n=1), Roseomonas mucosa (n=1) and Sphingomonas paucimobilis (n=1). Antibiotic resistance rates were highest in Acinetobacter baumannii/calcoaceticus complex isolates. Nonfermentative bacteria cause serious infections and high antibiotic resistance rates are detected in these bacteria. For this reason, each center should determine the distribution and antimicrobial resistance patterns of nonfermentative bacteria at certain intervals.

Ethical Statement

No conflict of interest was declared by the authors.

References

  • Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Frontiers in Microbiology. 2017;8:2276-93. https://doi.org/10.3389/fmicb.2017.02276
  • Almuzara M, Cittadini R, Estraviz ML, Ellis A, Vay C. First report of Comamonas kerstersii causing urinary tract infection. New Microbes New Infect. 2018;24:4-7. https://doi.org/10.1016/j.nmni.2018.03.003
  • Bhuyar G, Jain S, Shah H, Mehta V. Urinary tract infection by Chryseobacterium indologenes. Indian Journal of Medical Microbiology. 2012;30(3):370-2. https://doi.org/10.4103/0255-0857.99511
  • Boinett CJ, Cain AK, Hawkey J, Do Hoang NT, Khanh NNT, Thanh DP, et al. Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii. Microbial Genomics. 2019;5(2): e000246. https://doi.org/10.1099/mgen.0.000246
  • CDC. Antibiotic Resistance Threats in the United States. 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (Erişim tarihi: Ocak 2020)
  • Chin CY, Tipton KA, Farokhyfar M, Burd EM, Weiss DS, Rather PN. A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nature Microbiology. 2018;3(5):563-9. https://doi.org/10.1038/s41564-018-0151-5
  • Cikman A, Parlak M, Bayram Y, Guducuoglu H, Berktas M. Antibiotics resistance of Stenotrophomonas maltophilia strains isolated from various clinical specimens. Afr Health Sci. 2016;16(1):149-52. https://doi.org/10.4314/ahs.v16i1.20
  • Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 2008;9(4):R74. https://doi.org/10.1186/gb-2008-9-4-r74
  • Dé I, Rolston KVI, Han XY. Clinical significance of roseomonas species isolated from catheter and blood samples: Analysis of 36 cases in patients with cancer. Clin Infect Dis. 2004;38(11):1579-84. https://doi.org/10.1086/420824
  • del Mar Ojeda-Vargas M, Suarez-Alonso A, de Los Angeles Perez-Cervantes M, Suarez-Gil E, MonzonMoreno C. Urinary tract infection associated with Comamonas acidovorans. Clin Microbiol Infect. 1999;5(7):443-4. https://doi.org/10.1111/j.1469-0691.1999.tb00170.x
  • Enoch DA, Birkett CI, Ludlam HA. Non-fermentative Gram-negative bacteria. Int J Antimicrob Agents. 2007;29(5):S33-S41. https://doi.org/10.1016/S0924-8579(07)72176-3
  • EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. 2019. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables. pdf (Erişim tarihi: Ocak 2020)
  • Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-84. https://doi.org/10.1038/nrmicro3432
  • Gajdacs M, Burian K, Terhes G. Resistance levels and epidemiology of non-fermenting gram-negative bacteria in urinary tract infections of inpatients and outpatients (RENFUTI): A 10-Year Epidemiological Snapshot. Antibiotics (Basel). 2019;8(3):143-55. https://doi.org/10.3390/antibiotics8030143
  • Hagiya H, Ogawa H, Takahashi Y, Hasegawa K, Iwamuro M, Otsuka F. A Nephrostomy-associated urinary tract infection caused by elizabethkingia meningoseptica. Intern Med. 2015;54(24):3233-6. https://doi.org/10.2169/internalmedicine.54.4998
  • Hsueh PR, Teng LJ, Yang PC, et al. Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis. 1998;26(3):676-81. https://doi.org/10.1086/514595
  • Hu SH, Yuan SX, Qu H, et al. Antibiotic resistance mechanisms of Myroides sp. J Zhejiang Univ Sci B. 2016;17(3):188-99. https://doi.org/10.1631/jzus.B1500068
  • Jachna-Sawicka K, Gospodarek E. [Evaluation of occurrence of Alcaligenes faecalis in clinical samples of patients of the university hospital in Bydgoszcz]. Med Dosw Mikrobiol. 2009;61(1):87-92.
  • Jefferies JMC, Cooper T, Yam T, et al. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit - a systematic review of risk factors and environmental sources. Journal of Medical Microbiology. 2012;61(8):1052-61. https://doi.org/10.1099/jmm.0.044818-0
  • Jimenez-Guerra G, Heras-Canas V, Gutierrez-Soto M,, et al. Urinary tract infection by Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives. J Med Microbiol. 2018;67(6):790-7. https://doi.org/10.1099/jmm.0.000742
  • Kam SK, Lee WS, Ou TY, Teng SO, Chen FL. Delftia acidovorans bacteremia associated with ascending urinary tract infections proved by molecular method. Journal of Experimental & Clinical Medicine. 2012;4(3):180-2. https://doi.org/10.1016/j.jecm.2012.04.010
  • Karlowsky JA, Lagace-Wiens PR, Simner PJ, et al. Antimicrobial resistance in urinary tract pathogens in Canada from 2007 to 2009: CANWARD surveillance study. Antimicrob Agents Chemother. 2011;55(7):3169-75. https://doi.org/10.1128/AAC.00066-11
  • Kobayashi T, Nakamura I, Fujita H, et al. First case report of infection due to Cupriavidus gilardii in a patient without immunodeficiency: a case report. BMC Infect Dis. 2016;16:493. https://doi.org/10.1186/s12879-016-1838-y
  • Lee KW, Lee ST, Cho H. Burkholderia cepacia causing nosocomial urinary tract infection in children. Child Kidney Dis. 2015;19(2):143-7. https://doi.org/10.3339/chikd.2015.19.2.143
  • Li FK, Chan KW, Chan TM, Lai KN. Burkholderia urinary tract infection after renal transplantation. Transplant Infectious Disease. 2003;5(1):59-61. https://doi.org/10.1034/j.1399-3062.2003.00006.x
  • Lu PL, Liu YC, Toh HS, et al. Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the AsiaPacific region: 2009-2010 results from the study for monitoring antimicrobial resistance erends (SMART). Int J Antimicrob Agents. 2012;40 Suppl:S37-43. https://doi.org/10.1016/S0924-8579(12)70008-0
  • Matar GM. Editorial: Pseudomonas and Acinetobacter: From drug resistance to pathogenesis. Front Cell Infect Microbiol. 2018;8:68. https://doi.org/10.3389/fcimb.2018.00068
  • Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:1756287219832172. https://doi.org/10.1177/1756287219832172
  • Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach D. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel). 2013;6(11):1335-46. https://doi.org/10.3390/ph6111335
  • Omar A, Camara M, Fall S, et al. Chryseobacterium indologenes in a woman with acute leukemia in Senegal: a case report. Journal of Medical Case Reports. 2014;8(1):138-42. https://doi.org/10.1186/1752-1947-8-138
  • Orme J, Rivera-Bonilla T, Loli A, Blattman NN. Native valve endocarditis due to Ralstonia pickettii: A case report and literature review. Case Rep Infect Dis. 2015;2015:324675. https://doi.org/10.1155/2015/324675
  • Raghavan S, Thomas B, Shastry BA. Elizabethkingia meningoseptica: emerging multidrug resistance in a nosocomial pathogen. BMJ Case Reports. 2017;2017:bcr-2017-221076. https://doi.org/10.1136/bcr-2017-221076
  • Ryan MP, Adley CC. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect. 2010;75(3):153-7. https://doi.org/10.1016/j.jhin.2010.03.007
  • Tandogdu Z, Wagenlehner FM. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016;29(1):73-9. https://doi.org/10.1097/QCO.0000000000000228
  • Tena D, Gonzalez-Praetorius A, Perez-Balsalobre M, Sancho O, Bisquert J. Urinary tract infection due to Achromobacter xylosoxidans: report of 9 cases. Scand J Infect Dis. 2008;40(2):84-7. https://doi.org/10.1080/00365540701558714
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobialresistant pathogens associated with healthcareassociated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016;37(11):1288-301. https://doi.org/10.1017/ice.2016.174
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clinical Microbiology Reviews. 2017;30(1):409-47. https://doi.org/10.1128/CMR.00058-16
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Clinical Microbiology
Journal Section Research Articles
Authors

Mervenur Demir Çuha This is me 0000-0001-9229-0874

Gülşen Hazırolan 0000-0003-4546-9729

Publication Date August 31, 2020
Published in Issue Year 2020 Volume: 34 Issue: 2

Cite

Vancouver Demir Çuha M, Hazırolan G. İdrar Kültürlerinden İzole Edilen Nonfermentatif Bakterilerin Dağılım Özelliklerinin ve Antibiyotik Direncinin Analizi. ANKEM Derg. 2020;34(2):48-56.

88x31.png

This work is licensed under a https://creativecommons.org/licenses/by-nc-nd/4.0/ license.