Research Article
BibTex RIS Cite

Kemik grefti biyomalzeme uygulamaları için toz balık başlarının nitelendirilmesi

Year 2013, Volume: 47 Issue: 5, 359 - 365, 29.10.2013

Abstract

Amaç: Bu çalışmanın amacı, kemik grefti biyomalzeme uygulamalarında kullanılan ve Argyrosomus regius türünden elde edilen toz balık kafasının kimyasal bileşimi, morfolojisi ve kristalografisini tanımlamaktı.
Çalışma Planı: İki değişik boyda toz farklı öğütme yöntemleriyle hazırlandı; A tozu (kaba, d50=68.5 µm) ve B tozu (ince, d50 = 19.1 µm). Elde edilen bu iki toz numunesi, X-ışını kırınımı (XRD), X-ışını floresansı (XRF), taramalı elektron mikroskobu (SEM), termogravimetri (TG) ve enerji dağılımlı X-ışını spektroskopisi (EDS) gibi farklı teknikler kullanılarak analiz edildi.
Bulgular: Sonuçlar tozun ağırlıklı olarak aragonit (CaCO3) ve kalsitten (CaCO3) oluştuğunu göstermekteydi. A ve B tozlarının XRD uygulaması sonrası paternleri standart aragonit paterni ile uyuşmaktaydı. Buna ek olarak, kalsiyum oksit (CaO) fazı A tozunun kalsinasyonu sonucu bulundu. TG analizinde, toplam kütle kaybı, sırasıyla, A tozu için %43.6, B tozu için %47.3 olarak kaydedildi.
Çıkarımlar: A tozunun mikroyapısının farklı boylarda ve başlıca çubuk şeklindeki yapılardan, B tozunun mikroyapısının ise aglomere partiküllerden oluştuğu gözlemlendi. Yüksek miktardaki CaO ve diğer oksitler kemiğin kimyasal bileşimine benzemekteydi. Genel olarak hidroksiapatit faz dönüşümü sonrası oluşan toz özelliklerinin kemik grefti olarak kabul edilebilir olduğu görülmektedir.

References

  • LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev 2008;108:4742-53.
  • Rocha JH, Lemos AF, Agathopoulos S, Valério P, Kannan S, Oktar FN, et al. Scaffolds for bone restoration from cuttlefish. Bone 2005;37:850-7.
  • Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005;36 Suppl 3:S20-7.
  • Ben-Nissan B. Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 2003;7:283-8.
  • Begley CT, Doherty MJ, Mollan RA, Wilson DJ. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes. Biomaterials 1995;16:1181-5.
  • Dupoirieux L, Costes V, Jammet P, Souyris F. Experimental study on demineralized bone matrix (DBM) and coral as bone graft substitutes in maxillofacial surgery. Int J Oral Maxillofac Surg 1994;23:395-8.
  • LeGeros RZ, Silverstone LM, Daculsi G, Kerebel LM. In vitro caries-like lesion formation in F-containing tooth enamel. J Dent Res 1983;62:138-44.
  • Manoli F, Dalas E. Calcium carbonate crystallization on xiphoid of the cuttlefish. J Cryst Growth 2000;217:422-8.
  • Tüyel U, Öner ET, Özyegin S, Oktar FN. Production and characterization of bioceramic nanopowders of natural-biological origin. J Biotechnol 2007;131:S65-6.
  • Cartwright JH, Checa AG. The dynamics of nacre selfassembly. J Royal Soc Interface 2007;4:491-504.
  • Lopez E. Mother-of-pearl and the bone, the results show a promising alternative. Biofutur 2005;253:30-2.
  • Barriga C, Morales J, Tirado JL. Changes in crystallinity and thermal effects in ground vaterite. J Mater Sci 1985;20:941-6. Lemos AF, Rocha JH, Quaresma SS, Kannana S, Oktar FN, Agathopoulos S, et al. Hydroxyapatite nanopowders produced hydrothermally from nacreous material. J Eur Ceram Soc 2006;26:3639-46.
  • Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004;2:65-73.
  • Luz GM, Mano JF. Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Compos Sci Technol 2010;70: 1777Bertazzo S, Bertran CA. Morphological and dimensional characteristics of bone mineral crystals. Key Eng Mat 2006;309-311:3-6.
  • Becker A, Bismayer U, Epple M, Fabritius H, Hasse B, Shi J, et al. Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber. Dalton Trans 2003;4:551-5.

Characterization of powdered fish heads for bone graft biomaterial applications

Year 2013, Volume: 47 Issue: 5, 359 - 365, 29.10.2013

Abstract

Objective: The aim of this study was to define the chemical composition, morphology and crystallography of powdered fish heads of the species Argyrosomus regius for bone graft biomaterial applications.
Methods: Two sizes of powder were prepared by different grinding methods; Powder A (coarse, d50=68.5 μm) and Powder B (fine, d50=19.1 μm). Samples were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), thermogravimetry (TG), and energy dispersive X-ray spectroscopy (EDS).
Results: The powder was mainly composed of aragonite (CaCO3) and calcite (CaCO3). The XRD pattern of Powder A and B matched standard aragonite and calcite patterns. In addition, the calcium oxide (CaO) phase was found after the calcination of Powder A. Thermogravimetry analysis confirmed total mass losses of 43.6% and 47.3% in Powders A and B, respectively.
Conclusion: The microstructure of Powder A was mainly composed of different sizes and tubular shape, whereas Powder B showed agglomerated particles. The high quantity of CaO and other oxides resemble the chemical composition of bone. In general, the powder can be considered as bone graft after transformation to hydroxyapatite phase.

References

  • LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev 2008;108:4742-53.
  • Rocha JH, Lemos AF, Agathopoulos S, Valério P, Kannan S, Oktar FN, et al. Scaffolds for bone restoration from cuttlefish. Bone 2005;37:850-7.
  • Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005;36 Suppl 3:S20-7.
  • Ben-Nissan B. Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 2003;7:283-8.
  • Begley CT, Doherty MJ, Mollan RA, Wilson DJ. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes. Biomaterials 1995;16:1181-5.
  • Dupoirieux L, Costes V, Jammet P, Souyris F. Experimental study on demineralized bone matrix (DBM) and coral as bone graft substitutes in maxillofacial surgery. Int J Oral Maxillofac Surg 1994;23:395-8.
  • LeGeros RZ, Silverstone LM, Daculsi G, Kerebel LM. In vitro caries-like lesion formation in F-containing tooth enamel. J Dent Res 1983;62:138-44.
  • Manoli F, Dalas E. Calcium carbonate crystallization on xiphoid of the cuttlefish. J Cryst Growth 2000;217:422-8.
  • Tüyel U, Öner ET, Özyegin S, Oktar FN. Production and characterization of bioceramic nanopowders of natural-biological origin. J Biotechnol 2007;131:S65-6.
  • Cartwright JH, Checa AG. The dynamics of nacre selfassembly. J Royal Soc Interface 2007;4:491-504.
  • Lopez E. Mother-of-pearl and the bone, the results show a promising alternative. Biofutur 2005;253:30-2.
  • Barriga C, Morales J, Tirado JL. Changes in crystallinity and thermal effects in ground vaterite. J Mater Sci 1985;20:941-6. Lemos AF, Rocha JH, Quaresma SS, Kannana S, Oktar FN, Agathopoulos S, et al. Hydroxyapatite nanopowders produced hydrothermally from nacreous material. J Eur Ceram Soc 2006;26:3639-46.
  • Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2004;2:65-73.
  • Luz GM, Mano JF. Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials. Compos Sci Technol 2010;70: 1777Bertazzo S, Bertran CA. Morphological and dimensional characteristics of bone mineral crystals. Key Eng Mat 2006;309-311:3-6.
  • Becker A, Bismayer U, Epple M, Fabritius H, Hasse B, Shi J, et al. Structural characterisation of X-ray amorphous calcium carbonate (ACC) in sternal deposits of the crustacea Porcellio scaber. Dalton Trans 2003;4:551-5.
There are 15 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Basic Study
Authors

Mustafa Oteyaka This is me

Hasan Unal This is me

Namik Bilici This is me

Eda Tasci This is me

Publication Date October 29, 2013
Published in Issue Year 2013 Volume: 47 Issue: 5

Cite

APA Oteyaka, M., Unal, H., Bilici, N., Tasci, E. (2013). Characterization of powdered fish heads for bone graft biomaterial applications. Acta Orthopaedica Et Traumatologica Turcica, 47(5), 359-365.
AMA Oteyaka M, Unal H, Bilici N, Tasci E. Characterization of powdered fish heads for bone graft biomaterial applications. Acta Orthopaedica et Traumatologica Turcica. October 2013;47(5):359-365.
Chicago Oteyaka, Mustafa, Hasan Unal, Namik Bilici, and Eda Tasci. “Characterization of Powdered Fish Heads for Bone Graft Biomaterial Applications”. Acta Orthopaedica Et Traumatologica Turcica 47, no. 5 (October 2013): 359-65.
EndNote Oteyaka M, Unal H, Bilici N, Tasci E (October 1, 2013) Characterization of powdered fish heads for bone graft biomaterial applications. Acta Orthopaedica et Traumatologica Turcica 47 5 359–365.
IEEE M. Oteyaka, H. Unal, N. Bilici, and E. Tasci, “Characterization of powdered fish heads for bone graft biomaterial applications”, Acta Orthopaedica et Traumatologica Turcica, vol. 47, no. 5, pp. 359–365, 2013.
ISNAD Oteyaka, Mustafa et al. “Characterization of Powdered Fish Heads for Bone Graft Biomaterial Applications”. Acta Orthopaedica et Traumatologica Turcica 47/5 (October 2013), 359-365.
JAMA Oteyaka M, Unal H, Bilici N, Tasci E. Characterization of powdered fish heads for bone graft biomaterial applications. Acta Orthopaedica et Traumatologica Turcica. 2013;47:359–365.
MLA Oteyaka, Mustafa et al. “Characterization of Powdered Fish Heads for Bone Graft Biomaterial Applications”. Acta Orthopaedica Et Traumatologica Turcica, vol. 47, no. 5, 2013, pp. 359-65.
Vancouver Oteyaka M, Unal H, Bilici N, Tasci E. Characterization of powdered fish heads for bone graft biomaterial applications. Acta Orthopaedica et Traumatologica Turcica. 2013;47(5):359-65.