Research Article
BibTex RIS Cite

At kemiği kaynaklı kemik protein ekstresinin (Colloss-E) kaviter kemik defektlerinin tedavisindeki etkisi:Deneysel çalışma

Year 2015, Volume: 49 Issue: 3, 311 - 318, 17.07.2015
https://doi.org/10.3944/AOTT.2015.14.0344

Abstract

Amaç: Kemik protein ekstreleri (KPE), dokuya yerleştirilmeleri esnasında bir taşıyıcıya gereksinim duymaktadırlar. Bu çalışmada deneysel kaviter kemik defekti modelinde, yüksek miktarda tip-I kollajen ve diğer kemik matriks proteinlerini içeren osteoindüktif bir biyomateryal olan at kaynaklı KPE’nin (Colloss-E) herhangi bir taşıyıcı olmaksızın etkinliğini, insan kaynaklı demineralize kemik matriksi ile karşılaştırmayı amaçladık.

Çalışma planı: Tavşan distal femur kondili stabil kaviter kemik defekti modeli olarak seçildi. 6 mm çap ve 10–12 mm derinlikte defekt oluşturuldu. Çalışma, her grupta altışar denek olmak üzere at kaynaklı KPE (KPE grubu), insan kaynaklı demineralize kemik matriksi (DKM grubu) ve kontrol (K grubu) olmak üzere üç grupta planlandı. KPE grubunda defekt yaklaşık 20 mg. KPE ile doldurulurken DKM grubunda 0,3 cc DKM yerleştirildi. Kontrol grubu ise boş bırakıldı. Boşluk bölgeleri altıncı hafta sonunda histolojik değerlendirmeye tabi tutuldu.

Bulgular: Makroskopik olarak hiç bir defektte çökme gözenmedi. Histolojik değerlendirmede KPE grubu, DKM ve K gruplarından gerek kaynama kalitesi, gerek yeni kemik dokusu oluşumu, gerekse greft inkorporasyonu skorları açısından daha başarılı sonuçlandı (p<0.05).

Çıkarımlar: Çalışmamızda, KPE’nin etkinliğini araştıran geçmiş literatür ile uyumlu sonuçlar elde edildi. At kaynaklı KPE ile, kaviter kemik defektlerinin tedavisinde herhangi bir taşıyıcı kullanmaksızın başarılı sonuçlar elde edildi.

 

 

DOI: 10.3944/AOTT.2015.14.0344

Bu özet, makalenin henüz redaksiyonu tamamlanmamış haline aittir ve bilgi verme amaçlıdır. Yayın aşamasında değişiklik gösterebilir.

References

  • Li H, Zou X, Woo C, Ding M, Lind M, Bünger C. Ex- perimental anterior lumbar interbody fusion with an os- teoinductive bovine bone collagen extract. Spine (Phila Pa 1976) 2005;30:890–6.
  • Walboomers XF, Jansen JA. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding mate- rial. Biomaterials 2005;26:4779–85.
  • Huffer WE, Benedict JJ, Rettenmaier R, Briest A. Osteo- induction with COLLOSS, COLLOSS E, and GFm. Adv Exp Med Biol 2006;585:87–100.
  • Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 2000;184:207–13.
  • Mundy GR. Osteoblasts, bone formation and mineraliza- tion. In: Fogelman I, ed. Bone Remodeling and Its Disor- ders. London: Maetin Dunitz 1995:17–38.
  • Bertagnoli R. Osteoinductive bone regeneration substance Colloss in spinal fusion. Eur Spine J 2002;11:189–90.
  • Boden SD, Schimandle JH, Hutton WC. Lumbar inter- transverse-process spinal arthrodesis with use of a bovine bone-derived osteoinductive protein. A preliminary report. J Bone Joint Surg Am 1995;77:1404–17.
  • Schlegel KA, Donath K, Rupprecht S, Falk S, Zimmer- mann R, Felszeghy E, et al. De novo bone formation us- ing bovine collagen and platelet-rich plasma. Biomaterials 2004;25:5387–93.
  • Lasmézas CI. The transmissible spongiform encephalopa- thies. Rev Sci Tech 2003;22:23–36.
  • Williams ES, Miller MW. Transmissible spongiform en- cephalopathies in non-domestic animals: origin, transmis- sion and risk factors. Rev Sci Tech 2003;22:145–56.
  • El-Sabban ME, El-Khoury H, Hamdan-Khalil R, Sindet- Pedersen S, Bazarbachi A. Xenogenic bone matrix extracts induce osteoblastic differentiation of human bone marrow- derived mesenchymal stem cells. Regen Med 2007;2:383– 90.
  • Nienhuijs ME, Walboomers XF, Merkx MA, Stoelinga PJ, Jansen JA. Bone-like tissue formation using an equine COLLOSS E-filled titanium scaffolding material. Bioma- terials 2006;27:3109–14.
  • Li H, Springer M, Zou X, Briest A, Bünger C. Ectopic bone induction by equine bone protein extract. Adv Exp Med Biol 2006;585:393–402.
  • Nienhuijs ME, Walboomers XF, Gelinsky M, Stoelinga PJ, Jansen JA. The evaluation of mineralized collagen as a carrier for the osteoinductive material COLLOSS(®)E, in vivo. Tissue Eng Part A. 2011;17:1683–90.
  • Salkeld SL, Patron LP, Barrack RL, Cook SD. The effect of osteogenic protein-1 on the healing of segmental bone de- fects treated with autograft or allograft bone. J Bone Joint Surg Am 2001;83-A:803–16.
  • Nienhuijs ME, Poulsen K, van der Zande M, Briest A, Merkx MA, Stoelinga PJ, et al. Analytical assessment of the osteoinductive material COLLOSSE. J Biomed Mater Res B Appl Biomater 2009;89:300–5.
  • van der Zande M, Walboomers XF, Briest A, Springer M, Alava JI, Jansen JA. The effect of combined application of TGFbeta-1, BMP-2, and COLLOSS E on the develop- ment of bone marrow derived osteoblast-like cells in vitro. J Biomed Mater Res A 2008;86:788–95.
  • Li H, Zou X, Springer M, Briest A, Lind M, Bünger C. In- strumented anterior lumbar interbody fusion with equine bone protein extract. Spine (Phila Pa 1976) 2007;32:126–9.
  • Baas J, Elmengaard B, Bechtold J, Chen X, Sİballe K. Ce- ramic bone graft substitute with equine bone protein ex- tract is comparable to allograft in terms of implant fixation: a study in dogs. Acta Orthop 2008;79:841–50.
  • Foldager C, Bendtsen M, Zou X, Zou L, Olsen AK, Munk OL, et al. ISSLS prize winner: positron emission tomog- raphy and magnetic resonance imaging for monitoring in- terbody fusion with equine bone protein extract, recombi- nant human bone morphogenetic protein-2, and autograft. Spine (Phila Pa 1976) 2008;33:2683–90.
  • Foldager C, Bendtsen M, Nygaard JV, Zou X, Bünger C. Differences in early osteogenesis and bone micro-ar- chitecture in anterior lumbar interbody fusion with rh- BMP-2, equine bone protein extract, and autograft. Bone 2009;45:267–73.
  • Nienhuijs ME, Walboomers XF, Briest A, Merkx MA, Stoelinga PJ, Jansen JA. Healing of bone defects in the goat mandible, using COLLOSS E and beta-tricalci- umphosphate. J Biomed Mater Res B Appl Biomater 2010;92:517–24.
  • Jensen J, Foldager CB, Jakobsen TV, Sİballe K, Bünger C, Baas J. Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone re- generative effect in a humerus drill defect-a pilot study in six sheep. Open Orthop J 2010;4:181–7.
  • Ding M, Rİjskjaer J, Cheng L, Theilgaard N, Overgaard S. The effects of a novel-reinforced bone substitute and Colloss®E on bone defect healing in sheep. J Biomed Mater Res B Appl Biomater 2012;100:1826–35.
  • Baas J, Jakobsen T, Elmengaard B, Bechtold JE, Soballe K. The effect of adding an equine bone matrix protein lyophi- lisate on fixation and osseointegration of HA-coated Ti implants. J Biomed Mater Res A 2012;100:188–94.
  • Williams BJ, Smith JS, Fu KM, Hamilton DK, Polly DW Jr, Ames CP, et al. Does bone morphogenetic protein in- crease the incidence of perioperative complications in spinal fusion? A comparison of 55,862 cases of spinal fu
  • sion with and without bone morphogenetic protein. Spine
  • (Phila Pa 1976) 2011;36:1685–91.

The effect of equine-derived bone protein extract (Colloss-E) in the treatment of cavitary bone defects: an experimental study

Year 2015, Volume: 49 Issue: 3, 311 - 318, 17.07.2015
https://doi.org/10.3944/AOTT.2015.14.0344

Abstract

Objective: Bone protein extract (BPE) usually requires a carrier or a scaffold for implantation. We aimed to compare the effect of equine-derived BPE, an osteoinductive agent composed of a high amount of type-I collagen and other bone proteins (Colloss-E), with that of human demineralized bone matrix (DBM) for treating cavitary bone defects not requiring scaffold use.
Methods: Rabbit distal femoral condyle was used as a stable cavitary bone defect model. Bone defects of 6-mm diameter and 10–12-mm depth were created in the femoral condyles. Rabbits were assigned into the equine-derived BPE (BPE) , human-derived DBM (DBM), and control (C) groups. Approximately 20 mg of BPE was implanted into the defect in the equine-derived BPE group (n=6), whereas 0.3 cc of DBM was implanted in the DBM group (n=6). Defects were left empty in the C group (n=6). The defect area was histologically examined after 6 weeks.
Results: There were no instances of macroscopic defect collapse or failure. Histopathological examination revealed that the BPE group had better scores (statistically significant) than both the other groups in terms of quality of union. The BPE group also had higher scores than the DBM group in terms of graft incorporation and new-bone formation.
Conclusion: The current study revealed results consistent with those of the previous studies concerning BPEs. Equine-derived BPE was found to be successful for treating cavitary bone defects not requiring scaffold use.

References

  • Li H, Zou X, Woo C, Ding M, Lind M, Bünger C. Ex- perimental anterior lumbar interbody fusion with an os- teoinductive bovine bone collagen extract. Spine (Phila Pa 1976) 2005;30:890–6.
  • Walboomers XF, Jansen JA. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding mate- rial. Biomaterials 2005;26:4779–85.
  • Huffer WE, Benedict JJ, Rettenmaier R, Briest A. Osteo- induction with COLLOSS, COLLOSS E, and GFm. Adv Exp Med Biol 2006;585:87–100.
  • Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol 2000;184:207–13.
  • Mundy GR. Osteoblasts, bone formation and mineraliza- tion. In: Fogelman I, ed. Bone Remodeling and Its Disor- ders. London: Maetin Dunitz 1995:17–38.
  • Bertagnoli R. Osteoinductive bone regeneration substance Colloss in spinal fusion. Eur Spine J 2002;11:189–90.
  • Boden SD, Schimandle JH, Hutton WC. Lumbar inter- transverse-process spinal arthrodesis with use of a bovine bone-derived osteoinductive protein. A preliminary report. J Bone Joint Surg Am 1995;77:1404–17.
  • Schlegel KA, Donath K, Rupprecht S, Falk S, Zimmer- mann R, Felszeghy E, et al. De novo bone formation us- ing bovine collagen and platelet-rich plasma. Biomaterials 2004;25:5387–93.
  • Lasmézas CI. The transmissible spongiform encephalopa- thies. Rev Sci Tech 2003;22:23–36.
  • Williams ES, Miller MW. Transmissible spongiform en- cephalopathies in non-domestic animals: origin, transmis- sion and risk factors. Rev Sci Tech 2003;22:145–56.
  • El-Sabban ME, El-Khoury H, Hamdan-Khalil R, Sindet- Pedersen S, Bazarbachi A. Xenogenic bone matrix extracts induce osteoblastic differentiation of human bone marrow- derived mesenchymal stem cells. Regen Med 2007;2:383– 90.
  • Nienhuijs ME, Walboomers XF, Merkx MA, Stoelinga PJ, Jansen JA. Bone-like tissue formation using an equine COLLOSS E-filled titanium scaffolding material. Bioma- terials 2006;27:3109–14.
  • Li H, Springer M, Zou X, Briest A, Bünger C. Ectopic bone induction by equine bone protein extract. Adv Exp Med Biol 2006;585:393–402.
  • Nienhuijs ME, Walboomers XF, Gelinsky M, Stoelinga PJ, Jansen JA. The evaluation of mineralized collagen as a carrier for the osteoinductive material COLLOSS(®)E, in vivo. Tissue Eng Part A. 2011;17:1683–90.
  • Salkeld SL, Patron LP, Barrack RL, Cook SD. The effect of osteogenic protein-1 on the healing of segmental bone de- fects treated with autograft or allograft bone. J Bone Joint Surg Am 2001;83-A:803–16.
  • Nienhuijs ME, Poulsen K, van der Zande M, Briest A, Merkx MA, Stoelinga PJ, et al. Analytical assessment of the osteoinductive material COLLOSSE. J Biomed Mater Res B Appl Biomater 2009;89:300–5.
  • van der Zande M, Walboomers XF, Briest A, Springer M, Alava JI, Jansen JA. The effect of combined application of TGFbeta-1, BMP-2, and COLLOSS E on the develop- ment of bone marrow derived osteoblast-like cells in vitro. J Biomed Mater Res A 2008;86:788–95.
  • Li H, Zou X, Springer M, Briest A, Lind M, Bünger C. In- strumented anterior lumbar interbody fusion with equine bone protein extract. Spine (Phila Pa 1976) 2007;32:126–9.
  • Baas J, Elmengaard B, Bechtold J, Chen X, Sİballe K. Ce- ramic bone graft substitute with equine bone protein ex- tract is comparable to allograft in terms of implant fixation: a study in dogs. Acta Orthop 2008;79:841–50.
  • Foldager C, Bendtsen M, Zou X, Zou L, Olsen AK, Munk OL, et al. ISSLS prize winner: positron emission tomog- raphy and magnetic resonance imaging for monitoring in- terbody fusion with equine bone protein extract, recombi- nant human bone morphogenetic protein-2, and autograft. Spine (Phila Pa 1976) 2008;33:2683–90.
  • Foldager C, Bendtsen M, Nygaard JV, Zou X, Bünger C. Differences in early osteogenesis and bone micro-ar- chitecture in anterior lumbar interbody fusion with rh- BMP-2, equine bone protein extract, and autograft. Bone 2009;45:267–73.
  • Nienhuijs ME, Walboomers XF, Briest A, Merkx MA, Stoelinga PJ, Jansen JA. Healing of bone defects in the goat mandible, using COLLOSS E and beta-tricalci- umphosphate. J Biomed Mater Res B Appl Biomater 2010;92:517–24.
  • Jensen J, Foldager CB, Jakobsen TV, Sİballe K, Bünger C, Baas J. Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone re- generative effect in a humerus drill defect-a pilot study in six sheep. Open Orthop J 2010;4:181–7.
  • Ding M, Rİjskjaer J, Cheng L, Theilgaard N, Overgaard S. The effects of a novel-reinforced bone substitute and Colloss®E on bone defect healing in sheep. J Biomed Mater Res B Appl Biomater 2012;100:1826–35.
  • Baas J, Jakobsen T, Elmengaard B, Bechtold JE, Soballe K. The effect of adding an equine bone matrix protein lyophi- lisate on fixation and osseointegration of HA-coated Ti implants. J Biomed Mater Res A 2012;100:188–94.
  • Williams BJ, Smith JS, Fu KM, Hamilton DK, Polly DW Jr, Ames CP, et al. Does bone morphogenetic protein in- crease the incidence of perioperative complications in spinal fusion? A comparison of 55,862 cases of spinal fu
  • sion with and without bone morphogenetic protein. Spine
  • (Phila Pa 1976) 2011;36:1685–91.
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Experimental Study
Authors

Murat Songur

Ercan Sahin

Tugcan Demir This is me

Mahmut Kalem This is me

Gulnur Kaplanoglu This is me

Necdet Altun This is me

Publication Date July 17, 2015
Published in Issue Year 2015 Volume: 49 Issue: 3

Cite

APA Songur, M., Sahin, E., Demir, T., Kalem, M., et al. (2015). The effect of equine-derived bone protein extract (Colloss-E) in the treatment of cavitary bone defects: an experimental study. Acta Orthopaedica Et Traumatologica Turcica, 49(3), 311-318. https://doi.org/10.3944/AOTT.2015.14.0344
AMA Songur M, Sahin E, Demir T, Kalem M, Kaplanoglu G, Altun N. The effect of equine-derived bone protein extract (Colloss-E) in the treatment of cavitary bone defects: an experimental study. Acta Orthopaedica et Traumatologica Turcica. July 2015;49(3):311-318. doi:10.3944/AOTT.2015.14.0344
Chicago Songur, Murat, Ercan Sahin, Tugcan Demir, Mahmut Kalem, Gulnur Kaplanoglu, and Necdet Altun. “The Effect of Equine-Derived Bone Protein Extract (Colloss-E) in the Treatment of Cavitary Bone Defects: An Experimental Study”. Acta Orthopaedica Et Traumatologica Turcica 49, no. 3 (July 2015): 311-18. https://doi.org/10.3944/AOTT.2015.14.0344.
EndNote Songur M, Sahin E, Demir T, Kalem M, Kaplanoglu G, Altun N (July 1, 2015) The effect of equine-derived bone protein extract (Colloss-E) in the treatment of cavitary bone defects: an experimental study. Acta Orthopaedica et Traumatologica Turcica 49 3 311–318.
IEEE M. Songur, E. Sahin, T. Demir, M. Kalem, G. Kaplanoglu, and N. Altun, “The effect of equine-derived bone protein extract (Colloss-E) in the treatment of cavitary bone defects: an experimental study”, Acta Orthopaedica et Traumatologica Turcica, vol. 49, no. 3, pp. 311–318, 2015, doi: 10.3944/AOTT.2015.14.0344.
ISNAD Songur, Murat et al. “The Effect of Equine-Derived Bone Protein Extract (Colloss-E) in the Treatment of Cavitary Bone Defects: An Experimental Study”. Acta Orthopaedica et Traumatologica Turcica 49/3 (July 2015), 311-318. https://doi.org/10.3944/AOTT.2015.14.0344.
JAMA Songur M, Sahin E, Demir T, Kalem M, Kaplanoglu G, Altun N. The effect of equine-derived bone protein extract (Colloss-E) in the treatment of cavitary bone defects: an experimental study. Acta Orthopaedica et Traumatologica Turcica. 2015;49:311–318.
MLA Songur, Murat et al. “The Effect of Equine-Derived Bone Protein Extract (Colloss-E) in the Treatment of Cavitary Bone Defects: An Experimental Study”. Acta Orthopaedica Et Traumatologica Turcica, vol. 49, no. 3, 2015, pp. 311-8, doi:10.3944/AOTT.2015.14.0344.
Vancouver Songur M, Sahin E, Demir T, Kalem M, Kaplanoglu G, Altun N. The effect of equine-derived bone protein extract (Colloss-E) in the treatment of cavitary bone defects: an experimental study. Acta Orthopaedica et Traumatologica Turcica. 2015;49(3):311-8.