Research Article
BibTex RIS Cite

Hierarchical Approaches to Solve Optimization Problems

Year 2022, , 124 - 139, 30.09.2022
https://doi.org/10.21541/apjess.1065912

Abstract

Optimization is the operation of finding the most appropriate solution for a particular problem or set of problems. In the literature, there are many population-based optimization algorithms for solving optimization problems. Each of these algorithms has different characteristics. Although optimization algorithms give optimum results on some problems, they become insufficient to give optimum results as the problem gets harder and more complex. Many studies have been carried out to improve optimization algorithms to overcome these difficulties in recent years. In this study, six well-known population-based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA, and particle swarm optimization - PSO) were used. Each of these algorithms has its own advantages and disadvantages. These population-based six algorithms were tested on CEC’17 test functions and their performances were examined and so the characteristics of the algorithms were determined. Based on these results, hierarchical approaches have been proposed in order to combine the advantages of algorithms and achieve better results. The hierarchical approach refers to the successful operation of algorithms. In this study, eight approaches were proposed, and performance evaluations of these structures were made on CEC’17 test functions. When the experimental results are examined, it is concluded that some hierarchical approaches can be applied, and some hierarchical approaches surpass the base states of the algorithms.

References

  • [1] X.-S. Yang, Nature-inspired metaheuristic algorithms: Luniver press, 2010.
  • [2] M. S. Kıran, "Optimizasyon problemlerinin çözümü için yapay arı kolonisi algoritması tabanlı yeni yaklaşımlar," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2014.
  • [3] S. A. Uymaz, "Yeni bir biyolojik ilhamlı metasezgisel optimizasyon metodu: Yapay alg algoritması," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2015.
  • [4] F. Glover and M. Laguna, "Tabu search," in Handbook of combinatorial optimization, ed: Springer, 1998, pp. 2093-2229.
  • [5] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Technical report-tr06, Erciyes university, engineering faculty, computer …2005.
  • [6] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-International Conference on Neural Networks, 1995, pp. 1942-1948.
  • [7] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, pp. 29-41, 1996.
  • [8] P. J. Angeline, "Evolution revolution: An introduction to the special track on genetic and evolutionary programming," IEEE Intelligent Systems, pp. 6-10, 1995.
  • [9] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," Journal of global optimization, vol. 11, pp. 341-359, 1997.
  • [10] F. N. Arıcı and E. Kaya, "Comparison and characterization of meta-heuristic algorithms on benchmark functions," Academic Perspective Procedia, vol. 2, pp. 508-517, 2019 2019.
  • [11] H. Haklı, "Sürekli fonksiyonların optimizasyonu için doğa esinli algoritmaların geliştirilmesi," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2013.
  • [12] J. Robinson, S. Sinton, and Y. Rahmat-Samii, "Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna," in IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), 2002, pp. 314-317.
  • [13] L. Bellatreche, K. Boukhalfa, and H. I. Abdalla, "Saga: A combination of genetic and simulated annealing algorithms for physical data warehouse design," in British National Conference on Databases, 2006, pp. 212-219.
  • [14] M. H. Moradi and M. Abedini, "A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems," International Journal of Electrical Power & Energy Systems, vol. 34, pp. 66-74, 2012.
  • [15] S. Arunachalam, T. AgnesBhomila, and M. R. Babu, "Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect," in International Conference on Swarm, Evolutionary, and Memetic Computing, 2014, pp. 647-660.
  • [16] H. Eldem, "Karınca Koloni Optimizasyonu (KKO) ve Parçacık Sürü Optimizasyonu (PSO) Algortimaları Temelli Bir Hiyerarşik Yaklaşım Geliştirilmesi," Yüksek Lisans, Bilgisayar Mühendisliği, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 2014.
  • [17] O. Gokalp and A. Uğur, "An order based hybrid metaheuristic algorithm for solving optimization problems," in 2017 International Conference on Computer Science and Engineering (UBMK), 2017, pp. 604-609.
  • [18] P. J. Gaidhane and M. J. Nigam, "A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems," Journal of computational science, vol. 27, pp. 284-302, 2018.
  • [19] G.-H. Lin, J. Zhang, and Z.-H. Liu, "Hybrid particle swarm optimization with differential evolution for numerical and engineering optimization," International Journal of Automation and Computing, vol. 15, pp. 103-114, 2018.
  • [20] S. Jiang, C. Zhang, and S. Chen, "Sequential Hybrid Particle Swarm Optimization and Gravitational Search Algorithm with Dependent Random Coefficients," Mathematical Problems in Engineering, vol. 2020, 2020.
  • [21] T. Keskintürk, "Diferansiyel gelişim algoritması," 2006.
  • [22] D. Karaboğa, Yapay Zeka Optimizasyon Algoritmalari: Nobel Akademi Yayıncılık, 2017.
  • [23] G. G. Emel and Ç. Taşkın, "Genetik Algoritmalar ve Uygulama Alanlari," Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 21, pp. 129-152, 2002.
  • [24] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm," Information sciences, vol. 179, pp. 2232-2248, 2009.
  • [25] M. Y. ÖZSAĞLAM and M. ÇUNKAŞ, "Optimizasyon problemlerinin çözümü için parçaçık sürü optimizasyonu algoritması," Politeknik Dergisi, vol. 11, pp. 299-305, 2008.
  • [26] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu, "Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization," 2016.
  • [27] M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," The Annals of Mathematical Statistics, vol. 11, pp. 86-92, 1940.
Year 2022, , 124 - 139, 30.09.2022
https://doi.org/10.21541/apjess.1065912

Abstract

References

  • [1] X.-S. Yang, Nature-inspired metaheuristic algorithms: Luniver press, 2010.
  • [2] M. S. Kıran, "Optimizasyon problemlerinin çözümü için yapay arı kolonisi algoritması tabanlı yeni yaklaşımlar," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2014.
  • [3] S. A. Uymaz, "Yeni bir biyolojik ilhamlı metasezgisel optimizasyon metodu: Yapay alg algoritması," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2015.
  • [4] F. Glover and M. Laguna, "Tabu search," in Handbook of combinatorial optimization, ed: Springer, 1998, pp. 2093-2229.
  • [5] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Technical report-tr06, Erciyes university, engineering faculty, computer …2005.
  • [6] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-International Conference on Neural Networks, 1995, pp. 1942-1948.
  • [7] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, pp. 29-41, 1996.
  • [8] P. J. Angeline, "Evolution revolution: An introduction to the special track on genetic and evolutionary programming," IEEE Intelligent Systems, pp. 6-10, 1995.
  • [9] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," Journal of global optimization, vol. 11, pp. 341-359, 1997.
  • [10] F. N. Arıcı and E. Kaya, "Comparison and characterization of meta-heuristic algorithms on benchmark functions," Academic Perspective Procedia, vol. 2, pp. 508-517, 2019 2019.
  • [11] H. Haklı, "Sürekli fonksiyonların optimizasyonu için doğa esinli algoritmaların geliştirilmesi," Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2013.
  • [12] J. Robinson, S. Sinton, and Y. Rahmat-Samii, "Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna," in IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), 2002, pp. 314-317.
  • [13] L. Bellatreche, K. Boukhalfa, and H. I. Abdalla, "Saga: A combination of genetic and simulated annealing algorithms for physical data warehouse design," in British National Conference on Databases, 2006, pp. 212-219.
  • [14] M. H. Moradi and M. Abedini, "A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems," International Journal of Electrical Power & Energy Systems, vol. 34, pp. 66-74, 2012.
  • [15] S. Arunachalam, T. AgnesBhomila, and M. R. Babu, "Hybrid particle swarm optimization algorithm and firefly algorithm based combined economic and emission dispatch including valve point effect," in International Conference on Swarm, Evolutionary, and Memetic Computing, 2014, pp. 647-660.
  • [16] H. Eldem, "Karınca Koloni Optimizasyonu (KKO) ve Parçacık Sürü Optimizasyonu (PSO) Algortimaları Temelli Bir Hiyerarşik Yaklaşım Geliştirilmesi," Yüksek Lisans, Bilgisayar Mühendisliği, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 2014.
  • [17] O. Gokalp and A. Uğur, "An order based hybrid metaheuristic algorithm for solving optimization problems," in 2017 International Conference on Computer Science and Engineering (UBMK), 2017, pp. 604-609.
  • [18] P. J. Gaidhane and M. J. Nigam, "A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems," Journal of computational science, vol. 27, pp. 284-302, 2018.
  • [19] G.-H. Lin, J. Zhang, and Z.-H. Liu, "Hybrid particle swarm optimization with differential evolution for numerical and engineering optimization," International Journal of Automation and Computing, vol. 15, pp. 103-114, 2018.
  • [20] S. Jiang, C. Zhang, and S. Chen, "Sequential Hybrid Particle Swarm Optimization and Gravitational Search Algorithm with Dependent Random Coefficients," Mathematical Problems in Engineering, vol. 2020, 2020.
  • [21] T. Keskintürk, "Diferansiyel gelişim algoritması," 2006.
  • [22] D. Karaboğa, Yapay Zeka Optimizasyon Algoritmalari: Nobel Akademi Yayıncılık, 2017.
  • [23] G. G. Emel and Ç. Taşkın, "Genetik Algoritmalar ve Uygulama Alanlari," Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 21, pp. 129-152, 2002.
  • [24] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm," Information sciences, vol. 179, pp. 2232-2248, 2009.
  • [25] M. Y. ÖZSAĞLAM and M. ÇUNKAŞ, "Optimizasyon problemlerinin çözümü için parçaçık sürü optimizasyonu algoritması," Politeknik Dergisi, vol. 11, pp. 299-305, 2008.
  • [26] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu, "Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization," 2016.
  • [27] M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," The Annals of Mathematical Statistics, vol. 11, pp. 86-92, 1940.
There are 27 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Articles
Authors

Ferda Nur Arıcı 0000-0002-0300-976X

Ersin Kaya 0000-0001-5668-5078

Publication Date September 30, 2022
Submission Date January 31, 2022
Published in Issue Year 2022

Cite

IEEE F. N. Arıcı and E. Kaya, “Hierarchical Approaches to Solve Optimization Problems”, APJESS, vol. 10, no. 3, pp. 124–139, 2022, doi: 10.21541/apjess.1065912.

Academic Platform Journal of Engineering and Smart Systems