Research Article
BibTex RIS Cite

YEREL BİTKİ SALYASI VE GÜVENLİ KATKILARLA TEPETATE SIVAMALARININ GELİŞTİRİLMESİ: MİMARİ KORUMA İÇİN SÜRDÜRÜLEBİLİR BİR YAKLAŞIM

Year 2025, Volume: 7 Issue: 1, 77 - 88, 30.06.2025
https://doi.org/10.57165/artgrid.1563266

Abstract

Bu çalışma, mimari restorasyon amacıyla tepetate sıvalarının heteropolisakkaritler ve endüstriyel yan ürünler eklenerek dönüştürülmesini ve bu sürecin sürdürülebilir ve çevre dostu uygulamalara odaklanarak nasıl geliştirilebileceğini araştırmaktadır. Meksika’da yaygın olan volkanik kökenli bir toprak türü olan tepetate, sıva malzemesi olarak zayıf yapışma ve düşük dayanıklılık gibi sınırlamalara sahiptir. Bu çalışmada, yerel bitkilerden (Opuntia aciculata, Agave lechuguilla ve Cyrtopodium macrobulbon) elde edilen salya (müsilaj) ve endüstriyel bir yan ürün olan gliserolün eklenmesinin, tepetate'nin restorasyon uygulamaları için özelliklerini iyileştirebileceği; aynı zamanda ekolojik koruma ve kaynak verimliliğine katkı sağlayabileceği hipoteziyle yola çıkılmıştır. Bu amaçla, söz konusu katkı maddeleri farklı konsantrasyonlarda (%0.5, %1 ve %1.5) kullanılarak deneyler gerçekleştirilmiş; örnekler yapışma, yaşlandırma, basınç dayanımı ve su emme testlerine tabi tutulmuştur. Sonuçlar, katkı türü ve miktarına bağlı olarak değişiklik gösterse de, genel olarak tepetate özelliklerinde önemli iyileşmeler sağlandığını ortaya koymuştur. Özellikle, %0.5 oranında kullanılan agave müsilajı en yüksek basınç dayanımına (42.09 kg/cm²) ulaşırken; %1.5 oranında kullanılan gliserol en iyi su direncini göstermiştir. Tüm katkı maddesi karışımları, kontrol örneğine kıyasla su ihtiyacını en az %40 oranında azaltmış; bazıları ise bu oranı %62.5’e kadar çıkarmıştır. Bu su tasarrufu özelliği, doğal ve atık malzemelerin kullanımıyla birleştiğinde, önerilen yaklaşımın ekolojik faydalarını vurgulamaktadır. Bu doğal ve endüstriyel katkıların eklenmesi, tepetate'nin sıva malzemesi olarak performansını etkili bir şekilde artırabilir ve mimari koruma için sürdürülebilir bir çözüm sunar. Elde edilen bulgular, kültürel miras yapıların restorasyonu için daha gelişmiş ve çevre dostu malzemelerin geliştirilmesine katkı sağlamakta; restorasyon alanında kaynak koruma ve döngüsel ekonomi ilkeleriyle uyumlu bir yaklaşımı desteklemektedir.

References

  • Armendáriz, M. (2012). Materiales de alta densidad utilizando tepetate. Tesis de Maestría en Ciencias Facultad de Ingeniería Universidad de Querétaro. http://ri-ng.uaq.mx/handle/123456789/418
  • ASTM. (2000). Standard Practice for Exposing Non-metallic Materials in Accelerated Test Devices that Use Laboratory Light Sources. Designation: G 151-00.
  • ASTM. (1998). Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials. Designation: G 154-98.
  • Cardeño, F., Gallego, L. J., & Rios, L. A. (2011). Refinación de la Fase Glicerina del Biodiesel de Aceite de Palma empleando Ácidos Minerales. Información tecnológica, 22(6), 15-24.
  • Dai, S., & Zhong, Y. (2019). Sacrificial Protection for Architectural Heritage Conservation and Preliminary Approaches to Restore Historic Fair-Faced Brick Façades in China. Built Heritage, 3(1), 37-46.
  • García-Alonso, L., & Guerrero-Baca, L. (2022). MOISTURE RESISTANCE OF EARTHEN COATINGS STABILIZED WITH GLYCEROL. Art GRID - Journal of Architecture Engineering and Fine Arts, 4(1), 57-70. https://doi.org/10.57165/artgrid.1075488
  • García-Alonso, L., & Ruvalcaba, J. L. (2020) Research and Conservation of Bio-cultural Heritage and Traditional Technologies 47th Conference of CIMUSET, Kyoto https://www.fichier-pdf.fr/2021/01/29/cimuset--kyoto-publication/preview/page/116/
  • Gama-Castro, J. (2007). Los tepetates y su dinámica sobre la degradación y el riesgo ambiental: El caso del Glacis de Buenavista, Morelos. Boletín de la Sociedad Geológica Mexicana, 59(1), 133-145.
  • Guerrero Baca, L., & Ávila-Boyas, E. García-Alonso, L (2022). El glicerol como estabilizante de revoques de tierra. Estoa. Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca, 11(21), 83-97.
  • Guerrero Baca, L. (2018). Identificación y valoración del patrimonio precolombino construido con tierra modelada. Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 48(1), 125-141.
  • Guerrero Baca, L. F., & Ávila Boyas, E. (2019). Pañetes de tierra estabilizada con nopal. REVISTA NODO, 14(27), 53-62.
  • Howard, A. (1986). Soil classification handbook: unified soil classification system. Denver, Colo. :Geotechnical Branch, Division of Research and Laboratory Services, Engineering and Research Center, Bureau of Reclamation, https://dot.ca.gov/-/media/dot-media/programs/maintenance/documents/office-of-concrete-pavement/pavement-foundations/uscs-a11y.pdf
  • Mahmood, A., et al. (2024). Enhancing Concrete Properties with Agave Americana Fiber Reinforcement. ACS Omega.
  • Pickett, J.E. (2005). Weathering of thermoplastic polymers. Handbook of Environmental Degradation of Materials, 171-201.
  • Santos, T., et al. (2023). Evaluating the use of mucilage from Opuntia ficus-indica as a bio-additive in production of sustainable concrete. Construction and Building Materials. Volume 396 https://doi.org/10.1016/j.conbuildmat.2023.132132.

ENHANCING TEPETATE RENDERS WITH ENDEMIC PLANT MUCILAGE AND SAFE ADDITIVES: A SUSTAINABLE APPROACH TO ARCHITECTURAL CONSERVATION

Year 2025, Volume: 7 Issue: 1, 77 - 88, 30.06.2025
https://doi.org/10.57165/artgrid.1563266

Abstract

This study investigates the transformation of tepetate renders through the addition of heteropolysaccharides and industrial byproducts for use in architectural restoration, with a focus on sustainable and eco-friendly practices. Tepetate, a volcanic soil common in Mexico, has limitations as a plaster material due to its poor cohesiveness and durability. We hypothesized that the addition of mucilage from endemic plants (Opuntia aciculata, Agave lechuguilla, and Cyrtopodium macrobulbon) and industrial byproducts (glycerol) could improve tepetate properties for restoration applications while promoting ecological conservation and resource efficiency. We conducted experiments using various concentrations (0.5%, 1%, and 1.5%) of these additives and subjected samples to cohesiveness, aging, compression strength, and water absorption tests. Results showed significant improvements in tepetate properties, with some variations depending on the additive type and concentration. Notably, agave mucilage at 0.5% concentration achieved the highest compressive strength (42.09 kg/cm²), while glycerol at 1.5% demonstrated superior water resistance. All additive mixtures reduced water requirements by at least 40% compared to the control sample, with some achieving up to 62.5 % reduction. This water-saving aspect, combined with the use of natural and waste materials, underscores the ecological benefits of the proposed approach. The addition of these natural and industrial additives can effectively enhance tepetate performance as a rendering material, offering a sustainable solution for architectural conservation. These findings contribute to the development of improved, environmentally friendly materials for the restoration of cultural heritage buildings, aligning with principles of resource conservation and circular economy practices in the field of restoration.

References

  • Armendáriz, M. (2012). Materiales de alta densidad utilizando tepetate. Tesis de Maestría en Ciencias Facultad de Ingeniería Universidad de Querétaro. http://ri-ng.uaq.mx/handle/123456789/418
  • ASTM. (2000). Standard Practice for Exposing Non-metallic Materials in Accelerated Test Devices that Use Laboratory Light Sources. Designation: G 151-00.
  • ASTM. (1998). Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials. Designation: G 154-98.
  • Cardeño, F., Gallego, L. J., & Rios, L. A. (2011). Refinación de la Fase Glicerina del Biodiesel de Aceite de Palma empleando Ácidos Minerales. Información tecnológica, 22(6), 15-24.
  • Dai, S., & Zhong, Y. (2019). Sacrificial Protection for Architectural Heritage Conservation and Preliminary Approaches to Restore Historic Fair-Faced Brick Façades in China. Built Heritage, 3(1), 37-46.
  • García-Alonso, L., & Guerrero-Baca, L. (2022). MOISTURE RESISTANCE OF EARTHEN COATINGS STABILIZED WITH GLYCEROL. Art GRID - Journal of Architecture Engineering and Fine Arts, 4(1), 57-70. https://doi.org/10.57165/artgrid.1075488
  • García-Alonso, L., & Ruvalcaba, J. L. (2020) Research and Conservation of Bio-cultural Heritage and Traditional Technologies 47th Conference of CIMUSET, Kyoto https://www.fichier-pdf.fr/2021/01/29/cimuset--kyoto-publication/preview/page/116/
  • Gama-Castro, J. (2007). Los tepetates y su dinámica sobre la degradación y el riesgo ambiental: El caso del Glacis de Buenavista, Morelos. Boletín de la Sociedad Geológica Mexicana, 59(1), 133-145.
  • Guerrero Baca, L., & Ávila-Boyas, E. García-Alonso, L (2022). El glicerol como estabilizante de revoques de tierra. Estoa. Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca, 11(21), 83-97.
  • Guerrero Baca, L. (2018). Identificación y valoración del patrimonio precolombino construido con tierra modelada. Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 48(1), 125-141.
  • Guerrero Baca, L. F., & Ávila Boyas, E. (2019). Pañetes de tierra estabilizada con nopal. REVISTA NODO, 14(27), 53-62.
  • Howard, A. (1986). Soil classification handbook: unified soil classification system. Denver, Colo. :Geotechnical Branch, Division of Research and Laboratory Services, Engineering and Research Center, Bureau of Reclamation, https://dot.ca.gov/-/media/dot-media/programs/maintenance/documents/office-of-concrete-pavement/pavement-foundations/uscs-a11y.pdf
  • Mahmood, A., et al. (2024). Enhancing Concrete Properties with Agave Americana Fiber Reinforcement. ACS Omega.
  • Pickett, J.E. (2005). Weathering of thermoplastic polymers. Handbook of Environmental Degradation of Materials, 171-201.
  • Santos, T., et al. (2023). Evaluating the use of mucilage from Opuntia ficus-indica as a bio-additive in production of sustainable concrete. Construction and Building Materials. Volume 396 https://doi.org/10.1016/j.conbuildmat.2023.132132.
There are 15 citations in total.

Details

Primary Language English
Subjects Architectural Heritage and Conservation, Sustainable Architecture
Journal Section Research Article
Authors

Lılıan García-alonso 0000-0002-1275-2248

Monica Vázquez 0009-0008-3827-2833

Luis Guerrero 0000-0001-8256-4851

Publication Date June 30, 2025
Submission Date October 15, 2024
Acceptance Date June 24, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA García-alonso, L., Vázquez, M., & Guerrero, L. (2025). ENHANCING TEPETATE RENDERS WITH ENDEMIC PLANT MUCILAGE AND SAFE ADDITIVES: A SUSTAINABLE APPROACH TO ARCHITECTURAL CONSERVATION. ArtGRID - Journal of Architecture Engineering and Fine Arts, 7(1), 77-88. https://doi.org/10.57165/artgrid.1563266