Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Understanding Industrial Ecology by Inverstigating Industrial Symbiosis Examples

Year 2018, Volume: 1 Issue: 2, 22 - 34, 30.12.2018

Abstract

It is clearly realized that a production and consumption cycle
is well over the earth carrying capacity and resources are used in an
unsustainable manner. It is not possible to maintain the current situation in
the long term and it is inevitable that the structural transformations of
production and consumption routines will be implemented rapidly. In the current
system of production and consumption, called the linear economy, wastes contain
raw materials that are not fully used, and they have the potential to be
cyclical material for many industries. With advances in design and technology,
raw materials, finished products or semi-products can have more added value
throughout their lives, which can reduce material and energy requirements. The
concept of industrial symbiosis, which developed in the logic of circular
economy, is a renewal system that minimizes loss of resources, waste, emissions
and energy losses by covering material and energy flows between enterprises in
a given geographical area. In this study, the relationship between this
symbiosis relationship and the current examples are mentioned.

References

  • Benyus, J. M. (2002). Biomimicry: innovation inspired by nature (William Morrow & Co. New York, NY).
  • Chertow, M. R., & Lombardi, D. R. (2005). Quantifying economic and environmental benefits of co-located firms.
  • Dünyanın Durumu. (2008). Sürdürülebilir bir ekonomi için yenilikler, Worldwatch Enstitüsü Raporu. TEMA Vakfı Yayınları, İstanbul.
  • Dünyanın Durumu (2004). Sürdürülebilir toplum için Worldwatch Enstitüsü raporu, Türkiye İş Bankası Kültür Yayınları, TEMA Vakfı Yayınları, İstanbul.
  • EEA (2015). The European environment — State and outlook 2015: Synthesis report, State of the Environment report.
  • Geyer, R., & Jackson, T. (2004). Supply loops and their constraints: the industrial ecology of recycling and reuse. California Management Review, 46(2), 55-73.
  • Graedel, T. E., & Allenby, B. R. (1995). Industrial Ecology Prentice Hall. Englewood Cliffs, NJ.
  • Jacobsen, N. B. (2006). Industrial symbiosis in Kalundborg, Denmark: a quantitative assessment of economic and environmental aspects. Journal of industrial ecology, 10(1‐2), 239-255.
  • Kemp, R., & Pearson, P. (2007). Final report MEI project about measuring eco-innovation. UM Merit, Maastricht, 10.
  • Kennedy, S. (2007). Biomimicry/biomimetics: general principles and practical examples. The Science Creative Quarterly, (2).
  • Krajnc, D. & Glavic, P. (2003). Indicators of sustainable production. Clean Technology Environment Policy, 5, 279–288.
  • Lovins, A. B., Lovins, L. H., & Hawken, P. (1999). A road map for natural capitalism.
  • Lyle, J. T. (1996). Regenerative design for sustainable development. John Wiley & Sons.
  • Lowell Center For Sustainable Production. (1998). Sustainable production: a working definition. Informal Meeting of the Committee Members.
  • O’Brien, C. (1999). Sustainable production-a new paradigm for a new millennium. International Journal of Production Economics, 60-61:1-7.
  • Reap, J., Baumeister, D., & Bras, B. (2005). Holism, biomimicry and sustainable engineering. In ASME 2005 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers.
  • Renner, G. T. (1947). Geography of industrial localization. Economic Geography, 23(3), 167-189.
  • Van Beers, D., Bossilkov, A., Corder, G., & Van Berkel, R. (2007). Industrial symbiosis in the Australian minerals industry: the cases of Kwinana and Gladstone. Journal of Industrial Ecology, 11(1), 55-72.

Endüstriyel Ekolojiyi Anlamak Adına Endüstriyel Ortakyaşarlık Örneklerinin İncelenmesi

Year 2018, Volume: 1 Issue: 2, 22 - 34, 30.12.2018

Abstract

Yer kürenin taşıma kapasitesinin çok üstünde
bir üretim ve tüketim döngüsüne girildiği, kaynakların sürdürülemez şekilde
kullanıldığı görülmektedir. Mevcut durumun uzun vadede devam ettirilmesi mümkün
olmayıp üretim ve tüketim süreçlerine ilişkin yapısal dönüşümlerin hızla hayata
geçirilmesi kaçınılmazdır. Doğrusal ekonomi olarak adlandırılan mevcut üretim
ve tüketim sisteminde atıklar tam olarak kullanılmamış hammaddeler içermektedir
ve bunlar birçok endüstri için döngüsel materyal olma potansiyeli taşımaktadır.
Tasarım ve teknolojideki gelişmeler ile hammadde, mamul veya yarı mamulün
yaşamı boyunca daha fazla katma değer taşıması sağlanabilir ki bu da materyal
ve enerji gereksinimi azaltabilir. Döngüsel ekonomi mantığı içinde gelişen
endüstriyel ortakyaşarlık, belirli bir coğrafi alanda yer alan işletmeler
arasındaki materyal ve enerji akışları yoluyla; kaynak girişi, atık, emisyon ve
enerji kayıplarının minimize edildiği yenileyici bir sistemdir. Bu çalışmada bu
ortakyaşarlık ilişkisine değinilmiş ve güncel örneklere yer verilmiştir. 

References

  • Benyus, J. M. (2002). Biomimicry: innovation inspired by nature (William Morrow & Co. New York, NY).
  • Chertow, M. R., & Lombardi, D. R. (2005). Quantifying economic and environmental benefits of co-located firms.
  • Dünyanın Durumu. (2008). Sürdürülebilir bir ekonomi için yenilikler, Worldwatch Enstitüsü Raporu. TEMA Vakfı Yayınları, İstanbul.
  • Dünyanın Durumu (2004). Sürdürülebilir toplum için Worldwatch Enstitüsü raporu, Türkiye İş Bankası Kültür Yayınları, TEMA Vakfı Yayınları, İstanbul.
  • EEA (2015). The European environment — State and outlook 2015: Synthesis report, State of the Environment report.
  • Geyer, R., & Jackson, T. (2004). Supply loops and their constraints: the industrial ecology of recycling and reuse. California Management Review, 46(2), 55-73.
  • Graedel, T. E., & Allenby, B. R. (1995). Industrial Ecology Prentice Hall. Englewood Cliffs, NJ.
  • Jacobsen, N. B. (2006). Industrial symbiosis in Kalundborg, Denmark: a quantitative assessment of economic and environmental aspects. Journal of industrial ecology, 10(1‐2), 239-255.
  • Kemp, R., & Pearson, P. (2007). Final report MEI project about measuring eco-innovation. UM Merit, Maastricht, 10.
  • Kennedy, S. (2007). Biomimicry/biomimetics: general principles and practical examples. The Science Creative Quarterly, (2).
  • Krajnc, D. & Glavic, P. (2003). Indicators of sustainable production. Clean Technology Environment Policy, 5, 279–288.
  • Lovins, A. B., Lovins, L. H., & Hawken, P. (1999). A road map for natural capitalism.
  • Lyle, J. T. (1996). Regenerative design for sustainable development. John Wiley & Sons.
  • Lowell Center For Sustainable Production. (1998). Sustainable production: a working definition. Informal Meeting of the Committee Members.
  • O’Brien, C. (1999). Sustainable production-a new paradigm for a new millennium. International Journal of Production Economics, 60-61:1-7.
  • Reap, J., Baumeister, D., & Bras, B. (2005). Holism, biomimicry and sustainable engineering. In ASME 2005 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers.
  • Renner, G. T. (1947). Geography of industrial localization. Economic Geography, 23(3), 167-189.
  • Van Beers, D., Bossilkov, A., Corder, G., & Van Berkel, R. (2007). Industrial symbiosis in the Australian minerals industry: the cases of Kwinana and Gladstone. Journal of Industrial Ecology, 11(1), 55-72.
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Tufan Özsoy

Publication Date December 30, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Özsoy, T. (2018). Endüstriyel Ekolojiyi Anlamak Adına Endüstriyel Ortakyaşarlık Örneklerinin İncelenmesi. Artıbilim: Adana Bilim Ve Teknoloji Üniversitesi Sosyal Bilimler Dergisi, 1(2), 22-34.