Review
BibTex RIS Cite

Transkutanöz Auricular Vagus Sinir Stimülasyonun Klinik Kullanımı

Year 2025, Issue: 12, 54 - 61, 07.08.2025
https://doi.org/10.58252/artukluhealth.1676099

Abstract

Giriş: Transkutanöz auricular vagus sinir stimülasyonu, invaziv olmayan bir nöromodülasyon yöntemi olarak birçok klinik endikasyonda terapötik potansiyeli ile dikkat çekmektedir. Bu derleme, transkutanöz auricular vagus sinir stimülasyonunun fizyoterapi ile ilişkili alanlarda kullanıldığı hastalıklar, uygulama biçimleri ve etkinlik düzeylerini değerlendirmek amacıyla yapılmıştır.
Yöntem: Bu çalışma, 2010–2024 yılları arasında yayımlanmış İngilizce literatürün incelendiği bir narrative derlemedir. PubMed, Scopus ve Web of Science veri tabanlarında “transcutaneous auricular vagus nerve stimulation”, “taVNS”, “neuromodulation” ve ilgili anahtar kelimeler kullanılarak yapılan tarama sonucunda, insanlarda transkutanöz auricular vagus sinir stimülasyonu uygulamasının etkilerini değerlendiren klinik ve deneysel çalışmalar dahil edilmiştir.
Bulgular: Derleme kapsamında transkutanöz auricular vagus sinir stimülasyonunun epilepsi, depresyon, migren, kronik ağrı, inme, parkinson hastalığı, alzheimer hastalığı, inflamatuar bağırsak hastalıkları ve uyku bozuklukları gibi birçok klinik durumda olumlu etkiler gösterdiği tespit edilmiştir. En güçlü kanıtlar epilepsi, depresyon ve inme sonrası rehabilitasyon alanlarındadır. Buna karşın uyku, bilişsel performans ve kronik ağrı gibi bazı alanlarda bulgular hâlen tutarsız ve yöntemsel çeşitlilikten etkilenmektedir. Uygulama protokollerinde, stimülasyon süresi, frekans ve elektrot yerleşimi gibi değişkenler sonuçları etkilemektedir.
Sonuç: Transkutanöz auricular vagus sinir stimülasyonu, fizyoterapi alanında destekleyici bir müdahale aracı olarak değerlendirilebilir. Ancak uygulama protokollerinin standardize edilmesi ve endikasyon bazlı yüksek kaliteli çalışmalara ihtiyaç vardır. Bu yöntem, fizyoterapide tamamlayıcı bir yaklaşım olarak önemli potansiyele sahiptir.

Ethical Statement

Bu araştırma bir derleme olduğundan etik kurul izni gerekmemektedir. Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur. Bu çalışmanın hazırlanma sürecinde yapay zeka tabanlı herhangi bir araç veya uygulama kullanılmamıştır. Çalışmanın tüm içeriği, yazar(lar) tarafından bilimsel araştırma yöntemleri ve akademik etik ilkelere uygun şekilde üretilmiştir.

Supporting Institution

Bu çalışma için herhangi bir bütçe desteği yoktur.

References

  • Badran, B. W., Yu, A. B., Adair, D., Mappin, G., DeVries, W. H., Jenkins, D. D., ... George, M. S. (2019). Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): Technique, targeting, and considerations. Journal of Visualized Experiments, 2019(143), e58984. https://doi.org/10.3791/58984
  • Baig, S. S., Kamarova, M., Ali, A., Su, L., Dawson, J., Redgrave, J. N., ... Gaete, J. M. (2022). Transcutaneous vagus nerve stimulation (tVNS) in stroke: The evidence, challenges, and future directions. Autonomic Neuroscience, 237, 102909. https://doi.org/10.1016/j.autneu.2021.102909
  • Barbanti, P., Grazzi, L., Egeo, G., Padovan, A. M., Liebler, E., and Bussone, G. (2015). Non‐invasive vagus nerve stimulation for acute treatment of high‐frequency and chronic migraine: An open‐label study. The Journal of Headache and Pain, 16(1), 61. https://doi.org/10.1186/s10194-015-0542-4
  • Burger, A. M., Van der Does, W., Thayer, J. F., Brosschot, J. F., and Verkuil, B. (2019). Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biological Psychology, 142, 80–89. https://doi.org/10.1016/j.biopsycho.2019.01.014
  • Busch, V., Zeman, F., Heckel, A., Menne, F., Ellrich, J., and Eichhammer, P. (2013). The effect of transcutaneous vagus nerve stimulation on pain perception – An experimental study. Brain Stimulation, 6(2), 202–209. https://doi.org/10.1016/j.brs.2012.04.006
  • Capone, F., Miccinilli, S., Pellegrino, G., Zollo, L., Simonetti, D., Bressi, F., ... Di Lazzaro, V. (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plasticity, 2017, 7876507. https://doi.org/10.1155/2017/7876507
  • Carabotti, M., Scirocco, A., Maselli, M. A., and Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(3), 203–209.
  • Chen, M., Yu, L., Ouyang, F., Liu, Q., Wang, Z., Wang, S., ... Jiang, H. (2015). The right side or left side of noninvasive transcutaneous vagus nerve stimulation: Based on conventional wisdom or scientific evidence? International Journal of Cardiology, 187, 44–45. https://doi.org/10.1016/j.ijcard.2015.03.351
  • Clancy, J. A., Deuchars, S. A., and Deuchars, J. (2012). The wonders of the wanderer. Experimental Physiology, 98(1), 38–45. https://doi.org/10.1113/expphysiol.2012.064543
  • De Ferrari, G. M., and Schwartz, P. J. (2011). Vagus nerve stimulation: From pre-clinical to clinical application: Challenges and future directions. Heart Failure Reviews, 16(2), 195–203. https://doi.org/10.1007/s10741-010-9216-0
  • Dos Reis, L. D., Pereira Generoso, L., Pereira, G. S., Teixeira Barú, J. P. D. S., Candido, N. L., Maziero Capello, M. G., de Castro, R. O. M., Cardoso, E. J. R., Scoz, R. D., Ferreira, L. M. A., da Silva, M. L., and da Silva, J. R. T. (2024). Effects of multisession prefrontal cortex tDCS or taVNS on stress, perceived stress and sleep quality: A double-blind, randomized controlled study. Frontiers in Psychology, 15, 1343413. https://doi.org/10.3389/fpsyg.2024.1343413
  • Ellrich, J. (2019). Transcutaneous auricular vagus nerve stimulation. Journal of Clinical Neurophysiology, 36(6), 437–442. https://doi.org/10.1097/WNP.0000000000000576
  • Fang, J., Rong, P., Hong, Y., Fan, Y., Liu, J., Wang, H., ... Kong, J. (2016). Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biological Psychiatry, 79, 266–273. https://doi.org/10.1016/j.biopsych.2015.03.025
  • Farmer, A. D., Albu-Soda, A., and Aziz, Q. (2016). Vagus nerve stimulation in clinical practice. British Journal of Hospital Medicine, 77(11), 645–651. https://doi.org/10.12968/hmed.2016.77.11.645
  • Farmer, A. D., Albusoda, A., Amarasinghe, G., Lamb, K., Paine, P., and Aziz, Q. (2020a). Transcutaneous vagus nerve stimulation prevents the development of, and reverses, established oesophageal pain hypersensitivity. Alimentary Pharmacology & Therapeutics, 52(6), 988–996. https://doi.org/10.1111/apt.15869
  • Farmer, A. D., Strzelczyk, A., Finisguerra, A., Gourine, A. V., Gharabaghi, A., Hasan, A., Burger, A. M., Jaramillo, A. M., Mertens, A., Majid, A., Verkuil, B., Badran, B. W., Ventura-Bort, C., Gaul, C., Beste, C., ... Koenig, J. (2020b). International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation. Frontiers in Human Neuroscience, 14, 568051. https://doi.org/10.3389/fnhum.2020.568051
  • Fu, C., Hou, X., Zheng, C., Zhang, Y., Gao, Z., Yan, Z., Ye, Y., and Liu, B. (2024). Immediate modulatory effects of transcutaneous vagus nerve stimulation on patients with Parkinson's disease: A crossover self-controlled fMRI study. Frontiers in Aging Neuroscience, 16, 1444703. https://doi.org/10.3389/fnagi.2024.1444703
  • Gaul, C., Diener, H. C., Silver, N., Magis, D., Reuter, U., Andersson, A., ... Straube, A. (2015). Non‐invasive vagus nerve stimulation for PREVention and acute treatment of chronic cluster headache (PREVA): A randomised controlled study. Cephalalgia, 36(6), 534–546. https://doi.org/10.1177/0333102415607070
  • Goadsby, P. J., Grosberg, B. M., Mauskop, A., Cady, R., and Simmons, K. A. (2014). Effect of noninvasive vagus nerve stimulation on acute migraine: An open-label pilot study. Cephalalgia, 34, 986–993. https://doi.org/10.1177/0333102414524494
  • Gökçe, E. N., Cengiz, Z. P., ve Erbaş, O. (2018). Uzun ömrün sırrı: Vagus siniri. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, 4(3), 154–165. https://doi.org/10.5606/fng.btd.2018.026
  • Hasan, A., Wolff‐Menzler, C., Pfeiffer, S., Falkai, P., Weidinger, E., Jobst, A., ... Malchow, B. (2015). Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: A bicentric randomized controlled pilot study. European Archives of Psychiatry and Clinical Neuroscience, 265(7), 589–600. https://doi.org/10.1007/s00406-015-0618-9
  • Huang, F., Dong, J., Kong, J., Wang, H., Meng, H., Spaeth, R. B., Camhi, S., Liao, X., Li, X., Zhai, X., Li, S., Zhu, B., and Rong, P. (2014). Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC complementary and alternative medicine, 14, 203. https://doi.org/10.1186/1472-6882-14-203
  • Kaniusas, E., Kampusch, S., Tittgemeyer, M., Panetsos, F., Gines, R. F., Papa, M., Kiss, A., Podesser, B., Cassara, A. M., Tanghe, E., Samoudi, A. M., Tarnaud, T., Joseph, W., Marozas, V., Lukosevicius, A., Ištuk, N., Šarolić, A., Lechner, S., Klonowski, W., ... Széles, J. C. (2019). Current directions in the auricular vagus nerve stimulation I – A physiological perspective. Frontiers in Neuroscience, 13, 854. https://doi.org/10.3389/fnins.2019.00854
  • Kim, A. Y., Marduy, A., de Melo, P. S., Gianlorenco, A. C., Kim, C. K., Choi, H., Song, J. J., and Fregni, F. (2022). Safety of transcutaneous auricular vagus nerve stimulation (taVNS): A systematic review and meta-analysis. Scientific Reports, 12(1), 22055. https://doi.org/10.1038/s41598-022-25864-1
  • Lamb, D. G., Porges, E. C., Lewis, G. F., and Williamson, J. B. (2017). Non‐invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: Preliminary evidence. Frontiers in Medicine, 4, 124. https://doi.org/10.3389/fmed.2017.00124
  • Lampros, M., Vlachos, N., Zigouris, A., Voulgaris, S., and Alexiou, G. A. (2021). Transcutaneous vagus nerve stimulation (t‐VNS) and epilepsy: A systematic review of the literature. Seizure, 91, 40–48. https://doi.org/10.1016/j.seizure.2021.05.017
  • Le Roy, B., Martin-Krumm, C., Gille, A., Jacob, S., Vigier, C., Laborde, S., Claverie, D., Besnard, S., and Trousselard, M. (2023). Evaluation of taVNS for extreme environments: An exploration study of health benefits and stress operationality. Frontiers in Neurology, 14, 1286919. https://doi.org/10.3389/fneur.2023.1286919
  • Lench, D. H., Turner, T. H., McLeod, C., Boger, H. A., Lovera, L., Heidelberg, L., Elm, J., Phan, A., Badran, B. W., and Hinson, V. K. (2023). Multi-session transcutaneous auricular vagus nerve stimulation for Parkinson's disease: Evaluating feasibility, safety, and preliminary efficacy. Frontiers in Neurology, 14, 1210103. https://doi.org/10.3389/fneur.2023.1210103
  • Li, J. N., Xie, C. C., Li, C. Q., Zhang, G. F., Tang, H., Jin, C. N., Ma, J. X., Wen, L., Zhang, K. M., and Niu, L. C. (2022). Efficacy and safety of transcutaneous auricular vagus nerve stimulation combined with conventional rehabilitation training in acute stroke patients: A randomized controlled trial conducted for 1 year involving 60 patients. Neural Regeneration Research, 17(8), 1809–1813. https://doi.org/10.4103/1673-5374.332155
  • Liu, Y., Liu, Q., Zhao, J., Leng, X., Han, J., Xia, F., ... (2023). Anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex improves attentional control in chronically stressed adults. Frontiers in Neuroscience, 17, 1182728. https://doi.org/10.3389/fnins.2023.1182728
  • Marshall, R., Taylor, I., Lahr, C., Abell, T. L., Espinoza, I., Gupta, N. K., ... (2015). Bioelectrical stimulation for the reduction of inflammation in inflammatory bowel disease. Clinical Medicine Insights: Gastroenterology, 8, 55–59. https://doi.org/10.4137/CGast.S31779
  • Mercante, B., Ginatempo, F., Manca, A., Melis, F., Enrico, P., and Deriu, F. (2018). Anatomo-physiologic basis for auricular stimulation. Medical Acupuncture, 30, 141–150. https://doi.org/10.1089/acu.2017.1254
  • Mondal, B., Choudhury, S., Simon, B., Baker, M. R., and Kumar, H. (2019). Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson's disease. Movement Disorders, 34(6), 917–918. https://doi.org/10.1002/mds.27662
  • Nesbitt, A. D., Marin, J. C. A., Tompkins, E., Ruttledge, M. H., and Goadsby, P. J. (2015). Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology, 84, 1249–1253. https://doi.org/10.1212/WNL.0000000000001394
  • Neuhuber, W. L., and Berthoud, H. R. (2021). Functional anatomy of the vagus system – Emphasis on the somato-visceral interface. Autonomic Neuroscience, 236, 102887. https://doi.org/10.1016/j.autneu.2021.102887
  • Özden, A. V., Çınar, O. Y., Çorbacı, T., Su, D. B., Uzer, K., ve Alptekin, H. K. (2021). Auriküler vagus sinir uyarımının kişiselleştirilmesi ve optimizasyonu: Personalization and optimization of auricular vagus nerve stimulation. Sağlık Bilimlerinde Yapay Zekâ Dergisi, 1(3), 6–10. https://doi.org/10.52309/jai.2021.14
  • Pacheco-Barrios, K., Gianlorenco, A. C., Camargo, L., Choi, H., Song, J. J., and Fregni, F. (2024). Transauricular Vagus Nerve Stimulation (taVNS) enhances Conditioned Pain Modulation (CPM) in healthy subjects: A randomized controlled trial. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 17(2), 346–348. https://doi.org/10.1016/j.brs.2024.03.006
  • Pavlov, V. A., and Tracey, K. J. (2012). The vagus nerve and the inflammatory reflex – Linking immunity and metabolism. Nature Reviews Endocrinology, 8, 743–754. https://doi.org/10.1038/nrendo.2012.189
  • Phillips, I., Johns, M. A., Pandža, N. B., Calloway, R. C., Karuzis, V. P., and Kuchinsky, S. E. (2025). Three hundred hertz transcutaneous auricular vagus nerve stimulation (taVNS) impacts pupil size non-linearly as a function of intensity. Psychophysiology, 62(2), e70011. https://doi.org/10.1111/psyp.70011
  • Prescott, S. L., and Liberles, S. D. (2022). Internal senses of the vagus nerve. Neuron, 110(4), 579–599. https://doi.org/10.1016/j.neuron.2021.12.020
  • Redgrave, J. N., Moore, L., Oyekunle, T., Ebrahim, M., Falidas, K., Snowdon, N., et al. (2018). Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: A pilot study. Journal of Stroke and Cerebrovascular Diseases, 27, 1998–2005. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056
  • Rong, P., Liu, A., Zhang, J., Wang, Y., He, W., Yang, A., et al. (2014). Transcutaneous vagus nerve stimulation for refractory epilepsy: A randomized controlled trial. Clinical Science. https://doi.org/10.1042/CS20130518
  • Rong, P., Liu, J., Wang, L., Liu, R., Fang, J., Zhao, J., et al. (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. Journal of Affective Disorders, 195, 172–179. https://doi.org/10.1016/j.jad.2016.02.031
  • Safi, S., Ellrich, J., and Neuhuber, W. (2016). Myelinated axons in the auricular branch of the human vagus nerve. Anatomical Record (Hoboken), 299, 1184–1191. https://doi.org/10.1002/ar.23391
  • Shiozawa, P., da Silva, M. E., de Carvalho, T. C., Cordeiro, Q., Brunoni, A. R., and Fregni, F. (2014). Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: A systematic review. Arquivos de Neuro-Psiquiatria, 72, 542–547. https://doi.org/10.1590/0004-282x20140061
  • Stefan, H., Kreiselmeyer, G., Kerling, F., Kurzbuch, K., Rauch, C., Heers, M., et al. (2012). Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: A proof of concept trial. Epilepsia, 53, e115–e118. https://doi.org/10.1111/j.1528-1167.2012.03492.x
  • Tracey, K. J. (2007). Physiology and immunology of the cholinergic anti-inflammatory pathway. Journal of Clinical Investigation, 117, 289–296. https://doi.org/10.1172/jci30555
  • Van Midden, V. M., Pirtošek, Z., and Kojović, M. (2023). The effect of taVNS on the cerebello-thalamo-cortical pathway: A TMS study. Cerebellum, 23(3), 1013–1019. https://doi.org/10.1007/s12311-023-01595-5
  • Veldman, F., Hawinkels, K., and Keszthelyi, D. (2025). Efficacy of vagus nerve stimulation in gastrointestinal disorders: A systematic review. Gastroenterology Reports (Oxford), 13, goaf009. https://doi.org/10.1093/gastro/goaf009
  • Yakunina, N., Kim, S. S., and Nam, E.-C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation, 20, 290–300. https://doi.org/10.1111/ner.12541
  • Yakunina, N., and Nam, E.-C. (2021). Direct and transcutaneous vagus nerve stimulation for treatment of tinnitus: A scoping review. Frontiers in Neuroscience, 15, 680590. https://doi.org/10.3389/fnins.2021.680590
  • Yan, L., Li, H., Qian, Y., Zhang, J., Cong, S., Zhang, X., Wu, L., Wang, Y., Wang, M., and Yu, T. (2024). Transcutaneous vagus nerve stimulation: A new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Frontiers in Aging Neuroscience, 16, 1334887. https://doi.org/10.3389/fnagi.2024.1334887
  • Ylikoski, J., Pirvola, U., Aarnisalo, A., and Ylikoski, M. (2017). Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Otolaryngologica, 137, 426–431. https://doi.org/10.1080/00016489.2016.1269197
  • Zhao, R., Chang, M. Y., Cheng, C., Tian, Q. Q., Yang, X. J., Du, M. Y., Cui, Y. P., He, Z. Y., Wang, F. M., Kong, Y., Deng, H., Lu, L. M., Tang, C. Z., Xu, N. G., Sun, J. B., and Qin, W. (2023). Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress. Behavioral Brain Research, 439, 114247. https://doi.org/10.1016/j.bbr.2022.114247
  • Zulfiqar, U., Jurivich, D. A., Gao, W., and Singer, D. H. (2010). Relation of high heart rate variability to healthy longevity. American Journal of Cardiology, 105, 1181–1185. https://doi.org/10.1016/j.amjcard.2009.12.022
  • Walker, B. R., Easton, A., and Gale, K. (1999). Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia, 40, 1051–1057. https://doi.org/10.1111/j.1528-1157.1999.tb00818.x
  • Wang, L., Gao, F., Wang, Z., Liang, F., Dai, Y., Wang, M., Wu, J., Chen, Y., Yan, Q., and Wang, L. (2023). Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: Mechanisms and applications. Frontiers in Neuroscience, 17, 1286267. https://doi.org/10.3389/fnins.2023.1286267
  • Wang, J. Y., Zhang, Y., Chen, Y., Wang, Y., Li, S. Y., Wang, Y. F., Zhang, Z. X., Zhang, J., and Rong, P. (2021). Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway. Journal of Neuroinflammation, 18(1), 291. https://doi.org/10.1186/s12974-021-02341-6
  • Wu, C., Liu, P., Fu, H., Chen, W., Cui, S., Lu, L., and Tang, C. (2018). Transcutaneous auricular vagus nerve stimulation in treating major depressive disorder: A systematic review and meta-analysis. Medicine (United States), 97(52), e13845. https://doi.org/10.1097/MD.0000000000013845
  • Xiao, X. Z., Li, R., Xu, C., Liang, S., Yang, M., Zhong, H., Huang, X., Ma, J., and Xie, Q. (2024). Closed-loop transcutaneous auricular vagus nerve stimulation for the improvement of upper extremity motor function in stroke patients: A study protocol. Frontiers in Neurology, 15, 1379451. https://doi.org/10.3389/fneur.2024.1379451

Clinical Use of Transcutaneous Auricular Vagus Nerve Stimulation

Year 2025, Issue: 12, 54 - 61, 07.08.2025
https://doi.org/10.58252/artukluhealth.1676099

Abstract

Introduction: Transcutaneous auricular vagus nerve stimulation has attracted attention as a non-invasive neuromodulation technique with therapeutic potential across various clinical indications. This review aims to evaluate the clinical conditions in which transcutaneous auricular vagus nerve stimulation is used, its methods of application, and levels of effectiveness in fields related to physiotherapy.
Methods: This study is a narrative review of English-language literature published between 2010 and 2024. A comprehensive search was conducted in the PubMed, Scopus, and Web of Science databases using keywords such as “transcutaneous auricular vagus nerve stimulation,” “taVNS,” and “neuromodulation.” Clinical and experimental studies investigating the effects of transcutaneous auricular vagus nerve stimulation in human populations were included.
Results: The review found that transcutaneous auricular vagus nerve stimulation has shown beneficial effects in various clinical conditions, including epilepsy, depression, migraine, chronic pain, stroke, Parkinson’s disease, Alzheimer’s disease, inflammatory bowel diseases, and sleep disorders. The strongest evidence is observed in epilepsy, depression, and post-stroke rehabilitation. In contrast, findings remain inconsistent in domains such as sleep, cognitive performance, and chronic pain, often due to methodological variability. Stimulation parameters such as session duration, frequency, and electrode placement significantly influence outcomes.
Conclusion: Transcutaneous auricular vagus nerve stimulation may be considered a supportive intervention in physiotherapy. However, the development of standardized protocols and high-quality, condition-specific studies is essential. This technique holds substantial potential as a complementary approach within physiotherapeutic practice.

Ethical Statement

Since this research is a review, ethical committee approval is not required. It is declared that scientific and ethical principles were complied with during the preparation of this study and all the studies used in this study were cited in the bibliography. No artificial intelligence-based tools or applications were utilized in the preparation of this manuscript. All content was generated solely by the author(s) in adherence to scientific research methodologies and academic ethical standards.

Supporting Institution

No external funding was used to support this research.

References

  • Badran, B. W., Yu, A. B., Adair, D., Mappin, G., DeVries, W. H., Jenkins, D. D., ... George, M. S. (2019). Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): Technique, targeting, and considerations. Journal of Visualized Experiments, 2019(143), e58984. https://doi.org/10.3791/58984
  • Baig, S. S., Kamarova, M., Ali, A., Su, L., Dawson, J., Redgrave, J. N., ... Gaete, J. M. (2022). Transcutaneous vagus nerve stimulation (tVNS) in stroke: The evidence, challenges, and future directions. Autonomic Neuroscience, 237, 102909. https://doi.org/10.1016/j.autneu.2021.102909
  • Barbanti, P., Grazzi, L., Egeo, G., Padovan, A. M., Liebler, E., and Bussone, G. (2015). Non‐invasive vagus nerve stimulation for acute treatment of high‐frequency and chronic migraine: An open‐label study. The Journal of Headache and Pain, 16(1), 61. https://doi.org/10.1186/s10194-015-0542-4
  • Burger, A. M., Van der Does, W., Thayer, J. F., Brosschot, J. F., and Verkuil, B. (2019). Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biological Psychology, 142, 80–89. https://doi.org/10.1016/j.biopsycho.2019.01.014
  • Busch, V., Zeman, F., Heckel, A., Menne, F., Ellrich, J., and Eichhammer, P. (2013). The effect of transcutaneous vagus nerve stimulation on pain perception – An experimental study. Brain Stimulation, 6(2), 202–209. https://doi.org/10.1016/j.brs.2012.04.006
  • Capone, F., Miccinilli, S., Pellegrino, G., Zollo, L., Simonetti, D., Bressi, F., ... Di Lazzaro, V. (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plasticity, 2017, 7876507. https://doi.org/10.1155/2017/7876507
  • Carabotti, M., Scirocco, A., Maselli, M. A., and Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(3), 203–209.
  • Chen, M., Yu, L., Ouyang, F., Liu, Q., Wang, Z., Wang, S., ... Jiang, H. (2015). The right side or left side of noninvasive transcutaneous vagus nerve stimulation: Based on conventional wisdom or scientific evidence? International Journal of Cardiology, 187, 44–45. https://doi.org/10.1016/j.ijcard.2015.03.351
  • Clancy, J. A., Deuchars, S. A., and Deuchars, J. (2012). The wonders of the wanderer. Experimental Physiology, 98(1), 38–45. https://doi.org/10.1113/expphysiol.2012.064543
  • De Ferrari, G. M., and Schwartz, P. J. (2011). Vagus nerve stimulation: From pre-clinical to clinical application: Challenges and future directions. Heart Failure Reviews, 16(2), 195–203. https://doi.org/10.1007/s10741-010-9216-0
  • Dos Reis, L. D., Pereira Generoso, L., Pereira, G. S., Teixeira Barú, J. P. D. S., Candido, N. L., Maziero Capello, M. G., de Castro, R. O. M., Cardoso, E. J. R., Scoz, R. D., Ferreira, L. M. A., da Silva, M. L., and da Silva, J. R. T. (2024). Effects of multisession prefrontal cortex tDCS or taVNS on stress, perceived stress and sleep quality: A double-blind, randomized controlled study. Frontiers in Psychology, 15, 1343413. https://doi.org/10.3389/fpsyg.2024.1343413
  • Ellrich, J. (2019). Transcutaneous auricular vagus nerve stimulation. Journal of Clinical Neurophysiology, 36(6), 437–442. https://doi.org/10.1097/WNP.0000000000000576
  • Fang, J., Rong, P., Hong, Y., Fan, Y., Liu, J., Wang, H., ... Kong, J. (2016). Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biological Psychiatry, 79, 266–273. https://doi.org/10.1016/j.biopsych.2015.03.025
  • Farmer, A. D., Albu-Soda, A., and Aziz, Q. (2016). Vagus nerve stimulation in clinical practice. British Journal of Hospital Medicine, 77(11), 645–651. https://doi.org/10.12968/hmed.2016.77.11.645
  • Farmer, A. D., Albusoda, A., Amarasinghe, G., Lamb, K., Paine, P., and Aziz, Q. (2020a). Transcutaneous vagus nerve stimulation prevents the development of, and reverses, established oesophageal pain hypersensitivity. Alimentary Pharmacology & Therapeutics, 52(6), 988–996. https://doi.org/10.1111/apt.15869
  • Farmer, A. D., Strzelczyk, A., Finisguerra, A., Gourine, A. V., Gharabaghi, A., Hasan, A., Burger, A. M., Jaramillo, A. M., Mertens, A., Majid, A., Verkuil, B., Badran, B. W., Ventura-Bort, C., Gaul, C., Beste, C., ... Koenig, J. (2020b). International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation. Frontiers in Human Neuroscience, 14, 568051. https://doi.org/10.3389/fnhum.2020.568051
  • Fu, C., Hou, X., Zheng, C., Zhang, Y., Gao, Z., Yan, Z., Ye, Y., and Liu, B. (2024). Immediate modulatory effects of transcutaneous vagus nerve stimulation on patients with Parkinson's disease: A crossover self-controlled fMRI study. Frontiers in Aging Neuroscience, 16, 1444703. https://doi.org/10.3389/fnagi.2024.1444703
  • Gaul, C., Diener, H. C., Silver, N., Magis, D., Reuter, U., Andersson, A., ... Straube, A. (2015). Non‐invasive vagus nerve stimulation for PREVention and acute treatment of chronic cluster headache (PREVA): A randomised controlled study. Cephalalgia, 36(6), 534–546. https://doi.org/10.1177/0333102415607070
  • Goadsby, P. J., Grosberg, B. M., Mauskop, A., Cady, R., and Simmons, K. A. (2014). Effect of noninvasive vagus nerve stimulation on acute migraine: An open-label pilot study. Cephalalgia, 34, 986–993. https://doi.org/10.1177/0333102414524494
  • Gökçe, E. N., Cengiz, Z. P., ve Erbaş, O. (2018). Uzun ömrün sırrı: Vagus siniri. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, 4(3), 154–165. https://doi.org/10.5606/fng.btd.2018.026
  • Hasan, A., Wolff‐Menzler, C., Pfeiffer, S., Falkai, P., Weidinger, E., Jobst, A., ... Malchow, B. (2015). Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: A bicentric randomized controlled pilot study. European Archives of Psychiatry and Clinical Neuroscience, 265(7), 589–600. https://doi.org/10.1007/s00406-015-0618-9
  • Huang, F., Dong, J., Kong, J., Wang, H., Meng, H., Spaeth, R. B., Camhi, S., Liao, X., Li, X., Zhai, X., Li, S., Zhu, B., and Rong, P. (2014). Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC complementary and alternative medicine, 14, 203. https://doi.org/10.1186/1472-6882-14-203
  • Kaniusas, E., Kampusch, S., Tittgemeyer, M., Panetsos, F., Gines, R. F., Papa, M., Kiss, A., Podesser, B., Cassara, A. M., Tanghe, E., Samoudi, A. M., Tarnaud, T., Joseph, W., Marozas, V., Lukosevicius, A., Ištuk, N., Šarolić, A., Lechner, S., Klonowski, W., ... Széles, J. C. (2019). Current directions in the auricular vagus nerve stimulation I – A physiological perspective. Frontiers in Neuroscience, 13, 854. https://doi.org/10.3389/fnins.2019.00854
  • Kim, A. Y., Marduy, A., de Melo, P. S., Gianlorenco, A. C., Kim, C. K., Choi, H., Song, J. J., and Fregni, F. (2022). Safety of transcutaneous auricular vagus nerve stimulation (taVNS): A systematic review and meta-analysis. Scientific Reports, 12(1), 22055. https://doi.org/10.1038/s41598-022-25864-1
  • Lamb, D. G., Porges, E. C., Lewis, G. F., and Williamson, J. B. (2017). Non‐invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: Preliminary evidence. Frontiers in Medicine, 4, 124. https://doi.org/10.3389/fmed.2017.00124
  • Lampros, M., Vlachos, N., Zigouris, A., Voulgaris, S., and Alexiou, G. A. (2021). Transcutaneous vagus nerve stimulation (t‐VNS) and epilepsy: A systematic review of the literature. Seizure, 91, 40–48. https://doi.org/10.1016/j.seizure.2021.05.017
  • Le Roy, B., Martin-Krumm, C., Gille, A., Jacob, S., Vigier, C., Laborde, S., Claverie, D., Besnard, S., and Trousselard, M. (2023). Evaluation of taVNS for extreme environments: An exploration study of health benefits and stress operationality. Frontiers in Neurology, 14, 1286919. https://doi.org/10.3389/fneur.2023.1286919
  • Lench, D. H., Turner, T. H., McLeod, C., Boger, H. A., Lovera, L., Heidelberg, L., Elm, J., Phan, A., Badran, B. W., and Hinson, V. K. (2023). Multi-session transcutaneous auricular vagus nerve stimulation for Parkinson's disease: Evaluating feasibility, safety, and preliminary efficacy. Frontiers in Neurology, 14, 1210103. https://doi.org/10.3389/fneur.2023.1210103
  • Li, J. N., Xie, C. C., Li, C. Q., Zhang, G. F., Tang, H., Jin, C. N., Ma, J. X., Wen, L., Zhang, K. M., and Niu, L. C. (2022). Efficacy and safety of transcutaneous auricular vagus nerve stimulation combined with conventional rehabilitation training in acute stroke patients: A randomized controlled trial conducted for 1 year involving 60 patients. Neural Regeneration Research, 17(8), 1809–1813. https://doi.org/10.4103/1673-5374.332155
  • Liu, Y., Liu, Q., Zhao, J., Leng, X., Han, J., Xia, F., ... (2023). Anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex improves attentional control in chronically stressed adults. Frontiers in Neuroscience, 17, 1182728. https://doi.org/10.3389/fnins.2023.1182728
  • Marshall, R., Taylor, I., Lahr, C., Abell, T. L., Espinoza, I., Gupta, N. K., ... (2015). Bioelectrical stimulation for the reduction of inflammation in inflammatory bowel disease. Clinical Medicine Insights: Gastroenterology, 8, 55–59. https://doi.org/10.4137/CGast.S31779
  • Mercante, B., Ginatempo, F., Manca, A., Melis, F., Enrico, P., and Deriu, F. (2018). Anatomo-physiologic basis for auricular stimulation. Medical Acupuncture, 30, 141–150. https://doi.org/10.1089/acu.2017.1254
  • Mondal, B., Choudhury, S., Simon, B., Baker, M. R., and Kumar, H. (2019). Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson's disease. Movement Disorders, 34(6), 917–918. https://doi.org/10.1002/mds.27662
  • Nesbitt, A. D., Marin, J. C. A., Tompkins, E., Ruttledge, M. H., and Goadsby, P. J. (2015). Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology, 84, 1249–1253. https://doi.org/10.1212/WNL.0000000000001394
  • Neuhuber, W. L., and Berthoud, H. R. (2021). Functional anatomy of the vagus system – Emphasis on the somato-visceral interface. Autonomic Neuroscience, 236, 102887. https://doi.org/10.1016/j.autneu.2021.102887
  • Özden, A. V., Çınar, O. Y., Çorbacı, T., Su, D. B., Uzer, K., ve Alptekin, H. K. (2021). Auriküler vagus sinir uyarımının kişiselleştirilmesi ve optimizasyonu: Personalization and optimization of auricular vagus nerve stimulation. Sağlık Bilimlerinde Yapay Zekâ Dergisi, 1(3), 6–10. https://doi.org/10.52309/jai.2021.14
  • Pacheco-Barrios, K., Gianlorenco, A. C., Camargo, L., Choi, H., Song, J. J., and Fregni, F. (2024). Transauricular Vagus Nerve Stimulation (taVNS) enhances Conditioned Pain Modulation (CPM) in healthy subjects: A randomized controlled trial. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 17(2), 346–348. https://doi.org/10.1016/j.brs.2024.03.006
  • Pavlov, V. A., and Tracey, K. J. (2012). The vagus nerve and the inflammatory reflex – Linking immunity and metabolism. Nature Reviews Endocrinology, 8, 743–754. https://doi.org/10.1038/nrendo.2012.189
  • Phillips, I., Johns, M. A., Pandža, N. B., Calloway, R. C., Karuzis, V. P., and Kuchinsky, S. E. (2025). Three hundred hertz transcutaneous auricular vagus nerve stimulation (taVNS) impacts pupil size non-linearly as a function of intensity. Psychophysiology, 62(2), e70011. https://doi.org/10.1111/psyp.70011
  • Prescott, S. L., and Liberles, S. D. (2022). Internal senses of the vagus nerve. Neuron, 110(4), 579–599. https://doi.org/10.1016/j.neuron.2021.12.020
  • Redgrave, J. N., Moore, L., Oyekunle, T., Ebrahim, M., Falidas, K., Snowdon, N., et al. (2018). Transcutaneous auricular vagus nerve stimulation with concurrent upper limb repetitive task practice for poststroke motor recovery: A pilot study. Journal of Stroke and Cerebrovascular Diseases, 27, 1998–2005. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056
  • Rong, P., Liu, A., Zhang, J., Wang, Y., He, W., Yang, A., et al. (2014). Transcutaneous vagus nerve stimulation for refractory epilepsy: A randomized controlled trial. Clinical Science. https://doi.org/10.1042/CS20130518
  • Rong, P., Liu, J., Wang, L., Liu, R., Fang, J., Zhao, J., et al. (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. Journal of Affective Disorders, 195, 172–179. https://doi.org/10.1016/j.jad.2016.02.031
  • Safi, S., Ellrich, J., and Neuhuber, W. (2016). Myelinated axons in the auricular branch of the human vagus nerve. Anatomical Record (Hoboken), 299, 1184–1191. https://doi.org/10.1002/ar.23391
  • Shiozawa, P., da Silva, M. E., de Carvalho, T. C., Cordeiro, Q., Brunoni, A. R., and Fregni, F. (2014). Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: A systematic review. Arquivos de Neuro-Psiquiatria, 72, 542–547. https://doi.org/10.1590/0004-282x20140061
  • Stefan, H., Kreiselmeyer, G., Kerling, F., Kurzbuch, K., Rauch, C., Heers, M., et al. (2012). Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: A proof of concept trial. Epilepsia, 53, e115–e118. https://doi.org/10.1111/j.1528-1167.2012.03492.x
  • Tracey, K. J. (2007). Physiology and immunology of the cholinergic anti-inflammatory pathway. Journal of Clinical Investigation, 117, 289–296. https://doi.org/10.1172/jci30555
  • Van Midden, V. M., Pirtošek, Z., and Kojović, M. (2023). The effect of taVNS on the cerebello-thalamo-cortical pathway: A TMS study. Cerebellum, 23(3), 1013–1019. https://doi.org/10.1007/s12311-023-01595-5
  • Veldman, F., Hawinkels, K., and Keszthelyi, D. (2025). Efficacy of vagus nerve stimulation in gastrointestinal disorders: A systematic review. Gastroenterology Reports (Oxford), 13, goaf009. https://doi.org/10.1093/gastro/goaf009
  • Yakunina, N., Kim, S. S., and Nam, E.-C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation, 20, 290–300. https://doi.org/10.1111/ner.12541
  • Yakunina, N., and Nam, E.-C. (2021). Direct and transcutaneous vagus nerve stimulation for treatment of tinnitus: A scoping review. Frontiers in Neuroscience, 15, 680590. https://doi.org/10.3389/fnins.2021.680590
  • Yan, L., Li, H., Qian, Y., Zhang, J., Cong, S., Zhang, X., Wu, L., Wang, Y., Wang, M., and Yu, T. (2024). Transcutaneous vagus nerve stimulation: A new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Frontiers in Aging Neuroscience, 16, 1334887. https://doi.org/10.3389/fnagi.2024.1334887
  • Ylikoski, J., Pirvola, U., Aarnisalo, A., and Ylikoski, M. (2017). Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Otolaryngologica, 137, 426–431. https://doi.org/10.1080/00016489.2016.1269197
  • Zhao, R., Chang, M. Y., Cheng, C., Tian, Q. Q., Yang, X. J., Du, M. Y., Cui, Y. P., He, Z. Y., Wang, F. M., Kong, Y., Deng, H., Lu, L. M., Tang, C. Z., Xu, N. G., Sun, J. B., and Qin, W. (2023). Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress. Behavioral Brain Research, 439, 114247. https://doi.org/10.1016/j.bbr.2022.114247
  • Zulfiqar, U., Jurivich, D. A., Gao, W., and Singer, D. H. (2010). Relation of high heart rate variability to healthy longevity. American Journal of Cardiology, 105, 1181–1185. https://doi.org/10.1016/j.amjcard.2009.12.022
  • Walker, B. R., Easton, A., and Gale, K. (1999). Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia, 40, 1051–1057. https://doi.org/10.1111/j.1528-1157.1999.tb00818.x
  • Wang, L., Gao, F., Wang, Z., Liang, F., Dai, Y., Wang, M., Wu, J., Chen, Y., Yan, Q., and Wang, L. (2023). Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: Mechanisms and applications. Frontiers in Neuroscience, 17, 1286267. https://doi.org/10.3389/fnins.2023.1286267
  • Wang, J. Y., Zhang, Y., Chen, Y., Wang, Y., Li, S. Y., Wang, Y. F., Zhang, Z. X., Zhang, J., and Rong, P. (2021). Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway. Journal of Neuroinflammation, 18(1), 291. https://doi.org/10.1186/s12974-021-02341-6
  • Wu, C., Liu, P., Fu, H., Chen, W., Cui, S., Lu, L., and Tang, C. (2018). Transcutaneous auricular vagus nerve stimulation in treating major depressive disorder: A systematic review and meta-analysis. Medicine (United States), 97(52), e13845. https://doi.org/10.1097/MD.0000000000013845
  • Xiao, X. Z., Li, R., Xu, C., Liang, S., Yang, M., Zhong, H., Huang, X., Ma, J., and Xie, Q. (2024). Closed-loop transcutaneous auricular vagus nerve stimulation for the improvement of upper extremity motor function in stroke patients: A study protocol. Frontiers in Neurology, 15, 1379451. https://doi.org/10.3389/fneur.2024.1379451
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Physical Medicine and Rehabilitation
Journal Section Reviews
Authors

Özge Ökcü 0000-0002-7149-1316

Seda Saka 0000-0002-6920-4357

Publication Date August 7, 2025
Submission Date April 14, 2025
Acceptance Date July 17, 2025
Published in Issue Year 2025 Issue: 12

Cite

APA Ökcü, Ö., & Saka, S. (2025). Transkutanöz Auricular Vagus Sinir Stimülasyonun Klinik Kullanımı. Artuklu Health(12), 54-61. https://doi.org/10.58252/artukluhealth.1676099