Review
BibTex RIS Cite

Eksozom Proteinleri ve Hastalıklarda Önemi

Year 2024, Issue: 10, 59 - 65, 23.12.2024
https://doi.org/10.58252/artukluhealth.1549406

Abstract

Giriş: Eksozomlar, endozomlardan temel alan ve çapı yaklaşık 30-150 nanometre olan hücre dışı veziküllerdir. 1980’lerin sonlarına doğru hücre dışı boşlukta tanımlanan ekzosomların, başlangıçta hücre hasarından kaynaklanan hücresel atık veya hücre homeostazisinin yan ürünleri olduğu ve komşu hücreler üzerinde önemli bir etkisi olmadığı öne sürülmüştür. Daha sonra bu hücre dışı keseciklerin; hücrelerarası iletişimi sağlayan karmaşık ve fonksiyonel araçlar haline geldiği görülmüştür. Sahip oldukları farklı fonksiyonlar nedeniyle çeşitli hastalıkların tanı ve tedavisinde rol oynayabileceği düşünülmektedir. Bu çalışmanın amacı eksozom proteinlerinin farklı hastalıklardaki önemini güncel çalışmalar ışığında derlemektir.
Yöntem: Bu derlemede; eksozom proteinleri ve bu proteinlerin farklı hastalıklardaki önemi veri tabanlarındaki güncel çalışmalar eşliğinde incelenmiştir.
Bulgular: Eksozomlar; yara iyileşmesinde, tromboz oluşumunda, merkezi sinir sistemi ile ilişkili hastalıklarda, inflamasyon, otoimmünitede ve kanserde hastalığın ilerleyişini takip etmek ve tedaviye olan yanıtı değerlendirmek için önemi artan hücre dışı veziküllerden birisidir.
Sonuç: Eksozomların hücreleri hedefleme özellikleri; dolaşımdaki stabiliteleri ve iç biyomolekülleri bozulmadan korumalarından dolayı alternatif bir ilaç dağıtım aracı haline gelmektedir. Literatür incelendiğinde; eksozomların pek çok hastalığın tanı ve tedavisinde kullanımının söz konusu olabileceği ve gelecekte etkinleşebileceği düşünülmektedir.

Ethical Statement

Çalışma derleme çalışması olduğu için etik kurul izni gerektirmemektedir.

Supporting Institution

Destekleyen kurum yoktur.

References

  • Alexander, M., Hu, R., Runtsch, M.C., Kagele, D.A., Mosbruger, T.L., and Tolmachova, T., et al. (2015). Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun, 6, 7321. https://doi.org/10.1038/ncomms8321.
  • Angela, S., Meyering, S.S., Ben, L., Sergey, I., Van, H.M.L., Hakami, R.M., Fatah, K. (2015). Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol, 6, 1132. http://doi.org/10.3389/fmicb.2015.01132.
  • Arenaccio, C., and Federico, M. (2017). The Multifaceted Functions of Exosomes in Health and Disease: An Overview. Adv Exp Med Biol, 2017,998,3-19. https://doi.org/10.1007/978-981-10-4397-0_1.
  • Cañas, J.A., Sastre, B., Mazzeo, C., Fernández-Nieto, M., Rodrigo-Muñoz, J.M., and González-Guerra, A, et al. (2017). Exosomes from eosinophils autoregulate and promote eosinophil functions. J Leukoc Biol, 101(5),1191–9. https://doi.org/10.1189/jlb.3AB0516-233RR.
  • Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., Gil, D., Matthiesen, R., and Valle, M, et al. (2008). Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res, 7(12),5157–5166. https://doi.org/10.1021/pr8004887.
  • Crescitelli, R., Lasser, C., and Lotvall, J. (2021). Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc, 16(3),1548–80. https://doi.org/10.1038/s41596-020-00466-1. Del
  • Conde, I., Shrimpton, C.N., Thiagarajan, P., and López, J.A. (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 1,106(5),1604-11. https://doi.org/10.1182/blood-2004-03-1095.
  • El Ayadi A, Jay JW, and Prasai A. (2020). Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int J Mol Sci , 21,1105. https://doi.org/10.3390/ijms21031105
  • Emanueli, C., Shearn, A.I., Angelini, G.D., and Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol, 71,24–30. https://doi.org/10.1016/j.vph.2015.02.008.
  • Exocarta. Erişim adresi: http://www.exocarta.org. Erişim tarihi: 10.07.2024
  • Fan, Y., Chen, Z., and Zhang, M. (2022). Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases. J Transl Med,20(1),291. https://doi.org/10.1186/s12967-022-03493-6.
  • Fullerton, J.N., and Gilroy, D.W. (2016). Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov, 15, 551–567. https://doi.org/10.1038/nrd.2016.39.
  • Guney Eskiler, G., Kazan, N., Haciefendi, A., Deveci Ozkan, A., Ozdemir, K., and Ozen, M, et al. (2023). The prognostic and predictive values of differential expression of exosomal receptor tyrosine kinases and associated with the PI3K/AKT/mTOR signaling in breast cancer patients undergoing neoadjuvant chemotherapy. Clin Transl Oncol, 25(2),460-472. https://doi.org/10.1007/s12094-022-02959-9.
  • Han, W., Zhang, H., Feng, L., Dang, R., Wang, J., and Cui, C, et al . (2020).The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm, 30,4(6):e410. https://doi.org/10.1002/mco2.410.
  • Howitt, J., and Hill, A.F. (2016). Exosomes in the pathology of neurodegenerative diseases. J Biol Chem, 291(52),26589–97. https://doi.org/10.1074/jbc.R116.757955.
  • Isaac, R., Reis, F.C.G., Ying, W., and Olefsky, J.M. (2021). Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab, 33(9),1744-1762. https://doi.org/10.1016/j.cmet.2021.08.006.
  • Jiang, N., Xiang, L., He, L., Yang, G., Zheng, J., and Wang, C, et al. (2017). Exosomes mediate epithelium–mesenchyme crosstalk in organ development. ACS nano, 11(8), 7736-7746. https://doi.org/10.1021/acsnano.7b01087.
  • Jones, G.R., Bain, C.C., Fenton, T.M., Kelly, A., Brown, S.L., and Ivens, A.C, et al. (2018). Dynamics of colon monocyte and macrophage activation during colitis. Front Immunol, 9,2764. https://doi.org/10.3389/fimmu.2018.02764.
  • Kalluri, R., and LeBleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977.
  • Kaplan, G.G., and Ng, S.C. (2016). Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol Hepatol, 1(4),307–16. https://doi.org/10.1016/S2468-1253(16)30077-2.
  • Lasser, C., O’Neil, S.E., Shelke, G.V., Sihlbom, C., Hansson, S.F., and Gho, Y.S, et al. (2016). Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation. J Transl Med, 14(1),181. https://doi.org/10.1186/s12967-016-0927-4.
  • Lässer, C., O'Neil, S.E., Ekerljung, L., Ekström, K., Sjöstrand, M., and Lötvall, J. (2011). RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy, 25(2),89–93. https://doi.org/10.2500/ajra.2011.25.3573.
  • Lee, J.Y., Park, J.K., Lee, E.Y., Lee, E.B., and Song, Y.W. (2016). Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther, 18,264. https://doi.org/10.1186/s13075-016-1159-y.
  • Lee, Y.T., Tan, Y.J., and Oon, C.E. (2018). Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol, 834,188–96. https://doi.org/10.1016/j.ejphar.2018.07.034.
  • Li, M.., Wang,, T., Tian, H., Wei, G., Zhao, L., and Shi, Y. (2019). Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol, 47,3793–80. https://doi.org/10.1080/21691401.2019.1669617.
  • Li, X., Xu, J., Xie, J., and Yang, W. (2022). Research progress in targeted therapy and immunotherapy for gastric cancer. Chin Med J, 135(11),1299–313. https://doi.org/10.1097/CM9.0000000000002185.
  • Liu, D.F., Wang, A.F., and He, H.Z. (2020). Bone marrow mesenchymal stem cell exosomes miR-10a-5p regulates systemic lupus erythematosus cells by down-regulating expression of UVRAG. Chin J Immunol, 36,2142-2147. https://doi.org/10.4110/in.2024.24.e12.
  • Mao, F., Wu, Y., Tang, X., Kang, J., Zhang, B., and Yan, Y, et al. (2017). Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. Biomed Res Int, 2017,5356760. https://doi.org/10.1155/2017/5356760.
  • Mathivanan, S., Ji, H., and Simpson, R.J. (2010). Exosomes: extracellular organelles important in intercellular communication. J Proteome, 73(10),1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006.
  • Mazzeo, C., Cañas, J.A., Zafra, M.P., Rojas Marco, A., Fernández-Nieto, M., and Sanz, V., et al. (2015). Exosome secretion by eosinophils: A possible role in asthma pathogenesis. J Allergy Clin Immunol,135(6),1603–13. https://doi.org/10.1016/j.jaci.2014.11.026.
  • Microvesicles. Erişim adresi: http://microvesicles.org. Erişim tarihi: 10.07.2024
  • Ouattara, L.A., Anderson, S.M., and Doncel, G.F. (2018).Seminal exosomes and HIV-1 transmission. Andrologia, 2018,50:e13220. https://doi.org/10.1111/and.13220.
  • Png, K.J., Halberg, N., Yoshida, M., and Tavazoie, S.F.A (2011). microrna regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380),190–4. https://doi.org/10.1038/nature10661.
  • Prasai, A, Jay JW, Jupiter D, Wolf SE, and El Ayadi A. (2022). Role of Exosomes in Dermal Wound Healing: A Systematic Review. J Invest Dermatol,142(3 Pt A),662-678.e8. https://doi.org/10.1016/j.jid.2021.07.167
  • Qi, Y., Guo, L., Jiang, Y., Shi, Y., Sui, H., and Zhao, L. (2020). Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv, 27(1),745-755. https://doi.org/10.1080/10717544.2020.1762262.
  • Ren, Z., Liu, X., Abdollahi, E., and Tavasolian, F.(2023). Genetically engineered exosomes as a potential regulator of Th1 cells response in rheumatoid arthritis. Biopreserv Biobank, 21,355-366. https://doi.org/10.1089/bio.2022.0003.
  • Rodríguez Zorrilla, S., Pérez-Sayans, M., Fais, S., Logozzi, M., Gallas Torreira, M., and García García, A. (2019). A Pilot Clinical Study on the Prognostic Relevance of Plasmatic Exosomes Levels in Oral Squamous Cell Carcinoma Patients. Cancers (Basel), 11, E429. https://doi.org/10.3390/cancers11030429.
  • Saunderson, S.C., Dunn, A.C., Crocker, P.R., and Mclellan, A.D. (2014). CD169 mediates the capture of exosomes in spleen and lymph node. Blood, 123(2),208–216. https://doi.org/10.1182/blood-2013-03-489732.
  • Shi, Z., Wang, Q., and Jiang, D.(2019). Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. J Transl Med,17,211. https://doi.org/10.1186/s12967-019-1960-x.
  • Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., and Paillasse, M, et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res, 51(8),2105. https://doi.org/10.1194/jlr.M003657.
  • Sun, J., Zhang, Z., Ma, T., Yang, Z., Zhang, J., and Liu, X, et al. (2018). Endothelial progenitor cell-derived exosomes, loaded with miR-126, promoted deep vein thrombosis resolution and recanalization. Stem Cell Res. Ther, 9, 223. https://doi.org/10.1186/s13287-018-0952-8.
  • Sun, N., Lee, Y.T., Zhang, R.Y., Kao, R., Teng, P.C., and Yang, Y, et al. (2020). Purification of HCCspecific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat Commun,11,4489. https://doi.org/10.1038/s41467-020-18311-0.
  • Tan, M., Yan, H.B., Li, J.N., Li, W.K., Fu, Y.Y., and Chen, W, et al. (2016). Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cell. Physiol. Biochem, 38, 2348–2365. https://doi.org/10.1159/000445588.
  • Théry, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immüne responses. Nat Rev Immunol, 9(8),581. https://doi.org/10.1038/nri2567.
  • Waldenstrom, A., Genneback, N., Hellman, U., and Ronquist, G. (2012). Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE, 7(4),e34653. https://doi.org/10.1371/journal.pone.0034653.
  • Wang, L., Wang, C., Jia, X., and Yu, J. (2018). Circulating exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem, 50,1754-1763. https://doi.org/10.1159/000494793.
  • Wang, L., Yu, Z., Wan, S., Wu, F., Chen, W., and Zhang, B. et al. (2017). Exosomes derived from dendritic cells treated with schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis. Front Pharmacol, 8,651. https://doi.org/10.3389/fphar.2017.00651.
  • Wang, X., Tian, L., Lu, J., and Ng, I.O. (2022). Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis, 15,11(1):54. https://doi.org/10.1038/s41389-022-00431-5.
  • Wu,, X., Xu, X., Xiang, Y, Fan, D., An, Q., and Yue, G. et al. (2022). Exosome-mediated effects and applications in inflammatory diseases of the digestive system. Eur J Med Res, 27, 163. https://doi.org/10.1186/s40001-022-00792-y.
  • Xu, J., Bai, S., Cao, Y., Liu, L., Fang, Y., and Du, J. et al. (2020). MiRNA-221–3p in endothelial progenitor cellderived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metab Syndr Obes,13,1259–70. https://doi.org/10.2147/DMSO.S243549.
  • Xu, W., Yang, Z., and Lu, N. (2016). From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer. J Exp Clin Cancer Res, 35, 156-168. https://doi.org/10.1186/s13046-016-0429-5.
  • Yang, C., Luo, L., Bai, X., Shen, K., Liu, K., and Wang, J, et al. (2020). Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys, 681,108259. https://doi.org/10.1016/j.abb.2020.108259.
  • Yang, T., Martin, P., Fogarty, B., Brown, A., Schurman, K., and Phipps, R, et al. (2015). Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Daniorerio. Pharm Res, 32, 2003-14. https://doi.org/10.1007/s11095-014-1593-y.
  • Yang, X., Meng, S., Jiang, H., Chen, T., and Wu, W. (2010). Exosomes derived from interleukin-10-treated dendritic cells can inhibit trinitrobenzene sulfonic acid-induced rat colitis. Scand J Gastroenterol, 45(10),1168–77. https://doi.org/10.3109/00365521.2010.490596.
  • Ye, S-L., Li, W-D., Li, W-X, Xiao, L., Ran, F., and Chen, M-M., et al. (2022). The regulatory role of exosomes in venous thromboembolism. Front. Cell Dev. Biol, 10,956880. https://doi.org/10.3389/fcell.2022.956880.
  • Zhang, Y., Liu, Y., Liu, H., and Tang, W-H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci, 9, 19. https://doi.org/10.1186/s13578-019-0282-2
  • Zhang, Y., Han, F., Gu, L., Ji, P., Yang, X., and Liu, M., et al. (2020). Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1alpha axis. J Mol Histol, 51,375–83. https://doi.org/10.1007/s10735-020-09887-4.
  • Zhou, W., Fong, M.Y., Min, Y., Somlo, G., Liu, L., and Palomares, M.R., et al. (2014). Cancer-secreted mir-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25(4),501–15. https://doi.org/10.1016/j.ccr.2014.03.007

Exosome Proteins and their Importance in Diseases

Year 2024, Issue: 10, 59 - 65, 23.12.2024
https://doi.org/10.58252/artukluhealth.1549406

Abstract

Introduction: Exosomes are extracellular vesicles derived from endosomes and measuring approximately 30–150 nanometer in diameter. Exosomes, identified in the extracellular space towards the end of the 1980s, were initially suggested to be cellular waste resulting from cell damage or byproducts of cell homeostasis and had no significant effect on neighboring cells. Later, it was observed that these extracellular vesicles became complex and functional tools that provide intercellular communication. It is thought that they may play a role in the diagnosis and treatment of various diseases due to their different functions. The aim of this study is to compile the importance of exosome proteins in different diseases in the light of current studies.
Methods: In this review, exosome proteins and their importance in different diseases were examined with the help of current studies in databases.
Results: Exosomes are one of the extracellular vesicles that are increasingly important in wound healing, thrombosis formation, central nervous system-related diseases, inflammation, autoimmunity and cancer to monitor disease progression and evaluate response to treatment.
Conclusion: The cell-targeting properties of exosomes, their stability in circulation, and their ability to protect internal biomolecules from degradation make them an alternative drug delivery vehicle. When the literature is examined, it is thought that the use of exosomes in the diagnosis and treatment of many diseases will be especially effective in the future.

References

  • Alexander, M., Hu, R., Runtsch, M.C., Kagele, D.A., Mosbruger, T.L., and Tolmachova, T., et al. (2015). Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun, 6, 7321. https://doi.org/10.1038/ncomms8321.
  • Angela, S., Meyering, S.S., Ben, L., Sergey, I., Van, H.M.L., Hakami, R.M., Fatah, K. (2015). Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol, 6, 1132. http://doi.org/10.3389/fmicb.2015.01132.
  • Arenaccio, C., and Federico, M. (2017). The Multifaceted Functions of Exosomes in Health and Disease: An Overview. Adv Exp Med Biol, 2017,998,3-19. https://doi.org/10.1007/978-981-10-4397-0_1.
  • Cañas, J.A., Sastre, B., Mazzeo, C., Fernández-Nieto, M., Rodrigo-Muñoz, J.M., and González-Guerra, A, et al. (2017). Exosomes from eosinophils autoregulate and promote eosinophil functions. J Leukoc Biol, 101(5),1191–9. https://doi.org/10.1189/jlb.3AB0516-233RR.
  • Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., Gil, D., Matthiesen, R., and Valle, M, et al. (2008). Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res, 7(12),5157–5166. https://doi.org/10.1021/pr8004887.
  • Crescitelli, R., Lasser, C., and Lotvall, J. (2021). Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc, 16(3),1548–80. https://doi.org/10.1038/s41596-020-00466-1. Del
  • Conde, I., Shrimpton, C.N., Thiagarajan, P., and López, J.A. (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 1,106(5),1604-11. https://doi.org/10.1182/blood-2004-03-1095.
  • El Ayadi A, Jay JW, and Prasai A. (2020). Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int J Mol Sci , 21,1105. https://doi.org/10.3390/ijms21031105
  • Emanueli, C., Shearn, A.I., Angelini, G.D., and Sahoo, S. (2015). Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol, 71,24–30. https://doi.org/10.1016/j.vph.2015.02.008.
  • Exocarta. Erişim adresi: http://www.exocarta.org. Erişim tarihi: 10.07.2024
  • Fan, Y., Chen, Z., and Zhang, M. (2022). Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases. J Transl Med,20(1),291. https://doi.org/10.1186/s12967-022-03493-6.
  • Fullerton, J.N., and Gilroy, D.W. (2016). Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov, 15, 551–567. https://doi.org/10.1038/nrd.2016.39.
  • Guney Eskiler, G., Kazan, N., Haciefendi, A., Deveci Ozkan, A., Ozdemir, K., and Ozen, M, et al. (2023). The prognostic and predictive values of differential expression of exosomal receptor tyrosine kinases and associated with the PI3K/AKT/mTOR signaling in breast cancer patients undergoing neoadjuvant chemotherapy. Clin Transl Oncol, 25(2),460-472. https://doi.org/10.1007/s12094-022-02959-9.
  • Han, W., Zhang, H., Feng, L., Dang, R., Wang, J., and Cui, C, et al . (2020).The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm, 30,4(6):e410. https://doi.org/10.1002/mco2.410.
  • Howitt, J., and Hill, A.F. (2016). Exosomes in the pathology of neurodegenerative diseases. J Biol Chem, 291(52),26589–97. https://doi.org/10.1074/jbc.R116.757955.
  • Isaac, R., Reis, F.C.G., Ying, W., and Olefsky, J.M. (2021). Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab, 33(9),1744-1762. https://doi.org/10.1016/j.cmet.2021.08.006.
  • Jiang, N., Xiang, L., He, L., Yang, G., Zheng, J., and Wang, C, et al. (2017). Exosomes mediate epithelium–mesenchyme crosstalk in organ development. ACS nano, 11(8), 7736-7746. https://doi.org/10.1021/acsnano.7b01087.
  • Jones, G.R., Bain, C.C., Fenton, T.M., Kelly, A., Brown, S.L., and Ivens, A.C, et al. (2018). Dynamics of colon monocyte and macrophage activation during colitis. Front Immunol, 9,2764. https://doi.org/10.3389/fimmu.2018.02764.
  • Kalluri, R., and LeBleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977.
  • Kaplan, G.G., and Ng, S.C. (2016). Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol Hepatol, 1(4),307–16. https://doi.org/10.1016/S2468-1253(16)30077-2.
  • Lasser, C., O’Neil, S.E., Shelke, G.V., Sihlbom, C., Hansson, S.F., and Gho, Y.S, et al. (2016). Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation. J Transl Med, 14(1),181. https://doi.org/10.1186/s12967-016-0927-4.
  • Lässer, C., O'Neil, S.E., Ekerljung, L., Ekström, K., Sjöstrand, M., and Lötvall, J. (2011). RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy, 25(2),89–93. https://doi.org/10.2500/ajra.2011.25.3573.
  • Lee, J.Y., Park, J.K., Lee, E.Y., Lee, E.B., and Song, Y.W. (2016). Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther, 18,264. https://doi.org/10.1186/s13075-016-1159-y.
  • Lee, Y.T., Tan, Y.J., and Oon, C.E. (2018). Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol, 834,188–96. https://doi.org/10.1016/j.ejphar.2018.07.034.
  • Li, M.., Wang,, T., Tian, H., Wei, G., Zhao, L., and Shi, Y. (2019). Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol, 47,3793–80. https://doi.org/10.1080/21691401.2019.1669617.
  • Li, X., Xu, J., Xie, J., and Yang, W. (2022). Research progress in targeted therapy and immunotherapy for gastric cancer. Chin Med J, 135(11),1299–313. https://doi.org/10.1097/CM9.0000000000002185.
  • Liu, D.F., Wang, A.F., and He, H.Z. (2020). Bone marrow mesenchymal stem cell exosomes miR-10a-5p regulates systemic lupus erythematosus cells by down-regulating expression of UVRAG. Chin J Immunol, 36,2142-2147. https://doi.org/10.4110/in.2024.24.e12.
  • Mao, F., Wu, Y., Tang, X., Kang, J., Zhang, B., and Yan, Y, et al. (2017). Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. Biomed Res Int, 2017,5356760. https://doi.org/10.1155/2017/5356760.
  • Mathivanan, S., Ji, H., and Simpson, R.J. (2010). Exosomes: extracellular organelles important in intercellular communication. J Proteome, 73(10),1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006.
  • Mazzeo, C., Cañas, J.A., Zafra, M.P., Rojas Marco, A., Fernández-Nieto, M., and Sanz, V., et al. (2015). Exosome secretion by eosinophils: A possible role in asthma pathogenesis. J Allergy Clin Immunol,135(6),1603–13. https://doi.org/10.1016/j.jaci.2014.11.026.
  • Microvesicles. Erişim adresi: http://microvesicles.org. Erişim tarihi: 10.07.2024
  • Ouattara, L.A., Anderson, S.M., and Doncel, G.F. (2018).Seminal exosomes and HIV-1 transmission. Andrologia, 2018,50:e13220. https://doi.org/10.1111/and.13220.
  • Png, K.J., Halberg, N., Yoshida, M., and Tavazoie, S.F.A (2011). microrna regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380),190–4. https://doi.org/10.1038/nature10661.
  • Prasai, A, Jay JW, Jupiter D, Wolf SE, and El Ayadi A. (2022). Role of Exosomes in Dermal Wound Healing: A Systematic Review. J Invest Dermatol,142(3 Pt A),662-678.e8. https://doi.org/10.1016/j.jid.2021.07.167
  • Qi, Y., Guo, L., Jiang, Y., Shi, Y., Sui, H., and Zhao, L. (2020). Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv, 27(1),745-755. https://doi.org/10.1080/10717544.2020.1762262.
  • Ren, Z., Liu, X., Abdollahi, E., and Tavasolian, F.(2023). Genetically engineered exosomes as a potential regulator of Th1 cells response in rheumatoid arthritis. Biopreserv Biobank, 21,355-366. https://doi.org/10.1089/bio.2022.0003.
  • Rodríguez Zorrilla, S., Pérez-Sayans, M., Fais, S., Logozzi, M., Gallas Torreira, M., and García García, A. (2019). A Pilot Clinical Study on the Prognostic Relevance of Plasmatic Exosomes Levels in Oral Squamous Cell Carcinoma Patients. Cancers (Basel), 11, E429. https://doi.org/10.3390/cancers11030429.
  • Saunderson, S.C., Dunn, A.C., Crocker, P.R., and Mclellan, A.D. (2014). CD169 mediates the capture of exosomes in spleen and lymph node. Blood, 123(2),208–216. https://doi.org/10.1182/blood-2013-03-489732.
  • Shi, Z., Wang, Q., and Jiang, D.(2019). Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. J Transl Med,17,211. https://doi.org/10.1186/s12967-019-1960-x.
  • Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., and Paillasse, M, et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res, 51(8),2105. https://doi.org/10.1194/jlr.M003657.
  • Sun, J., Zhang, Z., Ma, T., Yang, Z., Zhang, J., and Liu, X, et al. (2018). Endothelial progenitor cell-derived exosomes, loaded with miR-126, promoted deep vein thrombosis resolution and recanalization. Stem Cell Res. Ther, 9, 223. https://doi.org/10.1186/s13287-018-0952-8.
  • Sun, N., Lee, Y.T., Zhang, R.Y., Kao, R., Teng, P.C., and Yang, Y, et al. (2020). Purification of HCCspecific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat Commun,11,4489. https://doi.org/10.1038/s41467-020-18311-0.
  • Tan, M., Yan, H.B., Li, J.N., Li, W.K., Fu, Y.Y., and Chen, W, et al. (2016). Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Cell. Physiol. Biochem, 38, 2348–2365. https://doi.org/10.1159/000445588.
  • Théry, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immüne responses. Nat Rev Immunol, 9(8),581. https://doi.org/10.1038/nri2567.
  • Waldenstrom, A., Genneback, N., Hellman, U., and Ronquist, G. (2012). Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE, 7(4),e34653. https://doi.org/10.1371/journal.pone.0034653.
  • Wang, L., Wang, C., Jia, X., and Yu, J. (2018). Circulating exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem, 50,1754-1763. https://doi.org/10.1159/000494793.
  • Wang, L., Yu, Z., Wan, S., Wu, F., Chen, W., and Zhang, B. et al. (2017). Exosomes derived from dendritic cells treated with schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis. Front Pharmacol, 8,651. https://doi.org/10.3389/fphar.2017.00651.
  • Wang, X., Tian, L., Lu, J., and Ng, I.O. (2022). Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis, 15,11(1):54. https://doi.org/10.1038/s41389-022-00431-5.
  • Wu,, X., Xu, X., Xiang, Y, Fan, D., An, Q., and Yue, G. et al. (2022). Exosome-mediated effects and applications in inflammatory diseases of the digestive system. Eur J Med Res, 27, 163. https://doi.org/10.1186/s40001-022-00792-y.
  • Xu, J., Bai, S., Cao, Y., Liu, L., Fang, Y., and Du, J. et al. (2020). MiRNA-221–3p in endothelial progenitor cellderived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metab Syndr Obes,13,1259–70. https://doi.org/10.2147/DMSO.S243549.
  • Xu, W., Yang, Z., and Lu, N. (2016). From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer. J Exp Clin Cancer Res, 35, 156-168. https://doi.org/10.1186/s13046-016-0429-5.
  • Yang, C., Luo, L., Bai, X., Shen, K., Liu, K., and Wang, J, et al. (2020). Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys, 681,108259. https://doi.org/10.1016/j.abb.2020.108259.
  • Yang, T., Martin, P., Fogarty, B., Brown, A., Schurman, K., and Phipps, R, et al. (2015). Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Daniorerio. Pharm Res, 32, 2003-14. https://doi.org/10.1007/s11095-014-1593-y.
  • Yang, X., Meng, S., Jiang, H., Chen, T., and Wu, W. (2010). Exosomes derived from interleukin-10-treated dendritic cells can inhibit trinitrobenzene sulfonic acid-induced rat colitis. Scand J Gastroenterol, 45(10),1168–77. https://doi.org/10.3109/00365521.2010.490596.
  • Ye, S-L., Li, W-D., Li, W-X, Xiao, L., Ran, F., and Chen, M-M., et al. (2022). The regulatory role of exosomes in venous thromboembolism. Front. Cell Dev. Biol, 10,956880. https://doi.org/10.3389/fcell.2022.956880.
  • Zhang, Y., Liu, Y., Liu, H., and Tang, W-H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci, 9, 19. https://doi.org/10.1186/s13578-019-0282-2
  • Zhang, Y., Han, F., Gu, L., Ji, P., Yang, X., and Liu, M., et al. (2020). Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1alpha axis. J Mol Histol, 51,375–83. https://doi.org/10.1007/s10735-020-09887-4.
  • Zhou, W., Fong, M.Y., Min, Y., Somlo, G., Liu, L., and Palomares, M.R., et al. (2014). Cancer-secreted mir-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25(4),501–15. https://doi.org/10.1016/j.ccr.2014.03.007
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Nutrition and Dietetics (Other)
Journal Section Reviews
Authors

Hüsamettin Vatansev 0000-0002-0230-3414

M. Gizem Keser 0000-0001-9425-9088

Publication Date December 23, 2024
Submission Date September 13, 2024
Acceptance Date December 8, 2024
Published in Issue Year 2024 Issue: 10

Cite

APA Vatansev, H., & Keser, M. G. (2024). Eksozom Proteinleri ve Hastalıklarda Önemi. Artuklu Health(10), 59-65. https://doi.org/10.58252/artukluhealth.1549406