Research Article
BibTex RIS Cite

Thermal properties of nanofibrillated cellulose/PMMA/MMA/benzoyl peroxide-reinforced transparent epoxy nanocomposites

Year 2025, Volume: 26 Issue: 1, 202 - 211, 15.05.2025
https://doi.org/10.17474/artvinofd.1646742

Abstract

This study presents the synergistic effects of nanofibrillated cellulose (NFC), polymethyl methacrylate (PMMA), methyl methacrylate (MMA), and benzoyl peroxide (BPO) additives on the thermal properties of nanocomposites. The nanocomposites were fabricated by the casting method through the incorporation of 1%, 3%, and 5% NFC, 0.05% PMMA and MMA, and 0.005% BPO into epoxy resin. The results of the thermal analysis indicate that the thermal stability, residue content, storage modulus (E′), loss modulus (E″), and tan delta (Tan δ) values of all reinforced nanocomposites significantly increased compared to the neat epoxy samples. The findings demonstrate that the nanocomposites containing 3% NFC, 0.05% PMMA and MMA, and 0.005% BPO exhibited superior thermal resistance and stability, along with the highest storage modulus, loss modulus, and tan delta values. Based on the obtained results, it was determined that a 3% NFC loading is the most optimal ratio for enhancing the thermal properties of sustainable transparent nanocomposites, making these materials suitable for advanced material applications.

Supporting Institution

The author expresses gratitude to the Turkish Academy of Sciences and the Biomaterials and Nanotechnology Research Group.

References

  • Abdul Khalil HPS, Jawaid M, Firoozian P, Zainudin ES, Paridah MT (2013) Dynamic mechanical properties of activated carbon–filled epoxy nanocomposites. Int J Polym Anal Charact, 18(4): 247-256.
  • Barra G, Guadagno L, Raimondo M, Santonicola MG, Toto E, Vecchio Ciprioti SA (2023) Comprehensive review on the thermal stability assessment of polymers and composites for aeronautics and space applications. Polymers, 15: 3786.
  • Candan Z, Tozluoglu A, Gonultas O, Yildirim M, Fidan H, Alma MH, Salan T (2022) Nanocellulose: Sustainable Biomaterial for Developing Novel Adhesives and Composites. In: Sapuan SM, Norrrahim MNF, Ilyas RA, Soutis C (eds) Industrial Applications of Nanocellulose and Its Nanocomposites, Woodhead Publishing, Sawston, UK, pp. 49-137.
  • Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang PR (2008) Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer, 49(7): 186-1870.
  • Chen LS, Huang ZM, Dong GH, He CL, Liu L, Hu YY, Li Y (2009) Development of a transparent PMMA composite reinforced with nanofibers. Polym Compos, 30(3): 239-247.
  • Chen Y, Cai T, Dang B, Wang H, Xiong Y, Yao Q, Wang C, Sun Q, Jin C (2018) The properties of fibreboard based on nanolignocelluloses/CaCO3/PMMA composite synthesized through mechano-chemical method. Sci Rep, 8(1): 5121.
  • Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci, 29: 1-8.
  • Erbas Kiziltas E, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA–cellulose-based nanocomposites. Carbohydr Polym, 127: 381-389.
  • Gabr MH, Phong NT, Okubo K, Uzawa K, Kimpara I, Fujii T (2014) Thermal and mechanical properties of electrospun nanocelullose reinforced epoxy nanocomposites. Polym Test, 37: 51-58.
  • Gan PG, Sam ST, Abdullah MF, Omar MF (2020) Thermal properties of nanocellulose-reinforced composites: a review. J Appl Polym Sci, 137(11): 48544.
  • Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech, 21(4): 167-193.
  • Hamou KB, Kaddami H, Dufresne A, Boufi S, Magnin A, Erchiqui F (2018) Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydr Polym, 181: 1061-1070.
  • Kiziltas A, Gardner DJ, Han Y, Yang HS (2011) Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochim Acta, 519(1-2): 38-43.
  • Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A Appl Sci Manuf, 42(10): 1509-1514.
  • Kumar B, Adil S, Pham DH, Kim J (2024) Environment-friendly, high-performance cellulose nanofiber-vanillin epoxy nanocomposite with excellent mechanical, thermal insulation and UV shielding properties. Heliyon, 10(3): e25272.
  • Kumari S, Mishra RK, Parveen S, Avinashi SK, Hussain A, Kumar S, Banerjee M, Rao J, Kumar R, Gautam RK, Gautam C (2024) Fabrication, structural, and enhanced mechanical behavior of MgO substituted PMMA composites for dental applications. Sci Rep, 14: 2128.
  • Lee J, Kim S, You S, Park YK (2023) Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renew Sustain Energy Rev, 178: 113240.
  • Lee KY, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces, 4(8): 4078-4086.
  • Liu HY, Liu DG, Yao F, Wu QL (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technol, 101 (14): 5685-5692.
  • Manimaran M, Norizan M, Kassim M, Adam M, Norrrahim M, Knight V (2024) Critical assessment of the thermal stability and degradation of chemically functionalized nanocellulose-based polymer nanocomposites. Nanotechnol Rev, 13(1): 20240005.
  • Nussbaumer RJ, Caseri WR, Smith P, Tervoort T (2003) Polymer TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng, 288(1): 44-49.
  • Ocando C, Tercjak A, Mondragon I (2010) Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites. Compos Sci Technol, 70(7): 1106-1112.
  • Pandurangan MT, Kanny K (2020) Study of curing characteristics of cellulose nanofiber-filled epoxy nanocomposites. Catalysts, 10: 831.
  • Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC (2008) Effect of cross-link density on ınterphase creation in polymer nanocomposites. Macromolecules, 41(18): 6752-6756.
  • Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113(4): 2238-2247.
  • Radhi A, Mohamad D, Rahman FS, Abdullah AM, Hasan H (2021) Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. J Mater Res Tech, 11: 1290-1307.
  • Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr Build Mater, 124: 133-138.
  • Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol, 102: 822-828.
  • Saxena P, Shukla PA (2022) A comparative analysis of the basic properties and applications of poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA). Polym Bull, 79(8): 5635-5665.
  • Sen AK, Kumar S (2010) Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim, 101: 265-271.
  • Subbotina E, Montanari C, Olsén P, Berglund LA (2022) Fully bio-based cellulose nanofiber/epoxy composites with both sustainable production and selective matrix deconstruction towards infinite fiber recycling systems. J Mater Chem, A (10): 570-576.
  • Tang L, Weder C (2010) Cellulose whisker/epoxy resin nanocomposites. ACS Appl Mater Interfaces, 2(4): 1073-1080.
  • Wu G, Liu D, Liu G, Chen J, Huo S, Kong Z (2015) Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydr Polym, 127: 229-235.
  • Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer, 54 (24): 6589-6598.
  • Yildirim M, Mutlu I, Candan Z (2024a) Development and characterization of smart composites reinforced with fibrillated cellulose and nickel-titanium alloy. Int J Biol Macromol, 267: 131189.
  • Yildirim M, Mutlu I, Candan Z (2024b) Thermal properties of cellulose nanofibrils and nickel-titanium alloy-reinforced sustainable smart composites. Wood Mater Sci Eng, 19(3): 557-563.
  • Yildirim M, Candan Z (2024) Preparation and characterization of transparent advanced smart nanocomposites reinforced by nanofibrillated cellulose/poly(methyl methacrylate)/methyl methacrylate/benzoyl peroxide. Bioresources, 19(3): 5435-5449.
  • Yusuf J, Sapuan SM, Rashid U, Ilyas RA, Hassan MR (2024) Thermal, mechanical, and morphological properties of oil palm cellulose nanofibril reinforced green epoxy nanocomposites. Int J Biol Macromol, 278(3): 134421.

Nanofibril selüloz/PMMA/MMA/benzoil peroksit takviyeli şeffaf epoksi nanokompozitlerin termal özellikleri

Year 2025, Volume: 26 Issue: 1, 202 - 211, 15.05.2025
https://doi.org/10.17474/artvinofd.1646742

Abstract

Bu çalışma, nanofibril selüloz (NFC), polimetil metakrilat (PMMA), metil metakrilat (MMA) ve benzoil peroksit (BPO) katkı maddelerinin nanokompozitlerin termal özellikleri üzerindeki sinerjik etkilerini sunmaktadır. Nanokompozitler, epoksi reçine içerisine %1, %3 ve %5 oranında NFC ilavesi, %0.05 oranında PMMA ve MMA ilavesi ve %0.005 oranında BPO ilavesi katılarak döküm yöntemiyle üretilmiştir. Yapılan termal analizin sonuçları, tüm takviyeli nanokompozitlerin termal kararlılığının, kalıntı içeriğinin, depolama modülünün (E’), kayıp modülünün (E’’) ve tan delta (Tan δ) değerlerinin saf epoksili örneklere kıyasla önemli ölçüde arttığını göstermektedir. Bulgular, %3 NFC, %0.05 PMMA ve MMA ile %0.005 BPO içeren nanokompozitlerin üstün termal direnç ve kararlılık sergilediğini ve bu nanokompozitlerin en yüksek depolama modülü, kayıp modülü ve tan delta değerlerine sahip olduğunu göstermektedir. Elde edilen sonuçlara göre, sürdürülebilir şeffaf nanokompozitlerin termal özelliklerini iyileştirmek amacıyla özellikle %3 NFC yüklemesinin en uygun oran olduğu belirlenmiş ve yüklemenin bu malzemeleri ileri düzey malzeme uygulamaları için uygun hale getirdiği sonucuna varılmıştır.

References

  • Abdul Khalil HPS, Jawaid M, Firoozian P, Zainudin ES, Paridah MT (2013) Dynamic mechanical properties of activated carbon–filled epoxy nanocomposites. Int J Polym Anal Charact, 18(4): 247-256.
  • Barra G, Guadagno L, Raimondo M, Santonicola MG, Toto E, Vecchio Ciprioti SA (2023) Comprehensive review on the thermal stability assessment of polymers and composites for aeronautics and space applications. Polymers, 15: 3786.
  • Candan Z, Tozluoglu A, Gonultas O, Yildirim M, Fidan H, Alma MH, Salan T (2022) Nanocellulose: Sustainable Biomaterial for Developing Novel Adhesives and Composites. In: Sapuan SM, Norrrahim MNF, Ilyas RA, Soutis C (eds) Industrial Applications of Nanocellulose and Its Nanocomposites, Woodhead Publishing, Sawston, UK, pp. 49-137.
  • Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang PR (2008) Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer, 49(7): 186-1870.
  • Chen LS, Huang ZM, Dong GH, He CL, Liu L, Hu YY, Li Y (2009) Development of a transparent PMMA composite reinforced with nanofibers. Polym Compos, 30(3): 239-247.
  • Chen Y, Cai T, Dang B, Wang H, Xiong Y, Yao Q, Wang C, Sun Q, Jin C (2018) The properties of fibreboard based on nanolignocelluloses/CaCO3/PMMA composite synthesized through mechano-chemical method. Sci Rep, 8(1): 5121.
  • Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci, 29: 1-8.
  • Erbas Kiziltas E, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA–cellulose-based nanocomposites. Carbohydr Polym, 127: 381-389.
  • Gabr MH, Phong NT, Okubo K, Uzawa K, Kimpara I, Fujii T (2014) Thermal and mechanical properties of electrospun nanocelullose reinforced epoxy nanocomposites. Polym Test, 37: 51-58.
  • Gan PG, Sam ST, Abdullah MF, Omar MF (2020) Thermal properties of nanocellulose-reinforced composites: a review. J Appl Polym Sci, 137(11): 48544.
  • Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech, 21(4): 167-193.
  • Hamou KB, Kaddami H, Dufresne A, Boufi S, Magnin A, Erchiqui F (2018) Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydr Polym, 181: 1061-1070.
  • Kiziltas A, Gardner DJ, Han Y, Yang HS (2011) Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites. Thermochim Acta, 519(1-2): 38-43.
  • Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A Appl Sci Manuf, 42(10): 1509-1514.
  • Kumar B, Adil S, Pham DH, Kim J (2024) Environment-friendly, high-performance cellulose nanofiber-vanillin epoxy nanocomposite with excellent mechanical, thermal insulation and UV shielding properties. Heliyon, 10(3): e25272.
  • Kumari S, Mishra RK, Parveen S, Avinashi SK, Hussain A, Kumar S, Banerjee M, Rao J, Kumar R, Gautam RK, Gautam C (2024) Fabrication, structural, and enhanced mechanical behavior of MgO substituted PMMA composites for dental applications. Sci Rep, 14: 2128.
  • Lee J, Kim S, You S, Park YK (2023) Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renew Sustain Energy Rev, 178: 113240.
  • Lee KY, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces, 4(8): 4078-4086.
  • Liu HY, Liu DG, Yao F, Wu QL (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technol, 101 (14): 5685-5692.
  • Manimaran M, Norizan M, Kassim M, Adam M, Norrrahim M, Knight V (2024) Critical assessment of the thermal stability and degradation of chemically functionalized nanocellulose-based polymer nanocomposites. Nanotechnol Rev, 13(1): 20240005.
  • Nussbaumer RJ, Caseri WR, Smith P, Tervoort T (2003) Polymer TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng, 288(1): 44-49.
  • Ocando C, Tercjak A, Mondragon I (2010) Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites. Compos Sci Technol, 70(7): 1106-1112.
  • Pandurangan MT, Kanny K (2020) Study of curing characteristics of cellulose nanofiber-filled epoxy nanocomposites. Catalysts, 10: 831.
  • Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC (2008) Effect of cross-link density on ınterphase creation in polymer nanocomposites. Macromolecules, 41(18): 6752-6756.
  • Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113(4): 2238-2247.
  • Radhi A, Mohamad D, Rahman FS, Abdullah AM, Hasan H (2021) Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. J Mater Res Tech, 11: 1290-1307.
  • Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr Build Mater, 124: 133-138.
  • Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol, 102: 822-828.
  • Saxena P, Shukla PA (2022) A comparative analysis of the basic properties and applications of poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA). Polym Bull, 79(8): 5635-5665.
  • Sen AK, Kumar S (2010) Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim, 101: 265-271.
  • Subbotina E, Montanari C, Olsén P, Berglund LA (2022) Fully bio-based cellulose nanofiber/epoxy composites with both sustainable production and selective matrix deconstruction towards infinite fiber recycling systems. J Mater Chem, A (10): 570-576.
  • Tang L, Weder C (2010) Cellulose whisker/epoxy resin nanocomposites. ACS Appl Mater Interfaces, 2(4): 1073-1080.
  • Wu G, Liu D, Liu G, Chen J, Huo S, Kong Z (2015) Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydr Polym, 127: 229-235.
  • Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer, 54 (24): 6589-6598.
  • Yildirim M, Mutlu I, Candan Z (2024a) Development and characterization of smart composites reinforced with fibrillated cellulose and nickel-titanium alloy. Int J Biol Macromol, 267: 131189.
  • Yildirim M, Mutlu I, Candan Z (2024b) Thermal properties of cellulose nanofibrils and nickel-titanium alloy-reinforced sustainable smart composites. Wood Mater Sci Eng, 19(3): 557-563.
  • Yildirim M, Candan Z (2024) Preparation and characterization of transparent advanced smart nanocomposites reinforced by nanofibrillated cellulose/poly(methyl methacrylate)/methyl methacrylate/benzoyl peroxide. Bioresources, 19(3): 5435-5449.
  • Yusuf J, Sapuan SM, Rashid U, Ilyas RA, Hassan MR (2024) Thermal, mechanical, and morphological properties of oil palm cellulose nanofibril reinforced green epoxy nanocomposites. Int J Biol Macromol, 278(3): 134421.
There are 38 citations in total.

Details

Primary Language English
Subjects Forestry Biomass and Bioproducts
Journal Section Research Article
Authors

Mert Yıldırım 0000-0003-4605-607X

Publication Date May 15, 2025
Submission Date February 25, 2025
Acceptance Date May 9, 2025
Published in Issue Year 2025 Volume: 26 Issue: 1

Cite

APA Yıldırım, M. (2025). Thermal properties of nanofibrillated cellulose/PMMA/MMA/benzoyl peroxide-reinforced transparent epoxy nanocomposites. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 26(1), 202-211. https://doi.org/10.17474/artvinofd.1646742
AMA Yıldırım M. Thermal properties of nanofibrillated cellulose/PMMA/MMA/benzoyl peroxide-reinforced transparent epoxy nanocomposites. ACUJFF. May 2025;26(1):202-211. doi:10.17474/artvinofd.1646742
Chicago Yıldırım, Mert. “Thermal Properties of Nanofibrillated Cellulose PMMA MMA Benzoyl Peroxide-Reinforced Transparent Epoxy Nanocomposites”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26, no. 1 (May 2025): 202-11. https://doi.org/10.17474/artvinofd.1646742.
EndNote Yıldırım M (May 1, 2025) Thermal properties of nanofibrillated cellulose/PMMA/MMA/benzoyl peroxide-reinforced transparent epoxy nanocomposites. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26 1 202–211.
IEEE M. Yıldırım, “Thermal properties of nanofibrillated cellulose/PMMA/MMA/benzoyl peroxide-reinforced transparent epoxy nanocomposites”, ACUJFF, vol. 26, no. 1, pp. 202–211, 2025, doi: 10.17474/artvinofd.1646742.
ISNAD Yıldırım, Mert. “Thermal Properties of Nanofibrillated Cellulose PMMA MMA Benzoyl Peroxide-Reinforced Transparent Epoxy Nanocomposites”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26/1 (May2025), 202-211. https://doi.org/10.17474/artvinofd.1646742.
JAMA Yıldırım M. Thermal properties of nanofibrillated cellulose/PMMA/MMA/benzoyl peroxide-reinforced transparent epoxy nanocomposites. ACUJFF. 2025;26:202–211.
MLA Yıldırım, Mert. “Thermal Properties of Nanofibrillated Cellulose PMMA MMA Benzoyl Peroxide-Reinforced Transparent Epoxy Nanocomposites”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 26, no. 1, 2025, pp. 202-11, doi:10.17474/artvinofd.1646742.
Vancouver Yıldırım M. Thermal properties of nanofibrillated cellulose/PMMA/MMA/benzoyl peroxide-reinforced transparent epoxy nanocomposites. ACUJFF. 2025;26(1):202-11.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.