Research Article
BibTex RIS Cite

Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş/Ekinözü İlçesi Örneklem Alanı

Year 2025, Volume: 26 Issue: 2, 378 - 388, 15.10.2025
https://doi.org/10.17474/artvinofd.1638494

Abstract

Bu çalışma son zamanlarda dijital toprak haritalama alanında öne çıkan makine öğrenmesi algoritmalarının, çevresel ortak değişkenlere dayalı konumsal ölçek küçültme işlemi model performanslarının karşılaştırmasını sağlamak üzere kurgulanmıştır. R-Studio 4.4.2 ortamında gerçekleştirilen model denemeleri Kahramanmaraş’ın Ekinözü ilçesi idari sınırları içerisinde kalan alanı kapsamaktadır. 250 m çözünürlüğe sahip toprak organik karbonu katmanı tüm çalışma alanı için 30 m konumsal çözünürlükte düzenlenen çevresel ortak değişkenler (eğim, topografik ıslaklık indeksi, yükseklik, sıcaklık, nisbi nem, net birincil üretim, normalize edilmiş fark vejetasyon indeksi, pankromatik band) kullanılarak 30 m konumsal çözünürlükteki versiyonuna dönüştürülmüştür. Tüm model denemeleri neticesinde doğrusal ve doğrusal olamayan makine öğrenmesi algoritmalarına dayalı modellerin tahmin performansları karşılaştırılmış ve doğrusal olmayan algoritmalarla kurulan modellerin diğerlerine göre oldukça anlamlı bir farkla üstün olduğu görülmüştür. Elde edilen bulgular, Rassal Orman Algoritmasına (ROA) dayalı modelin (RMSE=3.23, MAE=3.88 ve R2=0.69); Yapay Sinir Ağları, Karar Ağaçları ve Destek Vektör makineleri de dahil olmak üzere karşılaştırılan doğrusal olmayan diğer makine öğrenmesi algoritmalarına kıyasla daha üstün bir performans sergilediğini göstermiştir. Bu sonuçlar, Ekinözü ilçesi ve çevresindeki alanlarda toprak organik karbon içeriğinin haritalanması amacı ile yapılacak çalışmalarda ROA’nın potansiyel olarak en uygun istatistiksel araç olduğunu düşündürmektedir.

References

  • AccuWeather (2024) 2024 Yılı Günlük Sıcaklık Değerleri. URL: https://www.accuweather.com, Erişim Tarihi: 05.01.2025.
  • Akar Ö, Güngör O (2012) Rastgele orman algoritması kullanılarak çok bantlı görüntülerin sınıflandırılması. Jeodezi ve Jeoinformasyon Dergisi, 1(2):139-146. https://doi.org/10.9733/jgg.241212.1t
  • Akbulut O (2022) Bilimsel araştırmalarda istatistiksel anlamlılığın raporlanmasında güncel yaklaşımlar: hatalar ve doğrular. International Journal of Eastern Mediterranean Agricultural Research, 5(1):1-19.
  • Akın G (2006) Küresel ısınma, nedenleri ve sonuçları. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 46(2):29-43.
  • Albayrak AS (2008) Değişen varyans durumunda en küçük kareler tekniğinin alternatifi ağırlıklı regresyon analizi ve bir uygulama. Afyon Kocatepe Üniversitesi İİBF Dergisi, 10(2):111-134.
  • Aşkın T, Kızılkaya R, Olekhov V, Mudrykh N, Samafalova I, Türkmen F (2014) Toprak organik karbonu: jeoistatistiksel bir yaklaşım. Toprak Bilimi ve Bitki Besleme Dergisi, 2(1):13-18.
  • Ataseven B (2013) Yapay sinir ağları ile öngörü modellemesi. Öneri Dergisi, 10(39):101-115.
  • Ayhan S, Erdoğmuş Ş (2014) Destek vektör makineleriyle sınıflandırma problemlerinin çözümü için çekirdek fonksiyonu seçimi. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 9(1):175-198.
  • Bechini L, Castoldi N, Stein A (2011) Sensitivity to information upscaling of agro-ecological assessments: application to soil organic carbon management. Agricultural Systems, 104(6):480-490. https://doi.org/10.1016/j.agsy.2011.03.005
  • Cannon AJ (2008) Negative ridge regression parameters for improving the covariance structure of multivariate linear downscaling models. International Journal of Climatology, 29:761-769. https://doi.org/10.1002/joc.1737
  • Chen N, Xin C, Zhang B, Xin S, Tang D, Chen H, Ma X (2023) Contribution of multi-objective land use optimization to carbon neutrality: a case study of Northwest China. Ecological Indicators, 157:1-13. https://doi.org/10.1016/j.ecolind.2023.111219
  • ÇEM (2018) Toprak Organik Karbonu Projesi-Teknik Özet. Çölleşme ve Erozyonla Mücadele Müdürlüğü (ÇEM)-TÜBİTAK-BİLGEM-YTE, Ankara.
  • Dönmez C (2012) İklim değişikliğinin etkisi altında Seyhan-üst havzası ekosistem bileşenlerinin modellenmesi ve etkileşim düzeylerinin belirlenmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Adana.
  • Ercan U, Irmak S (2022) Karar ağaçları: algoritmalar, bölünmeler ve budama. Endüstride Dijitalleşme Örnekleri, İKSAD Publishing House, No:2014/31220, Ankara.
  • Esri (2025) World Soils 250 m Soil Organic Carbon. https://www.arcgis.com/apps/mapviewer/index.html?layers=55bc9bfbc2b341fc8b1be3936fe45f06, Erişim Tarihi: 03.01.2025.
  • Evliyaoğlu G (2019) Farklı alan kullanımlarında toprak organik karbon dinamiğinin belirlenmesi. Anadolu Üniversitesi Lisansüstü Eğitim Enstitüsü Yüksek Lisans Tezi, Eskişehir.
  • Goward SN, Markham B, Dye DG, Dulaney W, Yang J (1991) Normalized difference vegetation ındex measurements from the advanced very high resolution radiometer. Remote Sensing of Environment, 35(2-3):257-277. https://doi.org/10.1016/0034-4257(91)90017-Z
  • Grimm R, Behrens T, Märker M, Elsenbeer, H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island- Digital soil mapping using random forests analysis. Geoderma, 146(1-2):102-113. https://doi.org/10.1016/j.geoderma.2008.05.008
  • Gültekin YN, Doğan A (2023) Makine öğrenimi yöntemleriyle bazaltlarda tek eksenli sıkışma dayanımının değerlendirilmesi ve performanslarının karşılaştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(2):1059-1074. https://doi.org/10.29130/dubited.1173624
  • Hans C (2011) Elastic net regression modeling with the orthant normal prior. Journal of the American Statistical Association, 106(496):1383-1394. https://doi.org/10.1198/jasa.2011.tm09241
  • He RR, Chen Y, Huang Q, Kang Y (2019) LASSO as a tool for downscaling summer rainfall over the Yangtze River Valley. Hydrological Sciences Journal, 64(1):92-104. https://doi.org/10.1080/02626667.2019.1570210
  • Hong SH, Hendrickx JMH, Borchers B (2011) Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250 m) to Landsat (30 m) scales. International Journal of Remote Sensing, 32(21):6457-6477. https://doi.org/10.1080/01431161.2010.512929
  • Huang S, Xi F, Chen Y, Gao M, Pan X, Ren C (2021) Land use optimization and simulation of low-carbon-oriented – a case study of Jinhua, China. Land, 10(1020):1-18. https://doi.org/10.3390/land10101020
  • IPCC (2003) IPCC Good Practice Guidance for LULUCF, Chapter 4: Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol.
  • IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories.
  • Jungkunst HF, Göpel J, Horvath T, Ott S, Brunn M (2022) Global soil organic carbon-climate interactions: why scales matter? WIREs Climate Change, 13(e780):1-17. https://doi.org/10.1016/j.catena.2025.109435
  • Karamanlı (2024) Karbon depolama kapasitesine dayalı arazi tahsis optimizasyonu. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Adana.
  • Kılıç M, Gunal H, Budak M (2022) Toprak organik karbon içeriğinin tahmin ve haritalanmasında makine öğrenmesi tekniklerinin kullanımı. 1st International Conference on Engineering, Natural and Social Sciences, Konya, pp:211-217.
  • Kılıç S (2013) Doğrusal regresyon analizi. Journal of Mood Disorders, 3(2):90-92.
  • Kopecký M, Macek M, Wild J (2021) Topographic wetness index calculation guidelines based on measured soil moisture and plant species composition. Science of the Total Environment, 757:1-10. https://doi.org/10.1016/j.scitotenv.2020.143785
  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677):1623-1627. https://doi.org/10.1126/science.1097396
  • Lamichhane S, Kumar L, Wilson B (2019) Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review. Geoderma, 352:395-413. https://doi.org/10.1016/j.geoderma.2019.05.031
  • Liaw A, Wiener M (2002) Classification and regression by random. Forest. R News, 2(3):18-22.
  • Liu X, Li X, Shi X, Huang K, Liu Y (2012) A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. International Journal of Geographical Information Science, 26(7):1325-1343. https://doi.org/10.1080/13658816.2011.635594
  • Mirici (2017) Küresel iklim değişikliği çerçevesinde Doğu Akdeniz bölgesi ekosistem hizmetlerinin karbon temelli modellenmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Adana.
  • McDonald GC (2009) Ridge regression. WIREs Computational Istatistic, 1(1):93-100. https://doi.org/10.1002/wics.14
  • Muñoz-Rojas MM, Jordán A, Zavala LM, González-Peñaloza FA, De la Rosa D, Mejias RP, Anaya-Romeo M (2013) Modelling soil organic carbon stocks in global change scenarios: a CarboSOIL application. Biogeosciences, 10:8253-8268. https://doi.org/10.5194/bg-10-8253-2013
  • NASA (2025) Prediction of Worldwide Energy Resources (POWER)/Data Access Viewer (DAV), Relative Humudity at 2 meters (30 m resolution).
  • Nourani V, Razzaghzadeh Z, Baghanam AH, Molajou, A (2019) ANN-based statistical downscaling of climatic parameters using decision tree predictor screening method. Theoretical and Applied Climatology, 137:1729-1746. https://doi.org/10.1007/s00704-018-2686-z
  • Orhan H, Vergili M (2022) Genomik veri setlerinin LASSO ve elastik net regrasyon yöntemleri ile analizi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 13(3):485-496. https://doi.org/10.22312/sdusbed.1201417
  • O’Rourke SM, Angers DA, Holden NM, Mcbratney AB (2015) Soil organic carbon across scales. Global Change Biology, pp3561-3574. http://doi.org/10.1111.gcb.12959
  • Pahlavan HA, Zahraie B, Nasseri M, Varnousfaderani AM (2017) Improvement of multiple linear regression method for statistical downscaling of monthly precipitation. International Journal of Environmental Science Technology, 15:1897-1912. https://doi.org/10.1007/s13762-017-1511-z
  • Pallant J (2024) SPSS Kullanma Kılavuzu: IBM SPSS ile Adım Adım Veri Analizi. Anı Yayıncılık, 5. Baskı, Ankara.
  • Reddy BBK, Maragatham S, Santhi R, Balachandar D, Vijayalakshmi D, Vasu D, Gopalakrishnan M (2004) Predictive soil mapping using random forest models: applications in pH and soil organic matter assessment. Plant Science Today, 11(4):1-12. https://doi.org/10.14719/pst.3865
  • Roudier P, Malone BP, Hedley CB, Minasny B, McBratney AB (2017) Comparison of regression methods for spatial downscaling of soil organic carbon stocks maps. Computers and Electronics in Agriculture, 142:91-100. https://doi.org/10.1016/j.compag.2017.08.021
  • Tatlıdil H (1992) Uygulamalı Çok Değişkenli İstatistiksel Analiz. Engin Yayınları, ISBN:9759487608, Ankara.
  • TCKV (2025) T.C. Kahramanmaraş Valiliği Resmî Web Sayfası, Ekinözü.
  • Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. Journal of Hydrology, 330(3-4):621-640. https://doi.org/10.1016/j.jhydrol.2006.04.030
  • Vandal T, Kodra E, Ganguly AR (2019) Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation. Theoretical and Applied Climatology, 137:557-570. https://doi.org/10.1007/s00704-018-2613-3
  • Vikipedi (2025) Vikipedi Özgür Ansiklopedi, Ekinözü.
  • Yavuz Ö (2023) Evaluations and suggestions on wind erosion and windbreaks in the process of climate change in Central Anatolia. Journal of Environmental and Natural Studies, 5(1):28-48. https://doi.org/10.53472/jenas
  • Woolson RF, Bean JA, Rojas PB (1986) Sample size for case-control studies using Cochran's statistic. Biometrics, 42(4):927-932. https://doi.org/10.2307/2530706
  • Wu X, Wang S, Fu B, Liu Y, Zhu Y (2018) Land use optimization based on ecosystem service assessment: a case study in the Yanhe watershed. Land Use Policy, 72:303-312. https://doi.org/10.1016/j.landusepol.2018.01.003
  • Xu Y, Smith SE, Grunwald S, Abd-Elrahman A, Wani SP (2017) Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields. ISPRS Journal of Photogrammetry and Remote Sensing, 123:1-19. https://doi.org/10.1016/j.isprsjprs.2016.11.001
  • Zhan X, Xue J, Chen S, Wang N, Shi Z, Huang Y, Zhuo Z (2022) Digital mapping of soil organic carbon with machine learning in dryland of Northeast and North plain China. Remote Sensing, 14(10):1-18. https://doi.org/10.3390/rs14102504
  • Zhu C, Wei Y, Zhu F, Lu W, Fang Z, Li Z, Pan J (2022) Digital mapping of soil organic carbon based on machine learning and regression kriging. Sensors, 22(22):1-18. https://doi.org/10.3390/s22228997

Comparison of Different Machine Learning Algorithms for Soil Organic Carbon (SOC) Downscaling Process: Kahramanmaraş/Ekinözü District Sampling Area

Year 2025, Volume: 26 Issue: 2, 378 - 388, 15.10.2025
https://doi.org/10.17474/artvinofd.1638494

Abstract

This study aimed to compare the performance of a spatial downscaling model based on environmental covariates with machine learning algorithms, which have recently gained prominence in digital soil mapping. The model trials performed in the R-Studio 4.4.2 environment cover the area within the administrative boundaries of the Ekinözü district of Kahramanmaraş. The soil organic carbon layer at 250 m resolution was converted to the 30 m resolution version by using the environmental covariates (slope, topographic wetness index, digital elevation model, temperature, relative humidity, net primary productivity, normalized difference vegetation index, panchromatic band) arranged for the entire study area at 30 m spatial resolution. As a result of all model trials, the predicted performances of models based on linear and non-linear machine learning algorithms were compared and it was seen that the models established with non-linear algorithms were superior to the others by a significant difference. The findings showed that the Random Forest Algorithm (RFA) based model performed better (RMSE=3.23, MAE=3.88 ve R2=0.69) compared to other nonlinear machine learning algorithm, including Artificial Neural Network (ANN), Decision Trees, and Support Vector Machine (SVM). These results suggest that RFA is potentially the most appropriate statistical tool for the studies to be carried out to map the soil organic carbon content in Ekinözü district and surrounding areas.

References

  • AccuWeather (2024) 2024 Yılı Günlük Sıcaklık Değerleri. URL: https://www.accuweather.com, Erişim Tarihi: 05.01.2025.
  • Akar Ö, Güngör O (2012) Rastgele orman algoritması kullanılarak çok bantlı görüntülerin sınıflandırılması. Jeodezi ve Jeoinformasyon Dergisi, 1(2):139-146. https://doi.org/10.9733/jgg.241212.1t
  • Akbulut O (2022) Bilimsel araştırmalarda istatistiksel anlamlılığın raporlanmasında güncel yaklaşımlar: hatalar ve doğrular. International Journal of Eastern Mediterranean Agricultural Research, 5(1):1-19.
  • Akın G (2006) Küresel ısınma, nedenleri ve sonuçları. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 46(2):29-43.
  • Albayrak AS (2008) Değişen varyans durumunda en küçük kareler tekniğinin alternatifi ağırlıklı regresyon analizi ve bir uygulama. Afyon Kocatepe Üniversitesi İİBF Dergisi, 10(2):111-134.
  • Aşkın T, Kızılkaya R, Olekhov V, Mudrykh N, Samafalova I, Türkmen F (2014) Toprak organik karbonu: jeoistatistiksel bir yaklaşım. Toprak Bilimi ve Bitki Besleme Dergisi, 2(1):13-18.
  • Ataseven B (2013) Yapay sinir ağları ile öngörü modellemesi. Öneri Dergisi, 10(39):101-115.
  • Ayhan S, Erdoğmuş Ş (2014) Destek vektör makineleriyle sınıflandırma problemlerinin çözümü için çekirdek fonksiyonu seçimi. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 9(1):175-198.
  • Bechini L, Castoldi N, Stein A (2011) Sensitivity to information upscaling of agro-ecological assessments: application to soil organic carbon management. Agricultural Systems, 104(6):480-490. https://doi.org/10.1016/j.agsy.2011.03.005
  • Cannon AJ (2008) Negative ridge regression parameters for improving the covariance structure of multivariate linear downscaling models. International Journal of Climatology, 29:761-769. https://doi.org/10.1002/joc.1737
  • Chen N, Xin C, Zhang B, Xin S, Tang D, Chen H, Ma X (2023) Contribution of multi-objective land use optimization to carbon neutrality: a case study of Northwest China. Ecological Indicators, 157:1-13. https://doi.org/10.1016/j.ecolind.2023.111219
  • ÇEM (2018) Toprak Organik Karbonu Projesi-Teknik Özet. Çölleşme ve Erozyonla Mücadele Müdürlüğü (ÇEM)-TÜBİTAK-BİLGEM-YTE, Ankara.
  • Dönmez C (2012) İklim değişikliğinin etkisi altında Seyhan-üst havzası ekosistem bileşenlerinin modellenmesi ve etkileşim düzeylerinin belirlenmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Adana.
  • Ercan U, Irmak S (2022) Karar ağaçları: algoritmalar, bölünmeler ve budama. Endüstride Dijitalleşme Örnekleri, İKSAD Publishing House, No:2014/31220, Ankara.
  • Esri (2025) World Soils 250 m Soil Organic Carbon. https://www.arcgis.com/apps/mapviewer/index.html?layers=55bc9bfbc2b341fc8b1be3936fe45f06, Erişim Tarihi: 03.01.2025.
  • Evliyaoğlu G (2019) Farklı alan kullanımlarında toprak organik karbon dinamiğinin belirlenmesi. Anadolu Üniversitesi Lisansüstü Eğitim Enstitüsü Yüksek Lisans Tezi, Eskişehir.
  • Goward SN, Markham B, Dye DG, Dulaney W, Yang J (1991) Normalized difference vegetation ındex measurements from the advanced very high resolution radiometer. Remote Sensing of Environment, 35(2-3):257-277. https://doi.org/10.1016/0034-4257(91)90017-Z
  • Grimm R, Behrens T, Märker M, Elsenbeer, H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island- Digital soil mapping using random forests analysis. Geoderma, 146(1-2):102-113. https://doi.org/10.1016/j.geoderma.2008.05.008
  • Gültekin YN, Doğan A (2023) Makine öğrenimi yöntemleriyle bazaltlarda tek eksenli sıkışma dayanımının değerlendirilmesi ve performanslarının karşılaştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(2):1059-1074. https://doi.org/10.29130/dubited.1173624
  • Hans C (2011) Elastic net regression modeling with the orthant normal prior. Journal of the American Statistical Association, 106(496):1383-1394. https://doi.org/10.1198/jasa.2011.tm09241
  • He RR, Chen Y, Huang Q, Kang Y (2019) LASSO as a tool for downscaling summer rainfall over the Yangtze River Valley. Hydrological Sciences Journal, 64(1):92-104. https://doi.org/10.1080/02626667.2019.1570210
  • Hong SH, Hendrickx JMH, Borchers B (2011) Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250 m) to Landsat (30 m) scales. International Journal of Remote Sensing, 32(21):6457-6477. https://doi.org/10.1080/01431161.2010.512929
  • Huang S, Xi F, Chen Y, Gao M, Pan X, Ren C (2021) Land use optimization and simulation of low-carbon-oriented – a case study of Jinhua, China. Land, 10(1020):1-18. https://doi.org/10.3390/land10101020
  • IPCC (2003) IPCC Good Practice Guidance for LULUCF, Chapter 4: Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol.
  • IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories.
  • Jungkunst HF, Göpel J, Horvath T, Ott S, Brunn M (2022) Global soil organic carbon-climate interactions: why scales matter? WIREs Climate Change, 13(e780):1-17. https://doi.org/10.1016/j.catena.2025.109435
  • Karamanlı (2024) Karbon depolama kapasitesine dayalı arazi tahsis optimizasyonu. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Adana.
  • Kılıç M, Gunal H, Budak M (2022) Toprak organik karbon içeriğinin tahmin ve haritalanmasında makine öğrenmesi tekniklerinin kullanımı. 1st International Conference on Engineering, Natural and Social Sciences, Konya, pp:211-217.
  • Kılıç S (2013) Doğrusal regresyon analizi. Journal of Mood Disorders, 3(2):90-92.
  • Kopecký M, Macek M, Wild J (2021) Topographic wetness index calculation guidelines based on measured soil moisture and plant species composition. Science of the Total Environment, 757:1-10. https://doi.org/10.1016/j.scitotenv.2020.143785
  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677):1623-1627. https://doi.org/10.1126/science.1097396
  • Lamichhane S, Kumar L, Wilson B (2019) Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review. Geoderma, 352:395-413. https://doi.org/10.1016/j.geoderma.2019.05.031
  • Liaw A, Wiener M (2002) Classification and regression by random. Forest. R News, 2(3):18-22.
  • Liu X, Li X, Shi X, Huang K, Liu Y (2012) A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. International Journal of Geographical Information Science, 26(7):1325-1343. https://doi.org/10.1080/13658816.2011.635594
  • Mirici (2017) Küresel iklim değişikliği çerçevesinde Doğu Akdeniz bölgesi ekosistem hizmetlerinin karbon temelli modellenmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Adana.
  • McDonald GC (2009) Ridge regression. WIREs Computational Istatistic, 1(1):93-100. https://doi.org/10.1002/wics.14
  • Muñoz-Rojas MM, Jordán A, Zavala LM, González-Peñaloza FA, De la Rosa D, Mejias RP, Anaya-Romeo M (2013) Modelling soil organic carbon stocks in global change scenarios: a CarboSOIL application. Biogeosciences, 10:8253-8268. https://doi.org/10.5194/bg-10-8253-2013
  • NASA (2025) Prediction of Worldwide Energy Resources (POWER)/Data Access Viewer (DAV), Relative Humudity at 2 meters (30 m resolution).
  • Nourani V, Razzaghzadeh Z, Baghanam AH, Molajou, A (2019) ANN-based statistical downscaling of climatic parameters using decision tree predictor screening method. Theoretical and Applied Climatology, 137:1729-1746. https://doi.org/10.1007/s00704-018-2686-z
  • Orhan H, Vergili M (2022) Genomik veri setlerinin LASSO ve elastik net regrasyon yöntemleri ile analizi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 13(3):485-496. https://doi.org/10.22312/sdusbed.1201417
  • O’Rourke SM, Angers DA, Holden NM, Mcbratney AB (2015) Soil organic carbon across scales. Global Change Biology, pp3561-3574. http://doi.org/10.1111.gcb.12959
  • Pahlavan HA, Zahraie B, Nasseri M, Varnousfaderani AM (2017) Improvement of multiple linear regression method for statistical downscaling of monthly precipitation. International Journal of Environmental Science Technology, 15:1897-1912. https://doi.org/10.1007/s13762-017-1511-z
  • Pallant J (2024) SPSS Kullanma Kılavuzu: IBM SPSS ile Adım Adım Veri Analizi. Anı Yayıncılık, 5. Baskı, Ankara.
  • Reddy BBK, Maragatham S, Santhi R, Balachandar D, Vijayalakshmi D, Vasu D, Gopalakrishnan M (2004) Predictive soil mapping using random forest models: applications in pH and soil organic matter assessment. Plant Science Today, 11(4):1-12. https://doi.org/10.14719/pst.3865
  • Roudier P, Malone BP, Hedley CB, Minasny B, McBratney AB (2017) Comparison of regression methods for spatial downscaling of soil organic carbon stocks maps. Computers and Electronics in Agriculture, 142:91-100. https://doi.org/10.1016/j.compag.2017.08.021
  • Tatlıdil H (1992) Uygulamalı Çok Değişkenli İstatistiksel Analiz. Engin Yayınları, ISBN:9759487608, Ankara.
  • TCKV (2025) T.C. Kahramanmaraş Valiliği Resmî Web Sayfası, Ekinözü.
  • Tripathi S, Srinivas VV, Nanjundiah RS (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. Journal of Hydrology, 330(3-4):621-640. https://doi.org/10.1016/j.jhydrol.2006.04.030
  • Vandal T, Kodra E, Ganguly AR (2019) Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation. Theoretical and Applied Climatology, 137:557-570. https://doi.org/10.1007/s00704-018-2613-3
  • Vikipedi (2025) Vikipedi Özgür Ansiklopedi, Ekinözü.
  • Yavuz Ö (2023) Evaluations and suggestions on wind erosion and windbreaks in the process of climate change in Central Anatolia. Journal of Environmental and Natural Studies, 5(1):28-48. https://doi.org/10.53472/jenas
  • Woolson RF, Bean JA, Rojas PB (1986) Sample size for case-control studies using Cochran's statistic. Biometrics, 42(4):927-932. https://doi.org/10.2307/2530706
  • Wu X, Wang S, Fu B, Liu Y, Zhu Y (2018) Land use optimization based on ecosystem service assessment: a case study in the Yanhe watershed. Land Use Policy, 72:303-312. https://doi.org/10.1016/j.landusepol.2018.01.003
  • Xu Y, Smith SE, Grunwald S, Abd-Elrahman A, Wani SP (2017) Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields. ISPRS Journal of Photogrammetry and Remote Sensing, 123:1-19. https://doi.org/10.1016/j.isprsjprs.2016.11.001
  • Zhan X, Xue J, Chen S, Wang N, Shi Z, Huang Y, Zhuo Z (2022) Digital mapping of soil organic carbon with machine learning in dryland of Northeast and North plain China. Remote Sensing, 14(10):1-18. https://doi.org/10.3390/rs14102504
  • Zhu C, Wei Y, Zhu F, Lu W, Fang Z, Li Z, Pan J (2022) Digital mapping of soil organic carbon based on machine learning and regression kriging. Sensors, 22(22):1-18. https://doi.org/10.3390/s22228997
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Landscape Planning
Journal Section Research Article
Authors

Esin Karamanlı 0000-0003-0324-1486

Publication Date October 15, 2025
Submission Date February 12, 2025
Acceptance Date July 27, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

APA Karamanlı, E. (2025). Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş/Ekinözü İlçesi Örneklem Alanı. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 26(2), 378-388. https://doi.org/10.17474/artvinofd.1638494
AMA Karamanlı E. Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş/Ekinözü İlçesi Örneklem Alanı. ACUJFF. October 2025;26(2):378-388. doi:10.17474/artvinofd.1638494
Chicago Karamanlı, Esin. “Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş Ekinözü İlçesi Örneklem Alanı”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26, no. 2 (October 2025): 378-88. https://doi.org/10.17474/artvinofd.1638494.
EndNote Karamanlı E (October 1, 2025) Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş/Ekinözü İlçesi Örneklem Alanı. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26 2 378–388.
IEEE E. Karamanlı, “Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş/Ekinözü İlçesi Örneklem Alanı”, ACUJFF, vol. 26, no. 2, pp. 378–388, 2025, doi: 10.17474/artvinofd.1638494.
ISNAD Karamanlı, Esin. “Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş Ekinözü İlçesi Örneklem Alanı”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26/2 (October2025), 378-388. https://doi.org/10.17474/artvinofd.1638494.
JAMA Karamanlı E. Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş/Ekinözü İlçesi Örneklem Alanı. ACUJFF. 2025;26:378–388.
MLA Karamanlı, Esin. “Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş Ekinözü İlçesi Örneklem Alanı”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 26, no. 2, 2025, pp. 378-8, doi:10.17474/artvinofd.1638494.
Vancouver Karamanlı E. Toprak Organik Karbonu Ölçek Küçültme Işlemi Için Farklı Makine Öğrenmesi Algoritmalarının Karşılaştırılması: Kahramanmaraş/Ekinözü İlçesi Örneklem Alanı. ACUJFF. 2025;26(2):378-8.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.