Fonksiyonelleştirilmiş Selüloz Katkısıyla Güçlendirilmiş CMC Esaslı Hidrojeller: NaOH-Üre Katalizli Oksidasyon ve Mekanik Ön işlem Uygulamaları, Sitrik asit ve Epiklorohidrin ile Çapraz Bağlanma ve Karakterizasyon
Year 2025,
Volume: 26 Issue: 2, 290 - 301, 15.10.2025
Asena Damla Büyüküstün
,
Esat Gümüşkaya
,
Emir Erişir
Abstract
Düşük jel mukavemetine sahip karboksimetilselüloz (CMC) bazlı kopolimer hidrojelin performansını iyileştirmek için, doğal selüloz gibi katkı maddeleri yaygın olarak kullanılmaktadır, ancak bunların yapısal sınırlamaları, modifikasyon olmadan CMC bazlı hidrojellere başarılı bir şekilde entegre edilmesini engellemektedir. Bu çalışmada, katkı maddesi olarak işlenmiş ve işlenmemiş odun hamurunun hidrojel performansı üzerindeki etkileri incelenmiştir. Ön işlemler, NaOH-üre ile katalize edilen hidrojen peroksit oksidasyonunun yanı sıra mekanik ön işlem olarak PFI veya kolloid değirmenler kullanılarak gerçekleştirilmiştir. Bu yarı sentetik polimerlerin çapraz bağlanmasında, epiklorohidrin (ECH) veya sitrik asit (CIT) kullanılarak gerçekleştirilmiştir. Hidrojellerin kimyasal, fiziksel ve morfolojik özelliklerini analiz etmek için FTIR spektroskopisi, DSC ve elektron mikroskobu teknikleri ile şişme ve su emme testleri kullanılmıştır. Her iki ajanla çapraz bağlanmanın başarılı olduğu FTIR spektrumları ile doğrulanmıştır. Kullanılan çapraz bağlama maddesinden bağımsız olarak, tüm hidrojellerin alkali çözeltilerdeki şişme oranı, nötr ve asidik ortamlardakinden daha yüksekti. CIT ile çapraz bağlanmış hidrojeller, pH 7'de kontrol grubuna göre 16 kat daha fazla şişme oranı göstermiştir. Na⁺ ve K⁺ içeren çözeltilerde şişme performansı artmış, ancak Mg²⁺ ve NH₄⁺ varlığında hidrojellerin performansı %50-70 oranında azalmıştır. DSC eğrileri, alkali oksidasyon ön işlemleri nedeniyle kristallik azaldığını ve ECH çapraz bağlı hidrojelin termal stabilitesinin CIT'den %40 daha yüksek olduğunu göstermektedir. SEM görüntüleri, ECH numunelerinde farklı desenler ve kırıklar gösterirken, CIT numunelerinde daha pürüzsüz hidrojel yüzeyleri ve liflerin varlığı görülmektedir.
Ethical Statement
Bu makalenin orijinal bir çalışma olduğunu, daha önce herhangi bir yerde yayınlanmadığını, başka bir dergide değerlendirme sürecinde olmadığını ve tüm yazarların makalenin dergiye sunulan son halini okuyup onayladığını beyan ederiz. Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır.
Supporting Institution
TÜBİTAK
Thanks
Yazarlar, bu çalışmayı 1001 Bilimsel ve Teknolojik Araştırma Projeleri Fon Programı (hibe numarası 215O313) aracılığıyla finanse eden Türkiye Bilim ve Teknoloji Kurumu'na teşekkür eder.
References
-
Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviours of carboxymethylcellulose-g-poly(AA-co-AM-co-MPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers, 84:76-82. https://doi.org/10.1016/j.carbpol.2010.10.061
-
Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33(20):7475-7480. https://doi.org/10.1021/ma0007029
-
Büyüküstün AD, Erisir E, Gumuskaya E (2025) Swelling capacity in carboxymethylcellulose-cellulose hybrid hydrogels: the effects of oxidation with zinc chloride and refining on cellulose used as reinforcement. Drewno. Prace Naukowe. Doniesienia. Komunikaty, 68(215):00046. https://doi.org/10.53502/wood-199710
-
Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N (2011) Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non-catalytic transformations. Applied Catalysis A: General, 402:1-10. https://doi.org/10.1016/j.apcata.2011.05.029
-
Chang C, Duan B, Cai L, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 46:92-100. https://doi.org/10.1016/j.eurpolymj.2009.04.033
-
Cui X, Lee JJ, Chen WN (2019) Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Scientific Reports, 9(1):14851. https://doi.org/10.1038/s41598-019-
54638-5
-
Demitri C, De Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science, 110:2453-2460. https://doi.org/10.1002/app.28660
-
Fan M, Dai D, Huang B (2012) Fourier Transform Infrared Spectroscopy for Natural Fibres. In: Salih S (ed) Fourier Transform-Materials Analysis. InTechOpen, Rijeka, pp 45-68. https://doi.org/10.5772/35482
-
Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MN (2015) Basic effects of pulp refining on fiber properties-a review. Carbohydrate Polymers, 115:785-803. https://doi.org/10.1016/j.carbpol.2014.08.047
-
Heinze T, Seoud OA, Koschella A (2018) Production and Characteristics of Cellulose from Different Sources. In: Kalia S (ed) Cellulose Derivatives: Synthesis, Structure, and Properties. Springer, Cham, pp 1-38. https://doi.org/10.1007/978-3-319-73168-1_1
-
Hubbe M, Aguola A, Daystar JS, Venditti RA, Pawlok JJ (2013) Enhanced absorbent products incorporating cellulose and its derivatives: a review. BioResources, 8(4):6556-6629. https://10.15376/BIORES.8.4.6556-6629
-
Jang SK, Jeong H, Choi IG (2023) The effect of cellulose crystalline structure modification on glucose production from chemical-composition-controlled biomass. Sustainability, 15(7):5869. https://doi.org/10.3390/su15075869
-
Johnson BD, Beebe DJ, Crone WC (2004) Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices. Materials Science and Engineering: C, 24(4):575-581. https://doi.org/10.1016/J.MSEC.2003.11.002
-
Krassing HA (1993) Cellulose structure, accessibility, and reactivity. Polymer Monographs, Vol. 11. Gordon and Breach Science Publishers, 1 Yverdon, pp. 167–169.
-
Kumar B, Sauraj, Negi YS (2019) To investigate the effect of ester-linkage on the properties of polyvinyl alcohol/carboxymethyl cellulose based hydrogel. Materials Letters, 252:308-312. https://doi.org/10.1016/j.matlet.2019.05.118
-
Kundu R, Mahada P, Chhirang B, Das B (2022) Cellulose hydrogels: Green and sustainable soft biomaterials. Current Research in Green and Sustainable Chemistry, 5:100252. https://doi.org/10.1016/j.crgsc.2021.100252
-
Kurtuluş OÇ, Ondaral S, Emin N, Kadak AE (2024) Bioaerogels produced from tempo oxidized nano cellulose with chitosan, gelatin, and alginate: general performances for wound dressing application. Cellulose, 31:1673-1689. https://doi.org/10.1007/s10570-024-06282-0
-
Laine C, Wang X, Tenkanen M, Varhimo A (2004) Changes in the fiber wall during refining of bleached pine Kraft pulp. Holzforschung, 58(3):248-252. https://doi.org/10.1515/HF.2004.036
-
Li J, Fang L, Tait WR, Sun L, Zhao L, Qian L (2017) Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. RSC Advances, 7:54823-54828. https://doi.org/10.1021/bk-2010-1033.ch001
-
Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose Solvents: For Analysis, Shaping and Chemical Modification, 1st edn. AS Publishing, Washington DC, pp 3-54.
-
Liu J, Howard GD, Lewis SH, Barros MD, Stansbury JW (2012) A study of shrinkage stress reduction and mechanical properties of nanogel-modified resin systems. European Polymer Journal, 48(11):1819-1828. https://doi.org/10.1016/j.eurpolymj.2012.08.009
-
Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. European Polymer Journal, 43(5):2221-2228. https://doi.org/10.1016/j.eurpolymj.2007.02.026
-
Milanovic JZ, Kostić MM, Škundrić P (2012) Structure and properties of tempo-oxidized cotton fibers. Chemical Industry & Chemical Engineering Quarterly, 18:473-481. https://doi.org/10.2298/CICEQ120114024M
-
Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 4:2492-2499. https://doi.org/10.1039/B810371B
-
Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers, 4(3):1517-1534. https://doi.org/10.3390/polym4031517
-
Pedersoli Júnior JL (2000) Effect of cellulose crystallinity on the progress of thermal oxidative degradation of paper. Journal of Applied Polymer Science, 78(1):61-66. https://doi.org/10.1002/1097-4628(20001003)78:1<61::AID-APP90>3.0.CO;2-K
-
Qiu H, Yu J (2008) Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: preparation and water absorbency. Journal of Applied Polymer Science, 107(1):118-123. https://doi.org/10.1002/app.26261
-
Seki Y, Altinisik A, Demircioğlu B, Tetik C (2014) Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: Synthesis and characterization. Cellulose, 21(3):1689-1698. https://doi.org/10.1007/s10570-014-0204-8
-
Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose, 22:2245-2261. https://doi.org/10.1007/s10570-015-0648-5
-
Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly (sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19:1225-1237. https://doi.org/10.1007/s10570-012-9711-7
-
Uyanga KA, Daoud WA (2021) Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose, 28(9):5493-5512. https://doi.org/10.1007/s10570-021-03870-2
-
Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. Journal of Applied Polymer Science, 81(12):3030-3037. https://doi.org/10.1002/app.1753
-
Wang Z, Ning A, Xie P, Gao G, Xie L, Li X, Song A (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydrate Polymers, 157:48-56. https://doi.org/10.1016/j.carbpol.2016.09.070.
Functionalized Cellulose-Reinforced CMC-Based Hydrogels: NaOH-Urea Catalyzed Oxidation and Mechanical Pretreatments, Crosslinking with Citric Acid and Epichlorohydrin, and Characterization
Year 2025,
Volume: 26 Issue: 2, 290 - 301, 15.10.2025
Asena Damla Büyüküstün
,
Esat Gümüşkaya
,
Emir Erişir
Abstract
To improve the performance of carboxymethylcellulose (CMC)-based copolymer hydrogels with low gel strength, additives like natural cellulose are extensively utilized but its structural limitations restrict successful integration into CMC-based hydrogels without modification. In this study, it was examined the effects of wood pulp with and without treatments as additives on the performance of hydrogels. Pretreatment of cellulose was carried out using hydrogen peroxide oxidation catalyzed by NaOH-urea, as well as mechanical pretreatment using PFI or colloid mills. In the cross-linking of these semi-synthetic polymers, either epichlorohydrin (ECH) or citric acid (CIT) were used. FTIR spectroscopy, DSC, and electron microscopy techniques, as well as swelling and water absorption tests, were used to analyze the chemical, physical, and morphological properties of hydrogels. The successful cross-linking by both agents was verified by FTIR spectra. For all hydrogel groups, regardless of the cross-linking agent used, the swelling ratio in alkaline solutions was higher than that in neutral and acidic environments. CIT-crosslinked hydrogels displayed a swelling rate 16 times greater at pH 7 than the control group. Enhanced swelling performance was observed in solutions with Na⁺ and K⁺, but hydrogels demonstrated a 50–70% reduction in performance in the presence of Mg²⁺ and NH₄⁺. DSC curves demonstrate that crystallinity diminished due to alkaline oxidation pretreatments, and the thermal stability of ECH-crosslinked hydrogels exceeds that of CIT by 40%. SEM images show different patterns and fractures in ECH samples, while CIT samples reveal smoother hydrogel surfaces and the presence of fibers.
Ethical Statement
We declare that this article is an original work, has not been published anywhere else, is not currently under review for publication in any other journal, and that all authors have read and approved the final version of the article submitted to the journal. There are no conflicts of interest among the authors.
Supporting Institution
TÜBİTAK
Thanks
The authors would like to thank the Turkish Scientific and Technological Research Council for funding this work through the 1001 Scientific and Technological Research Projects Fund Program (grant number 215O313).
References
-
Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviours of carboxymethylcellulose-g-poly(AA-co-AM-co-MPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers, 84:76-82. https://doi.org/10.1016/j.carbpol.2010.10.061
-
Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33(20):7475-7480. https://doi.org/10.1021/ma0007029
-
Büyüküstün AD, Erisir E, Gumuskaya E (2025) Swelling capacity in carboxymethylcellulose-cellulose hybrid hydrogels: the effects of oxidation with zinc chloride and refining on cellulose used as reinforcement. Drewno. Prace Naukowe. Doniesienia. Komunikaty, 68(215):00046. https://doi.org/10.53502/wood-199710
-
Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N (2011) Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non-catalytic transformations. Applied Catalysis A: General, 402:1-10. https://doi.org/10.1016/j.apcata.2011.05.029
-
Chang C, Duan B, Cai L, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 46:92-100. https://doi.org/10.1016/j.eurpolymj.2009.04.033
-
Cui X, Lee JJ, Chen WN (2019) Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Scientific Reports, 9(1):14851. https://doi.org/10.1038/s41598-019-
54638-5
-
Demitri C, De Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science, 110:2453-2460. https://doi.org/10.1002/app.28660
-
Fan M, Dai D, Huang B (2012) Fourier Transform Infrared Spectroscopy for Natural Fibres. In: Salih S (ed) Fourier Transform-Materials Analysis. InTechOpen, Rijeka, pp 45-68. https://doi.org/10.5772/35482
-
Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MN (2015) Basic effects of pulp refining on fiber properties-a review. Carbohydrate Polymers, 115:785-803. https://doi.org/10.1016/j.carbpol.2014.08.047
-
Heinze T, Seoud OA, Koschella A (2018) Production and Characteristics of Cellulose from Different Sources. In: Kalia S (ed) Cellulose Derivatives: Synthesis, Structure, and Properties. Springer, Cham, pp 1-38. https://doi.org/10.1007/978-3-319-73168-1_1
-
Hubbe M, Aguola A, Daystar JS, Venditti RA, Pawlok JJ (2013) Enhanced absorbent products incorporating cellulose and its derivatives: a review. BioResources, 8(4):6556-6629. https://10.15376/BIORES.8.4.6556-6629
-
Jang SK, Jeong H, Choi IG (2023) The effect of cellulose crystalline structure modification on glucose production from chemical-composition-controlled biomass. Sustainability, 15(7):5869. https://doi.org/10.3390/su15075869
-
Johnson BD, Beebe DJ, Crone WC (2004) Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices. Materials Science and Engineering: C, 24(4):575-581. https://doi.org/10.1016/J.MSEC.2003.11.002
-
Krassing HA (1993) Cellulose structure, accessibility, and reactivity. Polymer Monographs, Vol. 11. Gordon and Breach Science Publishers, 1 Yverdon, pp. 167–169.
-
Kumar B, Sauraj, Negi YS (2019) To investigate the effect of ester-linkage on the properties of polyvinyl alcohol/carboxymethyl cellulose based hydrogel. Materials Letters, 252:308-312. https://doi.org/10.1016/j.matlet.2019.05.118
-
Kundu R, Mahada P, Chhirang B, Das B (2022) Cellulose hydrogels: Green and sustainable soft biomaterials. Current Research in Green and Sustainable Chemistry, 5:100252. https://doi.org/10.1016/j.crgsc.2021.100252
-
Kurtuluş OÇ, Ondaral S, Emin N, Kadak AE (2024) Bioaerogels produced from tempo oxidized nano cellulose with chitosan, gelatin, and alginate: general performances for wound dressing application. Cellulose, 31:1673-1689. https://doi.org/10.1007/s10570-024-06282-0
-
Laine C, Wang X, Tenkanen M, Varhimo A (2004) Changes in the fiber wall during refining of bleached pine Kraft pulp. Holzforschung, 58(3):248-252. https://doi.org/10.1515/HF.2004.036
-
Li J, Fang L, Tait WR, Sun L, Zhao L, Qian L (2017) Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. RSC Advances, 7:54823-54828. https://doi.org/10.1021/bk-2010-1033.ch001
-
Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose Solvents: For Analysis, Shaping and Chemical Modification, 1st edn. AS Publishing, Washington DC, pp 3-54.
-
Liu J, Howard GD, Lewis SH, Barros MD, Stansbury JW (2012) A study of shrinkage stress reduction and mechanical properties of nanogel-modified resin systems. European Polymer Journal, 48(11):1819-1828. https://doi.org/10.1016/j.eurpolymj.2012.08.009
-
Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. European Polymer Journal, 43(5):2221-2228. https://doi.org/10.1016/j.eurpolymj.2007.02.026
-
Milanovic JZ, Kostić MM, Škundrić P (2012) Structure and properties of tempo-oxidized cotton fibers. Chemical Industry & Chemical Engineering Quarterly, 18:473-481. https://doi.org/10.2298/CICEQ120114024M
-
Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 4:2492-2499. https://doi.org/10.1039/B810371B
-
Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers, 4(3):1517-1534. https://doi.org/10.3390/polym4031517
-
Pedersoli Júnior JL (2000) Effect of cellulose crystallinity on the progress of thermal oxidative degradation of paper. Journal of Applied Polymer Science, 78(1):61-66. https://doi.org/10.1002/1097-4628(20001003)78:1<61::AID-APP90>3.0.CO;2-K
-
Qiu H, Yu J (2008) Polyacrylate/(carboxymethylcellulose modified montmorillonite) superabsorbent nanocomposite: preparation and water absorbency. Journal of Applied Polymer Science, 107(1):118-123. https://doi.org/10.1002/app.26261
-
Seki Y, Altinisik A, Demircioğlu B, Tetik C (2014) Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: Synthesis and characterization. Cellulose, 21(3):1689-1698. https://doi.org/10.1007/s10570-014-0204-8
-
Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose, 22:2245-2261. https://doi.org/10.1007/s10570-015-0648-5
-
Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly (sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19:1225-1237. https://doi.org/10.1007/s10570-012-9711-7
-
Uyanga KA, Daoud WA (2021) Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose, 28(9):5493-5512. https://doi.org/10.1007/s10570-021-03870-2
-
Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. Journal of Applied Polymer Science, 81(12):3030-3037. https://doi.org/10.1002/app.1753
-
Wang Z, Ning A, Xie P, Gao G, Xie L, Li X, Song A (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydrate Polymers, 157:48-56. https://doi.org/10.1016/j.carbpol.2016.09.070.