Research Article
BibTex RIS Cite

Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi

Year 2025, Volume: 26 Issue: 2, 534 - 546, 15.10.2025
https://doi.org/10.17474/artvinofd.1733893

Abstract

Bu araştırmada, Derindere Havzası’nın morfometrik özellikleri ve erozyon riski alt havza ölçeğinde nesnel kriterler kullanılarak belirlenmiştir. Havzanın morfometri parametreleri, Shuttle Radar Topography Mission (SRTM) verilerinden elde edilen Sayısal Yükseklik Modeli (SYM) kullanılarak hesaplanmıştır. Entropi yöntemi ile kriter ağırlıkları nesnel olarak belirlenmiş ve ardından ÇKKV yöntemlerinden WASPAS (Ağırlıklı Toplu Toplam Ürün Değerlendirmesi) uygulanarak alt havzaların erozyon riski sınıflandırılmıştır. Analizler, özellikle çatallanma oranı (Rb) ve akarsu uzunluk oranı (Rl) gibi parametrelerin erozyon potansiyelinde belirleyici olduğunu ortaya koymuştur. Bağıl rölyef (Rhp) ve engebelilik indeksi (Rn) ise yüksek eğimli alt havzaların erozyona karşı duyarlılığını artırmaktadır. Entropi-WASPAS entegrasyonu sonucu, AH-4 “Çok Yüksek” erozyon riski taşıyan alan olarak tanımlanırken, diğer alt havzalar “Çok Düşük” sınıfında yer almıştır. Orman ekosistemleri, havzanın topografik yapısına bağlı olarak toprak koruma ve su kalitesinin artırılmasında önemli bir işlev üstlenmektedir. Bu bağlamda, yüksek risk taşıyan alt havzalarda orman örtüsünün korunması ve iyileştirilmesi; erozyonun azaltılması ve su kaynaklarının sürdürülebilir yönetimi açısından öncelikli müdahale alanı olarak önerilmektedir. Morfometrik parametrelerin, erozyon riskini doğru biçimde yansıttığı ve Entropi-WASPAS tabanlı çok kriterli karar verme yaklaşımlarının kaynakların etkili şekilde tahsisi açısından güçlü bir karar destek aracı sunduğu görülmektedir. İleriye dönük olarak, iklim değişikliği ve arazi kullanımındaki değişimlerin etkilerini içeren çok boyutlu analizlerin gerçekleştirilmesi, havza yönetimi kararlarının doğruluğunu ve uygulanabilirliğini artıracaktır.

References

  • Akay AO, Şentürk E, Akgül M, Demir M (2023) Spatial assessment of sediment risk with integrated entropy-based WASPAS and fuzzy clustering methods in Turkey: impact of forestry activities and meteorological factors. Environmental Monitoring and Assessment, 195(10):1201. https://doi.org/10.1007/s10661-023-11762-0
  • Akbar AQ, Mitani Y, Nakanishi R, Djamaluddin I, Sugahara T (2024) Impact assessment of Digital Elevation Model (DEM) resolution on drainage system extraction and the evaluation of mass movement hazards in the upper catchment. Geosciences, 14(8):223. https://doi.org/10.3390/geosciences14080223
  • Basavareddy Ayyanagowdar MS, Desai S, Satishkumar U, Reddy GS, Kumar M, Kumar P (2025) Multi-Criteria approach for watershed prioritization using morphometry, hypsometric, and erosion analysis in the Mandovi River Basin of the Western Coast of India. Water Conservation Science and Engineering, 10(2): 47. https://doi.org/10.1007/s41101-025-00373-0
  • Chen P (2019) Effects of normalization on the entropy-based TOPSIS method. Expert Systems with Applications, 136:33–41. https://doi.org/10.1016/j.eswa.2019.06.035
  • ÇŞİDM (2024) Ardahan ili 2023 Yılı Çevre Durum Raporu. Türkiye Cumhuriyeti Ardahan Valiliği Çevre, Şehircilik ve İklim Değişikliği İl Müdürlüğü. https://webdosya.csb.gov.tr/db/ced/icerikler/ardahan_-cdr2023-20241230141207.pdf , Erişim tarihi: 11.06.2025.
  • Dede V, Zorlu K (2023) Geoheritage assessment with entropy-based WASPAS approach: an analysis on Karçal Mountains (Turkey). Geoheritage, 15(1):5. https://doi.org/10.1007/s12371-022-00777-7
  • Dede V (2023) Ardahan iline ait bazı temel coğrafi özelliklerin ve arazi-toprak verilerinin coğrafi bilgi sistemleri ile değerlendirilmesi (Kuzeydoğu Anadolu). Toprak Bilimi ve Bitki Besleme Dergisi, 11(2): 82-98. https://doi.org/10.33409/tbbbd.1373909
  • Demir S, Dursun İ (2024) Assessment of pre- and post-fire erosion using the RUSLE equation in a watershed affected by the forest fire on Google Earth Engine: The study of Manavgat River Basin. Natural Hazards, 120(3):2499–2527. https://doi.org/10.1007/s11069-023-06291-5
  • Dursun İ, Babalık AA (2023a) Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Türkiye Ormancılık Dergisi, 24(1):25–38. https://doi.org/10.18182/tjf.1205157
  • Dursun İ, Babalık AA (2023b) Burdur Gölü Havzasına Ait Bir Alt Havzada GeoWEPP ve Geotekstil Yöntemi Kullanılarak Erozyon Durumunun Belirlenmesi. Tarım, Orman ve Su Bilimlerinde İleri ve Çağdaş Çalışmalar, Publisher: Duvar Yayınları.
  • Dursun İ (2025) An integrated analytical approach to sub-watershed prioritization and erosion risk assessment in the Salda Lake Basin, Türkiye. Environmental Earth Sciences, 84(15):428. https://doi.org/10.1007/s12665-025-12434-7
  • Dursun İ, Demir S, Başayiğit L, Babalık AA (2025) Post-fire erosion dynamics in the Dim River Basin: a remote sensing and Google Earth Engine approach. Fire Ecology, 21(1): 47. https://doi.org/10.1186/s42408-025-00363-6
  • Dutal H (2022) Determination of the impact of forest fires on soil erosion risk by using the icona model: a case study of Ayvali dam watershed. Turkish Journal of Forest Science, 6(2): 510-538. https://doi.org/10.32328/turkjforsci.1167356
  • Ediş S, Aytaş İ, Özcan AU (2021) ICONA modeli kullanarak toprak erozyon riskinin değerlendirilmesi: Meşeli (Çubuk/Ankara) Havzası Örneği. Anadolu Orman Araştırmaları Dergisi, 7(1): 15-22. https://doi.org/10.53516/ajfr.948519
  • Ediş S, Timur ÖB, Tuttu G, Aytaş İ, Göl C, Özcan AU (2023) Assessing the impact of engineering measures and vegetation restoration on soil erosion: a case study in Osmancık, Türkiye. Sustainability, 15(15):12001. https://doi.org/10.3390/su151512001
  • ESRI (Environmental Systems Research Institute) (2004) Getting started with ArcGIS (Vol. 265). Redlands: Environmental Systems Research Institute Inc.
  • Gelagay HS, Minale AS (2016) Soil loss estimation using GIS and remote sensing techniques: a case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2): 126-136. https://doi.org/10.1016/j.iswcr.2016.01.002
  • Goswami SS, Behera DK (2021) Implementation of Entropy-Aras decision making methodology in the selection of best engineering materials. Materials Today: Proceedings, 38:2256-2262.https://doi.org/10.1016/j.matpr.2020.06.320
  • Kaya G (2005) Posof Çayı Havzası’nda yerleşmeler. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(1):71-96.
  • Koçman A (1979) Yukarı Kura Nehri Havzası’nın fiziksel coğrafyası. Doktora Tezi, Atatürk Üniversitesi, Erzurum.
  • Öztürk D (2009) Risk analizi, CBS tabanlı çok ölçütlü karar analizi yöntemleri ile sel ve taşkın duyarlılığının belirlenmesi: Güney Marmara Havzası örneği. Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Pamukoğlu Y, Babalık AA, Dursun İ (2023) An Assessment of Climate Change And Carbon Management. In N.Y. Bozdoğan & A.M. Bozdoğan (Eds.), Academic Research and Reviews in Agriculture, Forestry and Aquaculture Sciences, pp.284-297. Ankara: Platanus Publishing.
  • Pan S, Dey S, Yadav V, Biswas R (2025) Prioritizing sub-watersheds for soil and water resource conservation using multi-analytical approaches: a study of Shilabati River Basin, WB, India. Journal of Water and Climate Change, (jwc2025633). https://doi.org/10.2166/wcc.2025.633
  • Rocha J, Duarte A, Fabres S, Quintela A, Serpa D (2022) Influence of DEM resolution on the hydrological responses of a terraced catchment: an exploratory modelling approach. Remote Sensing, 15(1):169. https://doi.org/10.3390/rs15010169
  • Salvi S, Tiwari H, Bobade S (2025) Morphometric evaluation of Manjara watershed, Latur district, Maharashtra, India: a GIS approach. Innovative Infrastructure Solutions, 10(3):106. https://doi.org/10.1007/s41062-025-01862-w
  • Saouita J, El-Hmaidi A, Ousmana H, Aouragh MH, Iallamen Z, Boufala MH, Ragragui H, Kasse Z, El Ouali A, Jaddi H (2024) Use of Geomatics and Multi-Criteria Methods to Assess Water Erosion in the Tigrigra Watershed (Azrou Region, Morocco). In: BIO Web of Conferences, 115:01007. EDP Sciences.
  • Sarkar P, Kumar P, Vishwakarma DK, Ashok A, Elbeltagi A, Gupta S, Kuriqi A (2022) Watershed prioritization using morphometric analysis by MCDM approaches. Ecological Informatics, 70:101763. https://doi.org/10.1016/j.ecoinf.2022.101763
  • Sarkar P, Gayen SK (2024) Application of Entropy-AHP and WASPAS methods for prioritizing the sub watersheds of Teesta River basin in terms of soil erosion susceptibility. Discover Environment, 2(1):135. https://doi.org/10.1007/s44274-024-00163-w
  • Shannon CE (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27: 379–423. https://doi.org/10.1002/j.1538-7305.1948. tb01338.x
  • Shekar PR, Mathew A, Hasher FFB, Mehmood K, Zhran M (2025) Towards sustainable development: ranking of soil erosion-prone areas using morphometric analysis and multi-criteria decision-making techniques. Sustainability, 17(5):2124. https://doi.org/10.3390/su17052124
  • Singh MC, Yousuf A, Prasad V (2021) Morphometric and principal component analysis–based prioritization of reservoir catchments using geospatial techniques for land and water conservation aspects in North-West India. Arabian Journal of Geosciences, 14:1-22. https://doi.org/10.1007/s12517-021-06822-z
  • Strahler AN (1964) Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Handbook of Applied Hydrology (Ed: Chow, V.), McGraw Hill, New York, pp. 9-76.
  • Tsallis C (2022) Entropy. Encyclopedia, 2(1):264-300. https://doi.org/10.3390/encyclopedia2010018
  • Weslati O, Serbaji MM (2024) Spatial assessment of soil erosion by water using RUSLE model, remote sensing and GIS: a case study of Mellegue watershed, Algeria–Tunisia. Environmental Monitoring and Assessment, 196(1):14. https://doi.org/10.1007/s10661-023-12163-z
  • Yüksel EE, Özalp M, Yıldırımer S (2016) Using a geospatial interface (Geowepp) to predict soil loss, runoff and sediment yield of Kokolet Creek watershed. International Journal of Ecosystems and Ecology Sciences (IJEES), 6(3):437–442.
  • Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevicius A (2012) Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika, 122(6):3-6. https://doi.org/10.5755/j01.eee.122.6.1810

Erosion Analysis Based on Multi-Criteria Decision-Making: Prioritization of the Derindere Watershed (Ardahan) Using the Entropy-WASPAS Approach

Year 2025, Volume: 26 Issue: 2, 534 - 546, 15.10.2025
https://doi.org/10.17474/artvinofd.1733893

Abstract

In this research, the morphometric characteristics and erosion risk of the Derindere Watershed were assessed at the sub-basin scale using objective criteria. The morphometric parameters were derived from a Digital Elevation Model (DEM) generated from Shuttle Radar Topography Mission (SRTM) data. Criterion weights were objectively determined through the Entropy method, and subsequently, the WASPAS (Weighted Aggregated Sum Product Assessment) technique, one of the MCDM approaches, was employed to classify erosion risk across the sub-basins. The analyses indicated that parameters such as the bifurcation ratio (Rb) and stream length ratio (Rl) were key determinants of erosion potential. Furthermore, relative relief (Rhp) and the ruggedness index (Rn) revealed that steeply sloping sub-basins exhibit greater susceptibility to erosion. Through the integration of Entropy and WASPAS, the SW-4 was identified as an area of 'Very High' erosion risk, whereas the remaining sub-basins were classified as 'Very Low.' Forest ecosystems were found to play a crucial role in soil conservation and water quality enhancement, conditioned by the topographic structure of the watershed. Accordingly, preserving and rehabilitating forest cover in high-risk sub-basins is recommended as a priority intervention strategy to mitigate erosion and promote the sustainable management of water resources. The findings demonstrate that morphometric parameters accurately reflect erosion risk, while the Entropy–WASPAS-based multi-criteria decision-making framework offers a robust decision-support tool for the effective allocation of resources. Looking forward, incorporating multidimensional analyses that integrate the impacts of climate change and land-use dynamics will enhance both the accuracy and applicability of watershed management decisions.

References

  • Akay AO, Şentürk E, Akgül M, Demir M (2023) Spatial assessment of sediment risk with integrated entropy-based WASPAS and fuzzy clustering methods in Turkey: impact of forestry activities and meteorological factors. Environmental Monitoring and Assessment, 195(10):1201. https://doi.org/10.1007/s10661-023-11762-0
  • Akbar AQ, Mitani Y, Nakanishi R, Djamaluddin I, Sugahara T (2024) Impact assessment of Digital Elevation Model (DEM) resolution on drainage system extraction and the evaluation of mass movement hazards in the upper catchment. Geosciences, 14(8):223. https://doi.org/10.3390/geosciences14080223
  • Basavareddy Ayyanagowdar MS, Desai S, Satishkumar U, Reddy GS, Kumar M, Kumar P (2025) Multi-Criteria approach for watershed prioritization using morphometry, hypsometric, and erosion analysis in the Mandovi River Basin of the Western Coast of India. Water Conservation Science and Engineering, 10(2): 47. https://doi.org/10.1007/s41101-025-00373-0
  • Chen P (2019) Effects of normalization on the entropy-based TOPSIS method. Expert Systems with Applications, 136:33–41. https://doi.org/10.1016/j.eswa.2019.06.035
  • ÇŞİDM (2024) Ardahan ili 2023 Yılı Çevre Durum Raporu. Türkiye Cumhuriyeti Ardahan Valiliği Çevre, Şehircilik ve İklim Değişikliği İl Müdürlüğü. https://webdosya.csb.gov.tr/db/ced/icerikler/ardahan_-cdr2023-20241230141207.pdf , Erişim tarihi: 11.06.2025.
  • Dede V, Zorlu K (2023) Geoheritage assessment with entropy-based WASPAS approach: an analysis on Karçal Mountains (Turkey). Geoheritage, 15(1):5. https://doi.org/10.1007/s12371-022-00777-7
  • Dede V (2023) Ardahan iline ait bazı temel coğrafi özelliklerin ve arazi-toprak verilerinin coğrafi bilgi sistemleri ile değerlendirilmesi (Kuzeydoğu Anadolu). Toprak Bilimi ve Bitki Besleme Dergisi, 11(2): 82-98. https://doi.org/10.33409/tbbbd.1373909
  • Demir S, Dursun İ (2024) Assessment of pre- and post-fire erosion using the RUSLE equation in a watershed affected by the forest fire on Google Earth Engine: The study of Manavgat River Basin. Natural Hazards, 120(3):2499–2527. https://doi.org/10.1007/s11069-023-06291-5
  • Dursun İ, Babalık AA (2023a) Burdur Gölü Havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Türkiye Ormancılık Dergisi, 24(1):25–38. https://doi.org/10.18182/tjf.1205157
  • Dursun İ, Babalık AA (2023b) Burdur Gölü Havzasına Ait Bir Alt Havzada GeoWEPP ve Geotekstil Yöntemi Kullanılarak Erozyon Durumunun Belirlenmesi. Tarım, Orman ve Su Bilimlerinde İleri ve Çağdaş Çalışmalar, Publisher: Duvar Yayınları.
  • Dursun İ (2025) An integrated analytical approach to sub-watershed prioritization and erosion risk assessment in the Salda Lake Basin, Türkiye. Environmental Earth Sciences, 84(15):428. https://doi.org/10.1007/s12665-025-12434-7
  • Dursun İ, Demir S, Başayiğit L, Babalık AA (2025) Post-fire erosion dynamics in the Dim River Basin: a remote sensing and Google Earth Engine approach. Fire Ecology, 21(1): 47. https://doi.org/10.1186/s42408-025-00363-6
  • Dutal H (2022) Determination of the impact of forest fires on soil erosion risk by using the icona model: a case study of Ayvali dam watershed. Turkish Journal of Forest Science, 6(2): 510-538. https://doi.org/10.32328/turkjforsci.1167356
  • Ediş S, Aytaş İ, Özcan AU (2021) ICONA modeli kullanarak toprak erozyon riskinin değerlendirilmesi: Meşeli (Çubuk/Ankara) Havzası Örneği. Anadolu Orman Araştırmaları Dergisi, 7(1): 15-22. https://doi.org/10.53516/ajfr.948519
  • Ediş S, Timur ÖB, Tuttu G, Aytaş İ, Göl C, Özcan AU (2023) Assessing the impact of engineering measures and vegetation restoration on soil erosion: a case study in Osmancık, Türkiye. Sustainability, 15(15):12001. https://doi.org/10.3390/su151512001
  • ESRI (Environmental Systems Research Institute) (2004) Getting started with ArcGIS (Vol. 265). Redlands: Environmental Systems Research Institute Inc.
  • Gelagay HS, Minale AS (2016) Soil loss estimation using GIS and remote sensing techniques: a case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2): 126-136. https://doi.org/10.1016/j.iswcr.2016.01.002
  • Goswami SS, Behera DK (2021) Implementation of Entropy-Aras decision making methodology in the selection of best engineering materials. Materials Today: Proceedings, 38:2256-2262.https://doi.org/10.1016/j.matpr.2020.06.320
  • Kaya G (2005) Posof Çayı Havzası’nda yerleşmeler. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(1):71-96.
  • Koçman A (1979) Yukarı Kura Nehri Havzası’nın fiziksel coğrafyası. Doktora Tezi, Atatürk Üniversitesi, Erzurum.
  • Öztürk D (2009) Risk analizi, CBS tabanlı çok ölçütlü karar analizi yöntemleri ile sel ve taşkın duyarlılığının belirlenmesi: Güney Marmara Havzası örneği. Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Pamukoğlu Y, Babalık AA, Dursun İ (2023) An Assessment of Climate Change And Carbon Management. In N.Y. Bozdoğan & A.M. Bozdoğan (Eds.), Academic Research and Reviews in Agriculture, Forestry and Aquaculture Sciences, pp.284-297. Ankara: Platanus Publishing.
  • Pan S, Dey S, Yadav V, Biswas R (2025) Prioritizing sub-watersheds for soil and water resource conservation using multi-analytical approaches: a study of Shilabati River Basin, WB, India. Journal of Water and Climate Change, (jwc2025633). https://doi.org/10.2166/wcc.2025.633
  • Rocha J, Duarte A, Fabres S, Quintela A, Serpa D (2022) Influence of DEM resolution on the hydrological responses of a terraced catchment: an exploratory modelling approach. Remote Sensing, 15(1):169. https://doi.org/10.3390/rs15010169
  • Salvi S, Tiwari H, Bobade S (2025) Morphometric evaluation of Manjara watershed, Latur district, Maharashtra, India: a GIS approach. Innovative Infrastructure Solutions, 10(3):106. https://doi.org/10.1007/s41062-025-01862-w
  • Saouita J, El-Hmaidi A, Ousmana H, Aouragh MH, Iallamen Z, Boufala MH, Ragragui H, Kasse Z, El Ouali A, Jaddi H (2024) Use of Geomatics and Multi-Criteria Methods to Assess Water Erosion in the Tigrigra Watershed (Azrou Region, Morocco). In: BIO Web of Conferences, 115:01007. EDP Sciences.
  • Sarkar P, Kumar P, Vishwakarma DK, Ashok A, Elbeltagi A, Gupta S, Kuriqi A (2022) Watershed prioritization using morphometric analysis by MCDM approaches. Ecological Informatics, 70:101763. https://doi.org/10.1016/j.ecoinf.2022.101763
  • Sarkar P, Gayen SK (2024) Application of Entropy-AHP and WASPAS methods for prioritizing the sub watersheds of Teesta River basin in terms of soil erosion susceptibility. Discover Environment, 2(1):135. https://doi.org/10.1007/s44274-024-00163-w
  • Shannon CE (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27: 379–423. https://doi.org/10.1002/j.1538-7305.1948. tb01338.x
  • Shekar PR, Mathew A, Hasher FFB, Mehmood K, Zhran M (2025) Towards sustainable development: ranking of soil erosion-prone areas using morphometric analysis and multi-criteria decision-making techniques. Sustainability, 17(5):2124. https://doi.org/10.3390/su17052124
  • Singh MC, Yousuf A, Prasad V (2021) Morphometric and principal component analysis–based prioritization of reservoir catchments using geospatial techniques for land and water conservation aspects in North-West India. Arabian Journal of Geosciences, 14:1-22. https://doi.org/10.1007/s12517-021-06822-z
  • Strahler AN (1964) Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Handbook of Applied Hydrology (Ed: Chow, V.), McGraw Hill, New York, pp. 9-76.
  • Tsallis C (2022) Entropy. Encyclopedia, 2(1):264-300. https://doi.org/10.3390/encyclopedia2010018
  • Weslati O, Serbaji MM (2024) Spatial assessment of soil erosion by water using RUSLE model, remote sensing and GIS: a case study of Mellegue watershed, Algeria–Tunisia. Environmental Monitoring and Assessment, 196(1):14. https://doi.org/10.1007/s10661-023-12163-z
  • Yüksel EE, Özalp M, Yıldırımer S (2016) Using a geospatial interface (Geowepp) to predict soil loss, runoff and sediment yield of Kokolet Creek watershed. International Journal of Ecosystems and Ecology Sciences (IJEES), 6(3):437–442.
  • Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevicius A (2012) Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika, 122(6):3-6. https://doi.org/10.5755/j01.eee.122.6.1810
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Watershed Management in Forestry
Journal Section Research Article
Authors

İbrahim Dursun 0000-0003-2261-1112

Publication Date October 15, 2025
Submission Date July 3, 2025
Acceptance Date September 19, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

APA Dursun, İ. (2025). Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 26(2), 534-546. https://doi.org/10.17474/artvinofd.1733893
AMA Dursun İ. Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi. ACUJFF. October 2025;26(2):534-546. doi:10.17474/artvinofd.1733893
Chicago Dursun, İbrahim. “Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26, no. 2 (October 2025): 534-46. https://doi.org/10.17474/artvinofd.1733893.
EndNote Dursun İ (October 1, 2025) Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26 2 534–546.
IEEE İ. Dursun, “Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi”, ACUJFF, vol. 26, no. 2, pp. 534–546, 2025, doi: 10.17474/artvinofd.1733893.
ISNAD Dursun, İbrahim. “Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26/2 (October2025), 534-546. https://doi.org/10.17474/artvinofd.1733893.
JAMA Dursun İ. Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi. ACUJFF. 2025;26:534–546.
MLA Dursun, İbrahim. “Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 26, no. 2, 2025, pp. 534-46, doi:10.17474/artvinofd.1733893.
Vancouver Dursun İ. Çok Kriterli Karar Verme Temelli Erozyon Analizi: Entropi-WASPAS Yaklaşımıyla Derindere Havzası’nın (Ardahan) Önceliklendirilmesi. ACUJFF. 2025;26(2):534-46.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.