Research Article
BibTex RIS Cite

The Effect of Prescribed Burning on Soil Properties in Regeneration Stands of Anatolian Black Pine (Pinus nigra)

Year 2025, Volume: 26 Issue: 2, 589 - 600, 15.10.2025
https://doi.org/10.17474/artvinofd.1744865

Abstract

The ecological impacts of forest fires are related to understanding changes in forest ecosystems, which are crucial for the sustainability and protection of our forest resources. It is noted that forest fires will significantly affect forest ecosystems and fire regimes in the 21st century. This study investigated the effects of prescribed burning on soil properties in a young Anatolian black pine regeneration stand. Soil was classified as low, medium, and severe based on the color and amount of ash present after prescribed burning. A total of nine replicate trial areas were established from these three areas, along with three additional control areas. Soil analyses were performed on samples taken at depths of 0-5 cm and 5-15 cm. It was found that saturation values decreased in the prescribed burning areas, heavy soils transitioned to light soils, pH and EC values increased, organic matter and N amounts decreased, the C/N ratio increased depending on organic carbon, and P, Ca, Mg, K, Na, and lime values increased in at least one of all areas. The negative impact of severe and large forest fires on soil properties was not observed in the areas where we applied prescribed burning. On the contrary, factors such as low fire intensity and low consumption of combustible material positively affected the physical and chemical properties of the soil. It is understood that prescribed burning, especially when applied to nutrient-sufficient soils in pine forests where decomposition is slow, aims to reduce litter accumulation, bring seeds into contact with the soil, and prevent the damage caused by severe forest fires.

Project Number

122O425

References

  • Agee JK (1998) Ecology and Biogeography of Pinus. Ecology and Biogeography of Pinus, D. M. In: Richardson (Ed.), Cambridge University Press, UK. Press, UK.
  • Akburak S, Son Y, Makineci E, Çakir M (2018) Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest. Journal for Research, 29 (3): 687–696. https://doi.org/10.1007/s11676-017-0486-4
  • Allison LE, Moodie CD (1965) Carbonate. In C. A. Black (Ed.), Methods of Soil Analysis. Wisconsin: American Society of Agronomy, 1379-1396.
  • Aref IM, El Atta HA, Mohamed Al Ghamde AR (2011) Effect of forest fires on tree diversity and some soil properties. International Journal of Agriculture & Biology, 13(5):659-664.
  • Bilgili E, Küçük Ö, Sağlam B, Coşkuner A (2021) Büyük Orman Yangınları, Sebepleri, Organizasyonu ve İdaresi. TÜBA, Ankara.
  • Bruce RC, Rayment GE (1982) Analytical methods and interpretations used by the agricultural chemistry branch for soil and land use surveys. Queensland Department of Primary Industries Bulletin QB82004.
  • Brye KR (2006) Soil physicochemical changes following 12 years of annual burning in a humid subtropical tallgrass prairie: a hypothesis. Acta Oecologica, 30: 407–413. https://doi.org/10.1016/j.actao.2006.06.001
  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143(1):1–10. https://doi.org/10.1007/s00442-004-1788-8
  • Certini G, Scalenghe R (2021) Soil is the best testifier of the diachronous dawn of the Anthropocene. Journal of Plant Nutrition and Soil Science, (1): 1-4. https://doi.org/10.1002/jpln.202000481
  • Charman PEV, Roper MM (2000) Soil Organic Matter. In: (Eds. P.E.V. Charman and B.W. Murphy) Soil: Their Properties and Management. 2nd Ed. Oxford University Press, 260-270.
  • Dems CL, Taylor AH, Smithwick EA, Kreye JK, Kaye MW (2021) Prescribed fire alters the structure and composition of a mid-Atlantic oak forest up to eight years after burning. Fire Ecology, 17(1): 1–13. https://doi.org/10.1186/s42408-021-00093-5
  • FAO (1990) Micronutrient. Assessment at the Country Level: An International Study. FAO Soil Bulletin by Mikko Sillanpaa. Rome.
  • Fellows AW, Flerchinger GN, Lohse KA, Seyfried MS (2018) Rapid recovery of gross production and respiration in a mesic mountain big sagebrush ecosystem following prescribed fire. Ecosystems, 21(7):1283–1294. https://doi.org/10.1007/s10021-017-0218-9
  • Fernández-García V, Marcos E, Fernández-Guisuraga JM, Taboada A, Suárez-Seoane S, Calvo L (2019) Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. International Journal of Wildland Fire, 28(5):354–364. https://doi.org/10.1071/WF18103
  • Ferrer I, Thurman EM, Zweigenbaum JA, Murphy SF, Webster JP, Rosario-Ortiz FL (2021) Wildfres: ıdentification of a new suite of aromatic polycarboxylic acids in ash and surface water. Science of the Total Environment, 770:144661. https://doi.org/10.1016/j.scitotenv.2020.144661
  • Francos M, Pereira P, Úbeda X (2019) Effect of pre- and post-wildfire management practices on plant recovery after a wildfire in Northeast Iberian Peninsula. Journal of Forestry Research, December 1-15.
  • Francos M, Úbeda X (2021) Prescribed fire management. Current Opinion in Environmental Science & Health, 21: 100250. https://doi.org/10.1016/j.coesh.2021.100250
  • Goberna M, García C, Insam H, Hernández MT, Verdú M (2012) Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microbial Ecology, 64:242-255. https://doi.org/10.1007/s00248-011-9995-4
  • Goforth BR, Graham RC, Hubbert KR, Zanner CW, Minnich RA (2005) Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. International Journal of Wildland Fire, 14: 343-354. https://doi.org/10.1071/WF05038
  • Gundale MJ, DeLuca TH, Fiedler CE, Ramsey PW, Harrington MG, Gannon JE (2005) Restoration treatments in a Montana ponderosa pine forest: effects on soil physical, chemical and biological properties. Forest Ecology Management, 213: 25–38. https://doi.org/10.1016/j.foreco.2005.03.015
  • Gülcur F (1974) Toprağın Fiziksel ve Kimyasal Analiz Metodları. İ.Ü. Orman Fakültesi Yayın No:201.
  • Hızalan E, Ünal H (1966) Topraklarda Önemli Kimyasal Analizler. A. Ü. Ziraat Fakültesi Yayınları, No: 278, Ankara.
  • Hiers JK, O’Brien JJ, Varner JM, Butler BW, Dickinson M, Furman J, Gallagher M, Godwin D, Goodrick SL, Hood SM, Hudak A (2020) Prescribed fire science: the case for a refined research agenda. Fire Ecology, 16(1): 1–15. https://doi.org/10.1186/s42408-020-0070-8
  • Hosseini M, Geissen V, González-Pelayo O, Serpa D, Machado AI, Ritsema C, Keizer JJ (2017) Effects of frequent occurrence and recurrence on nitrogen and phosphorus losses by overland flow in maritime pine plantations in north-central Portugal. Geoderma, 289: 97–106. https://doi.org/10.1016/j.geoderma.2016.11.033
  • Hu M, Song J, Li S, Li Z, Hao Y, Di M, Wan S (2020) Understanding the effects of free and nitrogen addition on soil respiration of a field study by combining observations with a meta-analysis. Agricultural and Forest Meteorology, 292:108106. https://doi.org/10.1016/j.agrformet.2020.108106
  • Kacar B (2009) Toprak Analizleri. Nobel Akademik Yayıncılık.
  • Kahveci Ü (2016) Yangın görmüş kızılçam meşcerelerinde azot mineralleşme potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Artvin Çoruh Üniversitesi Fen Bilimleri Enstitüsü, Artvin.
  • Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis. Forestry Canada Northern Forestry Publication. Alberta, Canada.
  • Kaptanoğlu AS, Namlı A (2019) Orman yangınının ve yangın sonrası boşaltma kesimlerinin toprak özelliklerine etkisi. Ormancılık Araştırma Dergisi, 6(1):29-46. https://doi.org/10.17568/ogmoad.430649
  • Kaptanoğlu AS, Tavşanoğlu Ç, Turgay OC (2018) Soil chemistry and microbial activity after a surface fire in a mixed temperate forest. Eurasian Journal of Forest Science, 6(4): 1-13. https://doi.org/10.31195/ejejfs.451884
  • Küçük M (2006) Genç karaçam meşcerelerinde yangının toprak solunumu, kök kütlesi ve toprağın fiziksel ve kimyasal özellikleri üzerine etkileri. Yüksek Lisans Tezi, Artvin Çoruh Üniversitesi Fen Bilimleri Enstitüsü, Artvin.
  • Küçük Ö, Sevinç V (2023) Fire behavior prediction with artificial intelligence in thinned black pine (Pinus nigra Arnold) stand. Forest Ecology and Management, 529:120707. https://doi.org/10.1016/j.foreco.2022.120707
  • Loue A (1968) Diagnostique Petiolaire de Prospection. Etudes Sur la Nutrition et al Fertilisation Potassiques de la Vigne. Société Commerciale des Potasses d'Alsace Services Agronomiques, 31-41.
  • Melillo JM, Steudier PA, Aber JD, Newkirk K, Lux H, Bowles FP, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298 (5601): 2173-2176. https://doi.org/10.1126/science.1074153
  • Metson AJ (1961) Methods of Chemical Analysis of Soil Survey Samples. Govt. Printers, Wellington, New Zealand, Pages: 64.
  • Moya D, González-De Vega S, Lozano E, García-Orenes F, MataixSolera J, Lucas-Borja ME, de Las HJ (2019) The burn severity and plant recovery relationship affects the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after Wildfire. Journal of Environmental Management, 235: 250–256. https://doi.org/10.1016/j.jenvman.2019.01.029
  • Neill C, Patterson WA, Crary DW (2007) Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manag., 250, 234–243. https://doi.org/10.1016/j.foreco.2007.05.023
  • Page AL, Miller RH, Keeney DR (1982) Methods of Soil Analysis. Part 2, 2nd Edition. Agronomy Monograph, Vol. 9. American Society of Agronomy. Madison, WI, 1142pp. 2.
  • Pereira P, Úbeda X, Martin D, Mataix-Solera J, Guerrero C (2011) Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environment Research, 111: 237–247. https://doi.org/10.1016/j.envres.2010.09.002
  • Richards LA (1954) Diagnosis and Improvement of Saline and Alkaline Soils. US Department of Agriculture, Forest Service, 60.
  • Ryan KC (2002) Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica, 36: 13–39.
  • Shakesby RA, Bento CPM, Ferreira CSS, Ferreira AJD, Stoof CR, Urbanek E, Walsh RPD (2015) Impacts of prescribed fire on soil loss and soil quality: an assessment based on an experimentally-burned catchment in central Portugal. Catena, 128: 278–293. https://doi.org/10.1016/j.catena.2013.03.012
  • Tecimen HB, Sevgi O (2011) Heating induced changes in mineral nitrogen and organic carbon in relation with temperature and time. J Environ Biol, 32(3/4):295–300.
  • Tiryaki Güngör AG, Küçük M, Bilgili E, Küçük Ö (2023) Anadolu Karaçam (Pinus nigra ssp. pallasiana) meşcerelerinde kontrollü yakma uygulamalarının bazı ölü örtü, kül ve toprak özellikleri üzerine etkileri. Anadolu Orman Araştırmaları Dergisi, 9(2): 82-89. https://doi.org/10.53516/ajfr.1383034
  • Tüfekçioğlu A, Tüfekçioğlu M (2021) Yangın Sonrası Orman Toprağında Meydana Gelen Değişim ve Etkileşimler. TÜBA, Ankara.
  • Tüzüner A (1990) Toprak ve Su Analiz Laboratuvarları El Kitabı. T.C. Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara, s: 61-73.
  • Ülgen N, Yurtsever N (1995) Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, Ankara, s.230.
  • Wan X, Li C, Parikh SJ (2021) Chemical composition of soil-associated ash from the southern California Thomas fire and its potential inhalation risks to farmworkers. Journal of Environmental Management, 278:111570. https://doi.org/10.1016/j.jenvman.2020.111570
  • Xue L, Li Q, Chen H (2014) Effects of a wildfire on selected physical, chemical, and biochemical soil properties in a Pinus massoniana forest in South China. Forests, 5(12): 2947-2966. https://doi.org/ 10.3390/f5122947

Anadolu Karaçamı (Pinus nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi

Year 2025, Volume: 26 Issue: 2, 589 - 600, 15.10.2025
https://doi.org/10.17474/artvinofd.1744865

Abstract

Orman yangınlarının ekolojik etkileri, orman varlığımızın sürdürülebilirliği ve korunması orman ekosistemindeki değişimlerin bilinmesi ile ilişkilidir. 21. yüzyılda orman yangınlarının önemli derecede orman ekosistemini ve yangın rejimini etkileyeceği belirtilmektedir. Bu çalışmada Anadolu karaçamı gençleştirme meşceresinde kontrolü yakmanın toprak özellikleri üzerine etkileri araştırılmıştır. Kontrollü yakma sonrası üzerindeki kül rengi ve miktarına göre toprak az, orta ve şiddetli olarak sınıflandırılmıştır. Bu üç alandan üç tekerrürlü toplam dokuz deneme alanı ve ek olarak üç kontrol alanı oluşturulmuş, 0-5cm ve 5-15cm derinlik kademelerine göre alınan örneklerde bazı toprak analizleri yapılmıştır. Kontrollü yakma alanlarında saturasyon değerinin azaldığı, ağır bünyeli topraklardan hafif bünyeli topraklara geçildiği, pH ve EC değerlerinin arttığı, organik madde ve N miktarının azaldığı, C/N oranının organik karbona bağlı olarak arttığı ayrıca P, Ca, Mg, K, Na ve kireç değerlerinin de tüm alanların en az birinde arttığı bulunmuştur. Şiddetli ve büyük orman yangınlarının toprak özellikleri üzerine olan olumsuz etkisi kontrollü yakma uygulaması yaptığımız alanlarda görülmemiştir. Aksine yangın şiddetinin düşük olması, yanıcı madde tüketiminin az olması gibi faktörler toprağın fiziksel ve kimyasal özelliklerini olumlu etkilenmiştir. Özellikle besin maddesince yeterli olan topraklarda uygulanması ayrışmanın yavaş olduğu çam meşcerelerinde ölü örtü birikimini azaltmaya, tohumu toprakla buluşturmaya ve şiddetli orman yangınlarının zararını önlemeye yönelik olduğu anlaşılmaktadır.

Project Number

122O425

Thanks

Bu çalışma, sorumlu yazarın Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü Orman Mühendisliği Anabilim Dalı'nda hazırlamış olduğu doktora tezinin bir bölümünden oluşmaktadır. Ayrıca, bu çalışma TÜBİTAK 1001-Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı kapsamında 122O425 nolu proje ile desteklenmiştir.

References

  • Agee JK (1998) Ecology and Biogeography of Pinus. Ecology and Biogeography of Pinus, D. M. In: Richardson (Ed.), Cambridge University Press, UK. Press, UK.
  • Akburak S, Son Y, Makineci E, Çakir M (2018) Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest. Journal for Research, 29 (3): 687–696. https://doi.org/10.1007/s11676-017-0486-4
  • Allison LE, Moodie CD (1965) Carbonate. In C. A. Black (Ed.), Methods of Soil Analysis. Wisconsin: American Society of Agronomy, 1379-1396.
  • Aref IM, El Atta HA, Mohamed Al Ghamde AR (2011) Effect of forest fires on tree diversity and some soil properties. International Journal of Agriculture & Biology, 13(5):659-664.
  • Bilgili E, Küçük Ö, Sağlam B, Coşkuner A (2021) Büyük Orman Yangınları, Sebepleri, Organizasyonu ve İdaresi. TÜBA, Ankara.
  • Bruce RC, Rayment GE (1982) Analytical methods and interpretations used by the agricultural chemistry branch for soil and land use surveys. Queensland Department of Primary Industries Bulletin QB82004.
  • Brye KR (2006) Soil physicochemical changes following 12 years of annual burning in a humid subtropical tallgrass prairie: a hypothesis. Acta Oecologica, 30: 407–413. https://doi.org/10.1016/j.actao.2006.06.001
  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143(1):1–10. https://doi.org/10.1007/s00442-004-1788-8
  • Certini G, Scalenghe R (2021) Soil is the best testifier of the diachronous dawn of the Anthropocene. Journal of Plant Nutrition and Soil Science, (1): 1-4. https://doi.org/10.1002/jpln.202000481
  • Charman PEV, Roper MM (2000) Soil Organic Matter. In: (Eds. P.E.V. Charman and B.W. Murphy) Soil: Their Properties and Management. 2nd Ed. Oxford University Press, 260-270.
  • Dems CL, Taylor AH, Smithwick EA, Kreye JK, Kaye MW (2021) Prescribed fire alters the structure and composition of a mid-Atlantic oak forest up to eight years after burning. Fire Ecology, 17(1): 1–13. https://doi.org/10.1186/s42408-021-00093-5
  • FAO (1990) Micronutrient. Assessment at the Country Level: An International Study. FAO Soil Bulletin by Mikko Sillanpaa. Rome.
  • Fellows AW, Flerchinger GN, Lohse KA, Seyfried MS (2018) Rapid recovery of gross production and respiration in a mesic mountain big sagebrush ecosystem following prescribed fire. Ecosystems, 21(7):1283–1294. https://doi.org/10.1007/s10021-017-0218-9
  • Fernández-García V, Marcos E, Fernández-Guisuraga JM, Taboada A, Suárez-Seoane S, Calvo L (2019) Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. International Journal of Wildland Fire, 28(5):354–364. https://doi.org/10.1071/WF18103
  • Ferrer I, Thurman EM, Zweigenbaum JA, Murphy SF, Webster JP, Rosario-Ortiz FL (2021) Wildfres: ıdentification of a new suite of aromatic polycarboxylic acids in ash and surface water. Science of the Total Environment, 770:144661. https://doi.org/10.1016/j.scitotenv.2020.144661
  • Francos M, Pereira P, Úbeda X (2019) Effect of pre- and post-wildfire management practices on plant recovery after a wildfire in Northeast Iberian Peninsula. Journal of Forestry Research, December 1-15.
  • Francos M, Úbeda X (2021) Prescribed fire management. Current Opinion in Environmental Science & Health, 21: 100250. https://doi.org/10.1016/j.coesh.2021.100250
  • Goberna M, García C, Insam H, Hernández MT, Verdú M (2012) Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microbial Ecology, 64:242-255. https://doi.org/10.1007/s00248-011-9995-4
  • Goforth BR, Graham RC, Hubbert KR, Zanner CW, Minnich RA (2005) Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. International Journal of Wildland Fire, 14: 343-354. https://doi.org/10.1071/WF05038
  • Gundale MJ, DeLuca TH, Fiedler CE, Ramsey PW, Harrington MG, Gannon JE (2005) Restoration treatments in a Montana ponderosa pine forest: effects on soil physical, chemical and biological properties. Forest Ecology Management, 213: 25–38. https://doi.org/10.1016/j.foreco.2005.03.015
  • Gülcur F (1974) Toprağın Fiziksel ve Kimyasal Analiz Metodları. İ.Ü. Orman Fakültesi Yayın No:201.
  • Hızalan E, Ünal H (1966) Topraklarda Önemli Kimyasal Analizler. A. Ü. Ziraat Fakültesi Yayınları, No: 278, Ankara.
  • Hiers JK, O’Brien JJ, Varner JM, Butler BW, Dickinson M, Furman J, Gallagher M, Godwin D, Goodrick SL, Hood SM, Hudak A (2020) Prescribed fire science: the case for a refined research agenda. Fire Ecology, 16(1): 1–15. https://doi.org/10.1186/s42408-020-0070-8
  • Hosseini M, Geissen V, González-Pelayo O, Serpa D, Machado AI, Ritsema C, Keizer JJ (2017) Effects of frequent occurrence and recurrence on nitrogen and phosphorus losses by overland flow in maritime pine plantations in north-central Portugal. Geoderma, 289: 97–106. https://doi.org/10.1016/j.geoderma.2016.11.033
  • Hu M, Song J, Li S, Li Z, Hao Y, Di M, Wan S (2020) Understanding the effects of free and nitrogen addition on soil respiration of a field study by combining observations with a meta-analysis. Agricultural and Forest Meteorology, 292:108106. https://doi.org/10.1016/j.agrformet.2020.108106
  • Kacar B (2009) Toprak Analizleri. Nobel Akademik Yayıncılık.
  • Kahveci Ü (2016) Yangın görmüş kızılçam meşcerelerinde azot mineralleşme potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Artvin Çoruh Üniversitesi Fen Bilimleri Enstitüsü, Artvin.
  • Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis. Forestry Canada Northern Forestry Publication. Alberta, Canada.
  • Kaptanoğlu AS, Namlı A (2019) Orman yangınının ve yangın sonrası boşaltma kesimlerinin toprak özelliklerine etkisi. Ormancılık Araştırma Dergisi, 6(1):29-46. https://doi.org/10.17568/ogmoad.430649
  • Kaptanoğlu AS, Tavşanoğlu Ç, Turgay OC (2018) Soil chemistry and microbial activity after a surface fire in a mixed temperate forest. Eurasian Journal of Forest Science, 6(4): 1-13. https://doi.org/10.31195/ejejfs.451884
  • Küçük M (2006) Genç karaçam meşcerelerinde yangının toprak solunumu, kök kütlesi ve toprağın fiziksel ve kimyasal özellikleri üzerine etkileri. Yüksek Lisans Tezi, Artvin Çoruh Üniversitesi Fen Bilimleri Enstitüsü, Artvin.
  • Küçük Ö, Sevinç V (2023) Fire behavior prediction with artificial intelligence in thinned black pine (Pinus nigra Arnold) stand. Forest Ecology and Management, 529:120707. https://doi.org/10.1016/j.foreco.2022.120707
  • Loue A (1968) Diagnostique Petiolaire de Prospection. Etudes Sur la Nutrition et al Fertilisation Potassiques de la Vigne. Société Commerciale des Potasses d'Alsace Services Agronomiques, 31-41.
  • Melillo JM, Steudier PA, Aber JD, Newkirk K, Lux H, Bowles FP, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298 (5601): 2173-2176. https://doi.org/10.1126/science.1074153
  • Metson AJ (1961) Methods of Chemical Analysis of Soil Survey Samples. Govt. Printers, Wellington, New Zealand, Pages: 64.
  • Moya D, González-De Vega S, Lozano E, García-Orenes F, MataixSolera J, Lucas-Borja ME, de Las HJ (2019) The burn severity and plant recovery relationship affects the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after Wildfire. Journal of Environmental Management, 235: 250–256. https://doi.org/10.1016/j.jenvman.2019.01.029
  • Neill C, Patterson WA, Crary DW (2007) Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manag., 250, 234–243. https://doi.org/10.1016/j.foreco.2007.05.023
  • Page AL, Miller RH, Keeney DR (1982) Methods of Soil Analysis. Part 2, 2nd Edition. Agronomy Monograph, Vol. 9. American Society of Agronomy. Madison, WI, 1142pp. 2.
  • Pereira P, Úbeda X, Martin D, Mataix-Solera J, Guerrero C (2011) Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environment Research, 111: 237–247. https://doi.org/10.1016/j.envres.2010.09.002
  • Richards LA (1954) Diagnosis and Improvement of Saline and Alkaline Soils. US Department of Agriculture, Forest Service, 60.
  • Ryan KC (2002) Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica, 36: 13–39.
  • Shakesby RA, Bento CPM, Ferreira CSS, Ferreira AJD, Stoof CR, Urbanek E, Walsh RPD (2015) Impacts of prescribed fire on soil loss and soil quality: an assessment based on an experimentally-burned catchment in central Portugal. Catena, 128: 278–293. https://doi.org/10.1016/j.catena.2013.03.012
  • Tecimen HB, Sevgi O (2011) Heating induced changes in mineral nitrogen and organic carbon in relation with temperature and time. J Environ Biol, 32(3/4):295–300.
  • Tiryaki Güngör AG, Küçük M, Bilgili E, Küçük Ö (2023) Anadolu Karaçam (Pinus nigra ssp. pallasiana) meşcerelerinde kontrollü yakma uygulamalarının bazı ölü örtü, kül ve toprak özellikleri üzerine etkileri. Anadolu Orman Araştırmaları Dergisi, 9(2): 82-89. https://doi.org/10.53516/ajfr.1383034
  • Tüfekçioğlu A, Tüfekçioğlu M (2021) Yangın Sonrası Orman Toprağında Meydana Gelen Değişim ve Etkileşimler. TÜBA, Ankara.
  • Tüzüner A (1990) Toprak ve Su Analiz Laboratuvarları El Kitabı. T.C. Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara, s: 61-73.
  • Ülgen N, Yurtsever N (1995) Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, Ankara, s.230.
  • Wan X, Li C, Parikh SJ (2021) Chemical composition of soil-associated ash from the southern California Thomas fire and its potential inhalation risks to farmworkers. Journal of Environmental Management, 278:111570. https://doi.org/10.1016/j.jenvman.2020.111570
  • Xue L, Li Q, Chen H (2014) Effects of a wildfire on selected physical, chemical, and biochemical soil properties in a Pinus massoniana forest in South China. Forests, 5(12): 2947-2966. https://doi.org/ 10.3390/f5122947
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Forestry Fire Management
Journal Section Research Article
Authors

Ayşegül Gözde Tiryaki Güngör 0000-0001-7098-8227

Ömer Küçük 0000-0003-2639-8195

Mehmet Küçük 0000-0002-0954-2581

Ertugrul Bilgili 0000-0003-1006-4991

Project Number 122O425
Publication Date October 15, 2025
Submission Date July 17, 2025
Acceptance Date October 7, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

APA Tiryaki Güngör, A. G., Küçük, Ö., Küçük, M., Bilgili, E. (2025). Anadolu Karaçamı (Pinus nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 26(2), 589-600. https://doi.org/10.17474/artvinofd.1744865
AMA Tiryaki Güngör AG, Küçük Ö, Küçük M, Bilgili E. Anadolu Karaçamı (Pinus nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi. ACUJFF. October 2025;26(2):589-600. doi:10.17474/artvinofd.1744865
Chicago Tiryaki Güngör, Ayşegül Gözde, Ömer Küçük, Mehmet Küçük, and Ertugrul Bilgili. “Anadolu Karaçamı (Pinus Nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26, no. 2 (October 2025): 589-600. https://doi.org/10.17474/artvinofd.1744865.
EndNote Tiryaki Güngör AG, Küçük Ö, Küçük M, Bilgili E (October 1, 2025) Anadolu Karaçamı (Pinus nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26 2 589–600.
IEEE A. G. Tiryaki Güngör, Ö. Küçük, M. Küçük, and E. Bilgili, “Anadolu Karaçamı (Pinus nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi”, ACUJFF, vol. 26, no. 2, pp. 589–600, 2025, doi: 10.17474/artvinofd.1744865.
ISNAD Tiryaki Güngör, Ayşegül Gözde et al. “Anadolu Karaçamı (Pinus Nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 26/2 (October2025), 589-600. https://doi.org/10.17474/artvinofd.1744865.
JAMA Tiryaki Güngör AG, Küçük Ö, Küçük M, Bilgili E. Anadolu Karaçamı (Pinus nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi. ACUJFF. 2025;26:589–600.
MLA Tiryaki Güngör, Ayşegül Gözde et al. “Anadolu Karaçamı (Pinus Nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 26, no. 2, 2025, pp. 589-00, doi:10.17474/artvinofd.1744865.
Vancouver Tiryaki Güngör AG, Küçük Ö, Küçük M, Bilgili E. Anadolu Karaçamı (Pinus nigra) Gençleştirme Meşceresinde Kontrollü Yakmanın Toprak Özellikleri Üzerine Etkisi. ACUJFF. 2025;26(2):589-600.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.