Review
BibTex RIS Cite

Year 2026, Volume: 41 Issue: 1, 65 - 80, 20.01.2026
https://doi.org/10.26650/ASE.2026.1810998
https://izlik.org/JA69RF49KE

Abstract

References

  • Abdel-Salam, H. (2014). Amino acid composition in the muscles of male and female commercially important crustaceans from Egyptian and Saudi Arabia coasts. American Journal of BioScience, 2(2), 73–78. https://doi.org/10.11648/j.ajbio.20140202.19 google scholar
  • Abisha, R., Krishnani, K. K., Sukhdhane, K., Verma, A. K., Brahmane, M., & Chadha, N. K. (2022). Sustainable development of climate-resilient aquaculture and culture- based fisheries through adaptation of abiotic stresses: A review. Journal of Water and Climate Change, 13(11), 4051–4068. https://doi.org/10.2166/wcc.2022.045 google scholar
  • Abol-Munafi, A. B., & Azra, M. N. (2018). Climate change and the crab aquaculture industry: Problems and challenges. Journal of Sustainability Science and Management, 13(2), 145–150. google scholar
  • Adamovsky, O., Buerger, A. N., Wormington, A. M., Ector, N., Griffitt, R. J., Bisesi, J. H., & Martyniuk, C. J. (2018). The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry, 37(11), 2758–2775. https://doi.org/10.1002/etc.4249 google scholar
  • Alboofetileh, M., Hamzeh, A., & Abdollahi, M. (2021). Seaweed proteins as a source of bioactive peptides. Current Pharmaceutical Design, 27(16), 1867–1877. https://doi.org/10.2174/1381612827666210208153249 google scholar
  • Amenyogbe, E. (2023). Application of probiotics for sustainable and environment-friendly aquaculture management: A review. Cogent Food & Agriculture, 9(1), 2226425. https://doi.org/10.1080/23311932.2023.2226425 google scholar
  • Anbarasan, R., Tiwari, B. K., & Mahendran, R. (2024). Upcycling of seafood side streams for circularity. In B. Caballero (Ed.), Advances in food and nutrition research (Vol. 99, pp. 105–142). Academic Press. https://doi.org/10.1016/bs.afnr.2023.11.002 google scholar
  • Apine, E., Rai, P.K., Mani, M.K., Subramanian, V., Karunasagar, I., Godhe, A., & Turner, L.M. (2021). Comparative analysis of the intestinal bacterial communities in mud crab Scylla serrata in South India. MicrobiologyOpen, 10. https://doi.org/10.1002/mbo3.1179 google scholar
  • Apine, E., Ramappa, P., Bhatta, R., Turner, L., & Rodwell, L. (2023). Challenges and opportunities in achieving sustainable mud crab aquaculture in tropical coastal regions. Ocean & Coastal Management, 242, 106711. https://doi.org/10.1016/j.ocecoaman.2023.106711 google scholar
  • Arena, R., Renda, G., Aalmo, G. O., Debeaufort, F., Messina, C., & Santulli, A. (2024). Valorization of the invasive blue crabs (Callinectes sapidus) in the Mediterranean: Nutritional value, bioactive compounds and sustainable by- products utilization. Marine Drugs, 22(9), 430. https://doi.org/10.3390/md22090430 google scholar
  • Arwani, A., Palupi, N., & Giriwono, P. E. (2022). Effects of different heat processing on molecular weight and allergenicity profile of white shrimp (Litopenaeus vannamei) and mud crab (Scylla serrata) from Indonesian waters. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 17(2), 63–72. https://doi.org/10.15578/squalen.629 google scholar
  • Assan, D., Kuebutornye, F. K., Hlordzi, V., Chen, H., Mráz, J., Mustapha, U. F., & Abarike, E. D. (2021). Effects of probiotics on digestive enzymes of fish (finfish and shellfish): Status and prospects—A mini review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110653. https://doi.org/10.1016/j.cbpb.2021.110653 google scholar
  • Blakeley-Ruiz, J.A., Bartlett, A., McMillan, A.S., Awan, A., Vanhoy Walsh, M., Meyerhoffer, A.K., Vintila, S., Maier, J.L., Richie, T.G., Theriot, C.M., & Kleiner, M. (2024). Dietary protein source strongly alters gut microbiota composition and function. bioRxiv. https://doi.org/10.1101/2024.04.04.588169 google scholar
  • Boateng, A., Fred, B., Derrick, A., Tan, B., & Deng, J. (2025). Effects of replacing fish meal by plant protein sources in fish feed on serum and muscle cholesterol levels, cholesterol metabolism-related enzyme activity and gene expression of fish: A review. Annals of Animal Science, 25(1), 1–15. https://doi.org/10.2478/aoas- 2025-0065 google scholar
  • Bondad-Reantaso, M., Subasinghe, R., Josupeit, H., Cai, J., & Zhou, X. (2012). The role of crustacean fisheries and aquaculture in global food security: Past, present and future. Journal of Invertebrate Pathology, 110(2), 158–165. https://doi.org/10.1016/j.jip.2012.03.010 google scholar
  • Bowler, R., Wendt, C., Fessler, M., Foster, M. W., Kelly, R., Lasky-Su, J., Rogers, A., Stringer, K., & Winston, B. (2017). New strategies and challenges in lung proteomics and metabolomics: An official American Thoracic Society workshop report. Annals of the American Thoracic Society, 14(12), 1721–1743. https://doi.org/10.1513/AnnalsATS.201710-770WS google scholar
  • Catacutan, M. R. (2002). Growth and body composition of juvenile mud crab, Scylla serrata, fed different dietary protein and lipid levels and protein to energy ratios. Aquaculture, 208(1–2), 113–123. https://doi.org/10.1016/S0044-8486(02)00214-1 google scholar
  • Ceccarelli, D., & Colwell, R. R. (2014). Vibrio ecology, pathogenesis, and evolution. Frontiers in Microbiology, 5, 256. https://doi.org/10.3389/fmicb.2014.00256 google scholar
  • Champion, C., Broadhurst, M., Ewere, E., Benkendorff, K., Butcherine, P., Wolfe, K., & Coleman, M. (2020). Resilience to the interactive effects of climate change and discard stress in the commercially important blue swimmer crab (Portunus armatus). Marine Environmental Research, 162, 105009. https://doi.org/10.1016/j.marenvres.2020.105009 google scholar
  • Chandrapavan, A., Caputi, N., & Kangas, M. (2019). The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Frontiers in Marine Science, 6, 510. https://doi.org/10.3389/fmars.2019.00510 google scholar
  • Chen, J., Sun, R., Pan, C.-G., Sun, Y., Mai, B., & Li, Q. X. (2020). Antibiotics and food safety in aquaculture. Journal of Agricultural and Food Chemistry, 68(43), 11908–11919. https://doi.org/10.1021/acs.jafc.0c03996 google scholar
  • Cho, W. (2007). Proteomics technologies and challenges. Genomics, Proteomics & Bioinformatics, 5(2), 77–85. https://doi.org/10.1016/S1672-0229(07)60018-7 google scholar
  • Chramouli, K. (2016). Marine proteomics: Challenges and opportunities. Journal of Proteomics & Bioinformatics, 9(1), e122. https://doi.org/10.4172/2153-0602.1000E122 google scholar
  • Coates, C., & Rowley, A. (2022). Emerging diseases and epizootics in crabs under cultivation. Frontiers in Marine Science, 8, 809759. https://doi.org/10.3389/fmars.2021.809759 google scholar
  • Colombo, S., Roy, K., Mráz, J., Wan, A., Davies, S., Tibbetts, S., Øverland, M., Francis, D., Rocker, M. M., Gasco, L., Spencer, E., Metian, M., Trushenski, J., & Turchini, G. (2022). Towards achieving circularity and sustainability in feeds for farmed blue foods. Reviews in Aquaculture, 15(1), 1–29. https://doi.org/10.1111/raq.12766 google scholar
  • Cortes, J. R., Benitez, I. B., Baldoza, B. J. S., Pardillo, C. A. R., Auxtero, K. M. A., Badec, K. P., & Varela, D. A. B. (2025). Climate-smart aquaculture: Innovations and challenges in mitigating climate change impacts on fisheries and coastal agriculture. Aquaculture and Fisheries. Advance online publication. https://doi.org/10.1016/j.aaf.2025.08.009 google scholar
  • Dawson, R., & Holdsworth, E.S. (1962). An investigation into protein digestion with 14C-labelled protein. British Journal of Nutrition, 16, 13 - 25. https://doi.org/10.1079/BJN19620002 google scholar
  • de Santana Filho, J. J., Gaspar, P., de Souza, A. C., & Paço, A. (2024). Circular economy in guaiamum and uçá crab waste in Brazil: Potential by-products—A systematic literature review. Resources, 13(3), 46. https://doi.org/10.3390/resources13030046 google scholar
  • Diether, N. E., & Willing, B. P. (2019). Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction. Microorganisms, 7(1), 19. https://doi.org/10.3390/microorganisms7010019 google scholar
  • Diwan, A. D., Harke, S., & Panche, A. (2023). Host–microbiome interaction in fish and shellfish: An overview. Fish and Shellfish Immunology Reports, 4, 100091. https://doi.org/10.1016/j.fsirep.2023.100091 google scholar
  • do Vale Pereira, G., Teixeira, C., Couto, J., Dias, J., Rema, P., & Gonçalves, A.T. (2024). Dietary Protein Quality Affects the Interplay between Gut Microbiota and Host Performance in Nile Tilapia. Animals : an Open Access Journal from MDPI, 14. https://doi.org/10.3390/ani14050714 google scholar
  • El-Son, M. A. M., Elbahnaswy, S., Khormi, M. A., Aborasain, A. M., Abdelhaffez, H. H., & Zahran, E. (2025). Harnessing the fish gut microbiome and immune system to enhance disease resistance in aquaculture. Fish and Shellfish Immunology, 150, 110394. https://doi.org/10.1016/j.fsi.2025.110394 google scholar
  • Erickson, R.H., & Kim, Y.S. (1990). Digestion and absorption of dietary protein. Annual review of medicine, 41, 133-9. https://doi.org/10.1146/ANNUREV.ME.41.020190.001025 google scholar
  • Esmaeili, N., Ma, H., Kadri, S., & Tocher, D. R. (2024). Protein and lipid nutrition in crabs. Reviews in Aquaculture, 16(2), 1–28. https://doi.org/10.1111/raq.12908 google scholar
  • Fall, F., Ma, S., Sahandi, J., Chibuikem, C.K., Pan, M., Tabuariki, B.B., Guo, Y., Mai, K., & Zhang, W. (2023). Interactions between dietary protein level and water temperature on the growth performance, innate immunity and disease resistance of juvenile abalone Haliotis discus hannai Ino. Aquaculture Reports. google scholar
  • Fiers, W. D., Gao, I. H., & Iliev, I. (2019). Gut mycobiota under scrutiny: Fungal symbionts or environmental transients? Current Opinion in Microbiology, 50, 79–86. https://doi.org/10.1016/j.mib.2019.09.010 google scholar
  • Finegold, C. (2009). The importance of fisheries and aquaculture to development. In P. Wramner, M. Cullberg, & H. Ackefors (Eds.), Fisheries, sustainability and development (pp. 353–364). The Royal Swedish Academy of Agriculture and Forestry. google scholar
  • Foysal, M. J. (2023). Host habitat shapes the core gut bacteria of decapod crustaceans: A meta-analysis. Heliyon, 9(6), e16511. https://doi.org/10.1016/j.heliyon.2023.e16511 google scholar
  • Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., & Caruso, G. (2018). Fishmeal alternative protein sources for aquaculture feeds. In L. Gasco, F. Gai, & G. Maricchiolo (Eds.), Feeding and digestive functions of fishes (pp. 1–28). Springer. https://doi.org/10.1007/978-3-319-77941-6_1 google scholar
  • Gatlin, D. M., Barrows, F. T., Brown, P., Dąbrowski, K., Gaylord, T. G., Hardy, R. W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M. B., Sealey, W. M., Skonberg, D., Souza, E. J., Stone, D. A. J., Wilson, R. P., & Wurtele, E. S. (2007). Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquaculture Research, 38(6), 551–579. https://doi.org/10.1111/j.1365-2109.2007.01704.x google scholar
  • Genodepa, J., Southgate, P. C., & Zeng, C. (2004). Preliminary assessment of a microbound diet as an Artemia replacement for mud crab, Scylla serrata, megalopa. Aquaculture, 236(1–4), 497–509. https://doi.org/10.1016/j.aquaculture.2004.02.007 google scholar
  • Gyan, W. R., Ayiku, S., & Yang, Q. (2019). Effects of replacing fishmeal with soybean products in fish and crustaceans performance. Journal of Aquaculture Research & Development, 10(10), 573. https://doi.org/10.35248/2155-9546.19.10.573 google scholar
  • Hansen, S., Ashley, A., & Chung, B. (2015). Complex dietary protein improves growth through a complex mechanism of intestinal peptide absorption and protein digestion. JPEN Journal of Parenteral and Enteral Nutrition, 39(7), 848–855. https://doi.org/10.1177/0148607113501556 google scholar
  • Hasnidar et al., H. (2024). Impact of Iso-Protein Feed with Different Carbohydrate and Lipid Ratios on Growth and Feed Efficiency of the Mud Crab, Scylla serrata. Egyptian Journal of Aquatic Biology and Fisheries. https://doi.org/10.21608/ejabf.2024.345817 google scholar
  • Hau, H. H., & Gralnick, J. A. (2007). Ecology and biotechnology of the genus Shewanella. Annual Review of Microbiology, 61, 237–258. https://doi.org/10.1146/annurev.micro.61.080706.093257 google scholar
  • Hoseinifar, S. H., Dadar, M., & Ringø, E. (2017). Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: The functional feed additives scenario. Aquaculture Research, 48(8), 3987–4000. https://doi.org/10.1111/are.13368 google scholar
  • Hu, M., Liu, G., Yang, Y., Pan, T., Liu, Y., Sun, L., Cao, M., & Liu, G. (2017). Cloning, expression, and the effects of processing on sarcoplasmic-calcium-binding protein: An important allergen in mud crab. Journal of Agricultural and Food Chemistry, 65(30), 6227–6235. https://doi.org/10.1021/acs.jafc.7b02381 google scholar
  • Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., Praeger, C., Vucko, M. J., Zeng, C., Zenger, K., & Strugnell, J. M. (2019). The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth, 1(3), 316–329. https://doi.org/10.1016/j.oneear.2019.10.018 google scholar
  • Ikhwanuddin, M. (2020). Portunid crab breeding and larval rearing, paving the way for sustainable aquaculture. Pakistan Journal of Biological Sciences, 23(12), 1500–1505. https://doi.org/10.3923/pjbs.2020.1500.1505 google scholar
  • Infante-Villamil, S., Huerlimann, R., & Jerry, D. R. (2021). Microbiome diversity and dysbiosis in aquaculture. Reviews in Aquaculture, 13(2), 1077–1096. https://doi.org/10.1111/raq.12513 google scholar
  • Jannathulla, R., Rajaram, V., Ambasankar, K., Sravanthi, O., Gopikrishna, G., & Dayal, J. S. (2022). Insect meals as emerging protein source in the aquafeed sector: Emphasis on complementary effects to fishmeal, digestibility, carcass characterisation and immunomodulation in aquatic species. Indian Journal of Fisheries, 69(1), 1–13. https://doi.org/10.21077/ijf.2022.69.1.113037-20 google scholar
  • Jia, S., Li, X., He, W., & Wu, G. (2021). Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Research and Aquaculture. Advances in experimental medicine and biology, 1354, 237-261. https://doi.org/10.1007/978-3-030-85686-1_12 google scholar
  • Jiang, K., Liu, B., Sun, C., Zhou, Q., Zheng, X., Liu, M., Xu, G., Jin, W., Tian, H., & Hu, H. (2023). Promotion of improved intestinal barrier health by soybean- derived bioactive peptides in Chinese mitten crab (Eriocheir sinensis) fed a low fishmeal diet. British Journal of Nutrition, 130(10), 1456–1470. https://doi.org/10.1017/S0007114523002507 google scholar
  • Jiang, X., Niu, M., Qin, K., Hu, Y., Li, Y., Che, C., Wang, C., Mu, C., & Wang, H. (2023). The shared microbiome in mud crab (Scylla paramamosain) of Sanmen Bay, China: core gut microbiome. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1243334 google scholar
  • Jin, M., Zhou, Q. C., Zhang, W., Xie, F. J., Shentu, J. K., & Huang, X. L. (2013). Dietary protein requirements of the juvenile swimming crab, Portunus trituberculatus. Aquaculture, 414–415, 303–308. https://doi.org/10.1016/j.aquaculture.2013.08.028 google scholar
  • Jobling, M. (1986). Gastrointestinal overload — A problem with formulated feeds? Aquaculture, 51, 257-263. https://doi.org/10.1016/0044-8486(86)90317-0 google scholar
  • Kar, S.K., Jansman, A.J., Boeren, S., Kruijt, L., & Smits, M. (2016). Protein, peptide, amino acid composition, and potential functional properties of existing and novel dietary protein sources for monogastrics. Journal of Animal Science, 94, 30-39. https://doi.org/10.2527/JAS.2015-9677 google scholar
  • Kumar, P., Mehta, N., Abubakar, A., Verma, A. K., Kaka, U., Sharma, N., Sazili, A., Pateiro, M., Kumar, M., & Lorenzo, J. M. (2022). Potential alternatives of animal proteins for sustainability in the food sector. Food Reviews International, 39(8), 4752–4774. https://doi.org/10.1080/87559129.2022.2094403 google scholar
  • Langlois, L., Akhtar, N., Tam, K. C., Dixon, B., & Reid, G. (2021). Fishing for the right probiotic: Host–microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiology Reviews, 45(5), fuab030. https://doi.org/10.1093/femsre/fuab030 google scholar
  • Li, E., Xu, C., Wang, X., Wang, S., Zhao, Q., Zhang, M., Qin, J., & Chen, L. (2018). Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Aquaculture Research, 49(2), 593–607. https://doi.org/10.1080/23308249.2018.1440530 google scholar
  • Li, X., Han, T., Zheng, S., & Wu, G. (2021). Nutrition and Functions of Amino Acids in Aquatic Crustaceans. Advances in experimental medicine and biology, 1285, 169-198 . https://doi.org/10.1007/978-3-030-54462-1_9 google scholar
  • Lin, S., Luo, L., & Ye, Y. (2009). Effects of dietary protein level on growth, feed utilization and digestive enzyme activity of the Chinese mitten crab, Eriocheir sinensis. Aquaculture Research, 40(12), 1416–1424. https://doi.org/10.1111/j.1365-2095.2009.00664.x google scholar
  • Lisboa, H. M., Nascimento, A., Arruda, A., Sarinho, A., Lima, J., Batista, L., Dantas, M. F., & Andrade, R. (2024). Unlocking the potential of insect-based proteins: Sustainable solutions for global food security and nutrition. Foods, 13(12), 1846. https://doi.org/10.3390/foods13121846 google scholar
  • Lorgen-Ritchie, M., Uren Webster, T. M., McMurtrie, J., Bass, D., Tyler, C. R., Rowley, A. F., & Martin, S. A. M. (2023). Microbiomes in the context of developing sustainable intensified aquaculture. Frontiers in Microbiology, 14, 1200997. https://doi.org/10.3389/fmicb.2023.1200997 google scholar
  • Ma, N., Tian, Y., Wu, Y., & Ma, X. (2017). Contributions of the Interaction Between Dietary Protein and Gut Microbiota to Intestinal Health. Current protein & peptide science, 18 8, 795-808. https://doi.org/10.2174/1389203718666170216153505 google scholar
  • Ma, Y. C., Yang, Y. J., & Wang, G. L. (2010). Effects of salinity challenge on the immune factors of Scylla serrata. Acta Agriculturae Zhejiangensis, 22, 479–484. google scholar
  • Madhulika, Ngasotter, S., Meitei, M. M., Kara, T., Meinam, M., Sharma, S., Rathod, S. K., Singh, S. B., Singh, S. K., & Bhat, R. A. H. (2025). Multifaceted role of probiotics in enhancing health and growth of aquatic animals: Mechanisms, benefits, and applications in sustainable aquaculture—A review and bibliometric analysis. Aquaculture Nutrition, 2025, 5746972. https://doi.org/10.1155/anu/5746972 google scholar
  • Marcharla, E., Vishnuprasadh, A., Gnanasekaran, L., Vinayagam, S., Sundaram, T., & Ganesan, S. (2025). The role of functional feed in modulating fish gut microbiome to enhance resistance against aquaculture pathogens. Probiotics and Antimicrobial Proteins. Advance online publication. https://doi.org/10.1007/s12602-025-10660-w google scholar
  • Maulu, S. (2024). Utilizing Clostridium autoethanogenum for dietary protein in aquafeeds: Current progress in research and future perspectives. Journal of Applied Aquaculture, 36(4), 456–472. https://doi.org/10.1080/10454438.2024.2338900 google scholar
  • Médale, F., & Kaushik, S.J. (2009). Protein sources in feed for farmed fish. Cahiers Agricultures, 18, 103-111. https://doi.org/10.1684/AGR.2009.0279 google scholar
  • Méndez-Martínez, Y., Yamasaki-Granados, S., García-Guerrero, M. U., Martínez- Córdova, L. R., Rivas-Vega, M. E., Arcos-Ortega, F. G., & Cortes-Jacinto, E. (2017). Effect of dietary protein content on growth rate, survival and body composition of juvenile cauque river prawn, Macrobrachium americanum (Bate, 1868). Aquaculture Research, 48(3), 741–751. https://doi.org/10.1111/are.13193 google scholar
  • Menge, B. A., Olson, A. M., & Dahlhoff, E. P. (2002). Environmental stress, bottom-up effects, and community dynamics: Integrating molecular–physiological and ecological approaches. Integrative and Comparative Biology, 42(4), 892–908. https://doi.org/10.1093/icb/42.4.892 google scholar
  • Michael, K., & Sogbesan, O. (2017). Alternative protein sources in aquaculture diets: A review. Agricultural and Food Sciences. google scholar
  • Michiels, M.S., Valle, J.C., & Mañanes, A.A. (2013). Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae. Scientia Marina, 77, 129-136. https://doi.org/10.3989/SCIMAR.03687.09D google scholar
  • Michiels, M.S., Valle, J.C., & Mañanes, A.A. (2015). Lipase activity sensitive to dopamine, glucagon and cyclic AMP in the hepatopancreas of the euryhaline burrowing crab Neohelice granulata (Dana, 1851) (Decapoda, Grapsidae). Crustaceana, 88, 51-65. https://doi.org/10.1163/15685403-00003399 google scholar
  • Millikin, M., Biddle, G., Siewicki, T., Fortner, A., & Fair, P. (1980). Effects of various levels of dietary protein on survival, molting frequency and growth of juvenile blue crabs (Callinectes sapidus). Aquaculture, 20(3), 217–225. https://doi.org/10.1016/0044-8486(80)90016-2 google scholar
  • Möller, N., Scholz-Ahrens, K., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: Indication for health effects. European Journal of Nutrition, 47(4), 171–182. https://doi.org/10.1007/s00394-008-0710-2 google scholar
  • Moura, M., Martins, B., Oliveira, G., & Takahashi, J. (2022). Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition, 63(23), 3791–3806. https://doi.org/10.1080/10408398.2022.2085657 google scholar
  • Naimullah, M., Lan, K., Mammel, M., Chen, L.-C., Wu, Y., Hsiao, P.-Y., Liang, T.-Y., Fazhan, H., & Waiho, K. (2024). Effect of climate change on habitat suitability and recruitment dynamics of swimming crabs in the Taiwan Strait. Marine and Freshwater Research, 75(6), 449–462. https://doi.org/10.1071/mf24002 google scholar
  • Narayanasamy, A., Balde, A., Raghavender, P., Shashanth, D., Abraham, J., Joshi, I., & Nazeer, R. A. (2020). Isolation of marine crab (Charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. Biocatalysis and Agricultural Biotechnology, 28, 101577. https://doi.org/10.1016/j.bcab.2020.101577 google scholar
  • Nguyen, N.T., Wantiez, L., Lemaire, P., & Chim, L. (2022). Feed Efficiency, Tissue Growth and Energy Budget Changes during the Molting Cycle of Juvenile Mud Crab, Scylla serrata: Effects of Dietary Proteins, Fishmeal versus Soy Protein Concentrate. Fishes. https://doi.org/10.3390/fishes7060334 google scholar
  • Niiyama, T., Toyohara, H., & Tanaka, K. (2012). Cellulase Activity in Blood Cockle ( Anadara granosa ) in the Matang Mangrove Forest Reserve, Malaysia. Jarq-japan Agricultural Research Quarterly, 46, 355-359. https://doi.org/10.6090/JARQ.46.355 google scholar
  • Nikapitiya, C., Kim, W., Park, K., Kim, J., Lee, M.O., & Kwak, I. (2015). Chitinase gene responses and tissue sensitivity in an intertidal mud crab (Macrophthalmus japonicus) following low or high salinity stress. Cell Stress and Chaperones, 20, 517 - 526. https://doi.org/10.1007/s12192-015-0576-1 google scholar
  • Okagu, I., Aham, E. C., Ezeorba, T., Ndefo, J. C., Aguchem, R. N., & Udenigwe, C. C. (2022). Osteo-modulatory dietary proteins and peptides: A concise review. Journal of Food Biochemistry, 46(9), e14365. https://doi.org/10.1111/jfbc.14365 google scholar
  • Oli, A., Shivshetty, N., Javaregowda, P. K., & Chandrakanth, K. R. (2022). Extraction and purification of bioactive peptide with antimicrobial properties from horseshoe crab. Current Bioactive Compounds, 18(9), 1060–1067. https://doi.org/10.2174/1573407218666220606142023 google scholar
  • Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2), 83–108. https://doi.org/10.1111/j.1365-2761.2011.01333.x google scholar
  • Oliveira, A. V. S., Vieira, J. L., Maia, H. D., Gaeta, J., de Sousa, O. V., da Silva, J. L. S., & de Menezes, F. G. R. (2023). Diversity of symbiotic bacteria in the digestive and circulatory systems of lobster and crayfish: Important connections for efficient aquaculture. A systematic review. Crustaceana, 96(6), 681–708. https://doi.org/10.1163/15685403-bja10336 google scholar
  • Pavasović, M. (2004). Digestive profile and capacity of the mud crab (Scylla serrata). Agricultural and Food Sciences, Environmental Science, Biology. google scholar
  • Pelletier, N., Klinger, D. H., Sims, N., Yoshioka, J.-R., & Kittinger, J. N. (2018). Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: Joint consideration of potential synergies and trade-offs. Environmental Science & Technology, 52(10), 5532–5544. https://doi.org/10.1021/acs.est.7b05468 google scholar
  • Pereira, L., Cotas, J., & Gonçalves, A. (2024). Seaweed proteins: A step towards sustainability? Nutrients, 16(8), 1123. https://doi.org/10.3390/nu16081123 google scholar
  • Perera, E., Rodríguez-Viera, L., Montero-Alejo, V., & Perdomo-Morales, R. (2020). Crustacean Proteases and Their Application in Debridement. Tropical Life Sciences Research, 31, 187 - 209. https://doi.org/10.21315/tlsr2020.31.2.10 google scholar
  • Qi, C., Han, F., Wang, X., Xu, C., Huang, Z., Li, E., Qin, J., & Chen, L. (2020). High protein diet alleviates the high pH stress in Chinese mitten crab (Eriocheir sinensis). Aquaculture, 520, 734523. https://doi.org/10.1016/j.aquaculture.2019.734523 google scholar
  • Qin, F., Shi, M., Yuan, H., Yuan, L., Lu, W., Zhang, J., Tong, J., & Song, X. (2016). Dietary nano-selenium relieves hypoxia stress and improves immunity and disease resistance in the Chinese mitten crab (Eriocheir sinensis). Fish & Shellfish Immunology, 54, 481–488. https://doi.org/10.1016/j.fsi.2016.04.131 google scholar
  • Qu, X., Ma, Z., Wu, X., & Lv, L. (2025). Recent advances of processing and detection techniques on crustacean allergens: A review. Foods, 14(2), 285. https://doi.org/10.3390/foods14020285 google scholar
  • Rai, N., Kachore, A., Julka, J. M., Panigrahi, A., Das, S. P., & Nan, F.-H. (2025). Symbiotic strategies: Deciphering the role of gut microbiota in the nutrition and metabolism of fish and shellfish. Frontiers in Cellular and Infection Microbiology, 15, 1639426. https://doi.org/10.3389/fcimb.2025.1639426 google scholar
  • Raniah, N., Henri, H., & Kurniawan, K. (2022). On the abundance and occurrence of the mangrove crabs, Scylla spp. (Crustacea: Portunidae) from Munjang mangrove, Bangka Belitung Island. Jurnal Riset Biologi dan Aplikasinya. https://doi.org/10.26740/jrba.v4n2.p75-82 google scholar
  • Ravichandran, S., Sylvester Fredrick, W., Ajmal Khan, S., & Balasubramanian, T. (2011). Diversity of mangrove crabs in South and Southeast Asia. Journal of Oceanography & Marine Environmental System, 1(1), 1-7. IDOSI Publications. google scholar
  • Rivera-Perez, C. (2015). Marine invertebrate lipases: Comparative and functional genomic analysis. Comparative biochemistry and physiology. Part D, Genomics & proteomics, 15, 39-48. https://doi.org/10.1016/j.cbd.2015.06.001 google scholar
  • Rossano, R., Larocca, M., & Riccio, P. (2011). Digestive Enzymes of the Crusta ceans Munida and Their Application in Cheese Manufacturing: A Review. Marine Drugs, 9, 1220 - 1231. https://doi.org/10.3390/md9071220 google scholar
  • S, V., & G, V. (2020). Proximate composition of fresh meat and exoskeleton of marine crab Portunus pelagicus (Linnaeus, 1758). International Journal of Life Sciences, 8(2), 383–390. https://ijlsci.in/in/index.php/home/article/view/21 google scholar
  • Saadi, S., Saari, N., Anwar, F., Abdul Hamid, A., & Ghazali, H. (2015). Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnology Advances, 33(1), 80–116. https://doi.org/10.1016/j.biotechadv.2014.12.003 google scholar
  • Sahoo, K., Dhal, N. K., & Das, R. (2014). Production of amylase enzyme from mangrove fungal isolates. African Journal of Biotechnology. Retrieved from http://ajol.info google scholar
  • Samsing, F., & Barnes, A. C. (2024). The rise of the opportunists: What are the drivers of the increase in infectious diseases caused by environmental and commensal bacteria? Reviews in Aquaculture, 16(1), 1–18. https://doi.org/10.1111/raq.12922 google scholar
  • Santoso, J., Hanifa, Y. N., Indariani, S., Wardiatno, Y., & Mashar, A. (2015). Nutritional values of the Indonesian mole crab, Emerita emeritus: Are they affected by processing methods? AACL Bioflux, 8(4), 579–587. google scholar
  • Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S. E., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International, 34(8), 1215–1226. https://doi.org/10.1016/j.envint.2008.04.009 google scholar
  • Segaran, T. C., Azra, M. N., Seman, N. A., Agos, S. M., Arifin, H., Aouissi, H., Lananan, F., & Gao, H. (2023). A scientometric review of climate change and research on crabs. Journal of Sea Research, 194, 102386. https://doi.org/10.1016/j.seares.2023.102386 google scholar
  • Serra, V., Pastorelli, G., Tedesco, D. E. A., Turin, L., & Guerrini, A. (2024). Alternative protein sources in aquafeed: Current scenario and future perspectives. Veterinary and Animal Science, 28, 100381. https://doi.org/10.1016/j.vas.2024.100381 google scholar
  • Serrano, A.E. (2012). Ontogeny of endogenous and exogenous amylase and total protease activities in mud crab, Scylla serrata larvae fed live food. European Journal of Experimental Biology, 2. google scholar
  • Shapira, M. (2016). Gut microbiotas and host evolution: Scaling up symbiosis. Trends in Ecology & Evolution, 31(7), 539–549. https://doi.org/10.1016/j.tree.2016.03.006 google scholar
  • Shavandi, A., Hou, Y., Carne, A., McConnell, M., & Bekhit, A. (2019). Marine waste utilization as a source of functional and health compounds. In J. Henry (Ed.), Advances in food and nutrition research (Vol. 87, pp. 187–254). Academic Press. https://doi.org/10.1016/bs.afnr.2018.08.001 google scholar
  • Shiping, S., Pei-song, S., Qichao, Y., & Lili, P. (2009). Effects of dietary protein levels on the activities of digestive enzymes and the muscle compositon of juvenile red swamp crayfish Procambarus clarkii Girard. Journal of Anhui Agricultural University, 36, 231-235. google scholar
  • Song, M., Yu, Q., Li, E., Song, Y., Cai, X.-Y., Huang, Y.-X., Qin, C., Wang, X.-D., Qin, J., & Chen, L.-Q. (2024). Leucine improves dietary protein use efficiency by regulating protein synthesis by activating amino acid transporters and the mTORC1 pathways in Chinese mitten crab (Eriocheir sinensis). Aquaculture, 598, 740423. https://doi.org/10.1016/j.aquaculture.2023.740423 google scholar
  • Spencer, A.M., Fielding, A., & Kamemoto, F.I. (1979). The Relationship between Gill NaK- ATPase Activity and Osmoregulatory Capacity in Various Crabs. Physiological Zoology, 52, 1 - 10. https://doi.org/10.1086/physzool.52.1.30159927 google scholar
  • Sridhar, K., Inbaraj, B., & Chen, B.-H. (2021). Recent developments on production, purification and biological activity of marine peptides. Food Research International, 147, 110468. https://doi.org/10.1016/j.foodres.2021.110468 google scholar
  • Steffens, W. (1981). Protein utilization by rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio): A brief review. Aquaculture, 23, 337-345. https://doi.org/10.1016/0044-8486(81)90026-0 google scholar
  • Stevens, B., & Miller, T. (2020). Crab fisheries. In Fisheries and aquaculture (pp. 23–54). Oxford University Press. https://doi.org/10.1093/oso/9780190865627.003.0002 google scholar
  • Stevens, R., Myracle, A., & Grant, J. (2020). Optimizing extraction of proteins from Carcinus maenus after removal of low‐molecular weight chitins. The FASEB Journal, 34(S1), 03776. https://doi.org/10.1096/fasebj.2020.34.s1.03776 google scholar
  • Sulistiono, S., Yahya, N.M., & Riani, E. (2021). Distribusi Scylla spp. di perairan estuari Sungai Donan Segara Anakan Bagian Timur, Cilacap. Habitus Aquatica. https://doi.org/10.29244/haj.2.1.1 google scholar
  • Sundrum, A., Schneider, K., & Richter, D. (2005). Possibilities and limitations of protein supply in organic poultry and pig production. Agricultural and Food Sciences. Retrieved from organicresearchcentre.com google scholar
  • Tahergorabi, R. (2011). Seafood proteins. In B. K. Tiwari, A. Gowen, & B. McKenna (Eds.), Seafood processing: Technology, quality and safety (pp. 116–145). Woodhead Publishing. https://doi.org/10.1533/9780857093639.116 google scholar
  • Tamburini, E. (2024). The blue treasure: Comprehensive biorefinery of blue crab (Callinectes sapidus). Foods, 13(13), 2018. https://doi.org/10.3390/foods13132018 google scholar
  • Tamburini, E., Moore, D., & Castaldelli, G. (2025). Global comparison and future trends of major food proteins: Can shellfish contribute to sustainable food security? Foods, 14(13), 2205. https://doi.org/10.3390/foods14132205 google scholar
  • Tayyab, M., Zhao, Y., & Zhang, Y. (2025). Microbiome engineering to enhance disease resistance in aquaculture: Current strategies and future directions. Frontiers in Microbiology, 16, 1625265. https://doi.org/10.3389/fmicb.2025.1625265 google scholar
  • Tomé, D. (2013). Digestibility Issues of Vegetable versus Animal Proteins: Protein and Amino Acid Requirements—Functional Aspects. Food and Nutrition Bulletin, 34, 272 - 274. https://doi.org/10.1177/156482651303400225 google scholar
  • Tongununui, P., Kuriya, Y., Murata, M., Sawada, H., Araki, M., Nomura, M., Morioka, K., Ichie, T., Ikejima, K., & Adachi, K. (2021). Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0261654 google scholar
  • Truong, P. (2008). Nutrition and feeding behaviour in two species of mud crabs Scylla serrata and Scylla paramamosain. Agricultural and Food Sciences. google scholar
  • Udenigwe, C. C., & Aluko, R. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77(1), R11–R24. https://doi.org/10.1111/j.1750-3841.2011.02455.x google scholar
  • Unnikrishnan, U., & Paulraj, R.S. (2010). Dietary protein requirement of giant mud crab Scylla serrata juveniles fed iso-energetic formulated diets having graded protein levels. Aquaculture Research, 41, 278-294. https://doi.org/10.1111/J.1365- 2109.2009.02330.X google scholar
  • Unuofin, J.O., Odeniyi, O.A., Majengbasan, O.S., Igwaran, A., Moloantoa, K., Khetsha, Z.P., Iwarere, S.A., & Daramola, M.O. (2024). Chitinases: expanding the boundaries of knowledge beyond routinized chitin degradation. Environmental Science and Pollution Research International, 31, 38045 - 38060. https://doi.org/10.1007/s11356-024-33728-6 google scholar
  • Ursell, L. K., Metcalf, J. L., Parfrey, L. W., & Knight, R. (2012). Defining the human microbiome. Nutrition Reviews, 70(Suppl. 1), S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x google scholar
  • van den Borne, J.J., Verdonk, J., Schrama, J.W., & Gerrits, W.J. (2006). Reviewing the low efficiency of protein utilization in heavy preruminant calves–a reductionist approach. Reproduction, nutrition, development, 46 2, 121-37. https://doi.org/10.1051/RND:2006011 google scholar
  • Vásquez-Torres, W., Pereira Filho, M., & Arias-Castellanos, J. A. (2013). Optimum dietary crude protein requirement for juvenile cachama Piaractus brachypomus. Ciência Rural, 41(12), 2183–2189. https://doi.org/10.1590/S0103- 84782011001200023 google scholar
  • Vrabec, V., Kulma, M., & Cocan, D. (2015). Insects as an alternative protein source for animal feeding: A short review about chemical composition. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 72(1), 84–89. https://doi.org/10.15835/BUASVMCN-ASB:11656 google scholar
  • Wan Yusof, W. R., Ahmad, F., & Swamy, M. (2017). A brief review on the antioxidants and antimicrobial peptides revealed in mud crabs from the genus of Scylla. BioMed Research International, 2017, 1850928. https://doi.org/10.1155/2017/1850928 google scholar
  • Wei, H., Wang, H., Tang, L.S., Mu, C., Ye, C., Chen, L., & Wang, C. (2019). High- throughput sequencing reveals the core gut microbiota of the mud crab (Scylla paramamosain) in different coastal regions of southern China. BMC Genomics, 20. https://doi.org/10.1186/s12864-019-6219-7 google scholar
  • Wilson, R. P. (2002). Amino acids and proteins. In Fish Nutrition (3rd ed., pp. 143-179). Academic Press. https://doi.org/10.1016/B978-012319652-1/50004-5 google scholar
  • Wu, G. (2016). Dietary protein intake and human health. Food & Function, 7(3), 1251–1265. https://doi.org/10.1039/c5fo01530h google scholar
  • Wu, L., Tang, Z., Chen, H., Ren, Z., Ding, Q., Liang, K., & Sun, Z. (2021). Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Animal Nutrition, 7(1), 11–18. https://doi.org/10.1016/j.aninu.2020.11.006 google scholar
  • Wu, S., Bhat, Z. F., Gounder, R. S., Mohamed Ahmed, I. A., Al Juhaimi, F. Y., Ding, Y., & Bekhit, A. E. D. A. (2022). Effect of dietary protein and processing on gut microbiota — A systematic review. Nutrients, 14(3), 453. https://doi.org/10.3390/nu14030453 google scholar
  • Xiao, G. (2006). A review on digestive enzyme of crustacean larvae. Journal of Fishery Sciences of China. google scholar
  • Yadav, N. K., Patel, A. B., Singh, S. K., Mehta, N., Anand, V., Lal, J., Dekari, D., & Devi, N. C. (2024). Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: A review. Environmental Science and Pollution Research, 31(25), 37719–37739. https://doi.org/10.1007/s11356-024-33397-5 google scholar
  • Yang, Y., Zhang, Y., He, X., Huan, F., Chen, J., Liu, M., He, S., Gu, S., & Liu, G. (2025). An overview of seafood allergens: Structure–allergenicity relationship and allergenicity elimination processing techniques. Foods, 14(13), 2241. https://doi.org/10.3390/foods14132241 google scholar
  • Yeh, S., Chiu, C.H., Shiu, Y., Huang, Z., & Liu, C. (2014). Effects of diets supplemented with either individual or combined probiotics, Bacillus subtilis E20 and Lactobacillus plantarum 7-40, on the immune response and disease resistance of the mud crab, Scylla paramamosain (Estampador). Aquaculture Research, 45, 1164-1175. https://doi.org/10.1111/ARE.12061 google scholar
  • Zaky, A. A., Simal-Gándara, J., Eun, J., Shim, J., & Abd El‐Aty, A. M. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Frontiers in Nutrition, 8, 815640. https://doi.org/10.3389/fnut.2021.815640 google scholar
  • Zeng, Q., Xu, Y., Jeppesen, E., Gu, X., Mao, Z., & Chen, H. (2021). Farming practices affect the amino acid profiles of the aquaculture Chinese mitten crab. PeerJ, 9, e11605. https://doi.org/10.7717/peerj.11605 google scholar
  • Zhang, X., Zhang, M., Zheng, H., Ye, H., Zhang, X., & Li, S. (2019). Source of hemolymph microbiota and their roles in the immune system of mud crab. Developmental and comparative immunology, 103470. https://doi.org/10.1016/j.dci.2019.103470 google scholar
  • Zhang, Z., Li, S., Xie, C., Zhou, L., Li, C., Liu, W., & Wen, X. (2015). Innate immune response and gene expression of Scylla paramamosain under Vibrio parahaemolyticus infection. Aquaculture Research, 46, 462-471. https://doi.org/10.1111/ARE.12194 google scholar
  • Zhang, Z., Ma, Z., Song, L., & Farag, M. A. (2023). Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. Journal of Advanced Research, 48, 1–23. https://doi.org/10.1016/j.jare.2023.11.002 google scholar
  • Zhao, J., Zhang, X., Liu, H., Brown, M.A., & Qiao, S. (2018). Dietary Protein and Gut Microbiota Composition and Function. Current protein & peptide science, 20 2, 145-154. https://doi.org/10.2174/1389203719666180514145437 google scholar
  • Zheng, P., Han, T., Li, X., Wang, J., Su, H., Xu, H., Wang, Y., & Wang, C. (2020). Dietary protein requirement of juvenile mud crab Scylla paramamosain. Aquaculture, 518, 734852. https://doi.org/10.1016/j.aquaculture.2019.734852 google scholar
  • Zhou, Z., Gu, W., Wang, C., Zhou, Y., Tu, D., Liu, Z., Zhu, Q., & Shu, M. (2018). Seven transcripts from the chitinase gene family of the mud crabScylla paramamosain: Their expression profiles during development and moulting and under environmental stresses. Aquaculture Research. https://doi.org/10.1111/ARE.13793 google scholar
  • Michael, K. G., & Sogbesan, O. A. (2017). Alternative protein sources in aquaculture diets: A review. International Journal of Agriculture, Environment and Bioresearch, 2(05), 2017. google scholar
  • Médale, F. & Kaushik, S. (2009). Protein sources in feed for farmed fish. Cahiers Agricultures, 18(2), 103–111. google scholar

Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy

Year 2026, Volume: 41 Issue: 1, 65 - 80, 20.01.2026
https://doi.org/10.26650/ASE.2026.1810998
https://izlik.org/JA69RF49KE

Abstract

Crab proteins are a nutritionally valuable and increasingly significant resource for global food security, aquaculture development, and functional bioactive applications. This review synthesizes current knowledge on the nutritional composition, dietary protein requirements, growth performance, health implications, and sustainability aspects of crab protein, with particular emphasis on mangrove crabs (Scylla spp.). Crab muscle proteins possess high biological value, featuring balanced essential amino acid profiles that support growth, molting, reproduction, and immune competence. Optimal dietary protein levels for farmed crabs typically range from 35% to 50%; however, requirements vary across species, developmental stages, and environmental conditions. In addition to growth, the quality of dietary protein influences feed efficiency, antioxidant capacity, stress tolerance, and disease resistance, underscoring its multifunctional role in crab physiology. This review critically evaluates alternative protein sources, including plant-based, microbial, and insect-derived proteins, highlighting their potential to replace fishmeal when amino acid balance and digestibility are ensured. Environmental and sustainability challenges—particularly those related to climate change, habitat degradation, and reliance on marine-derived feed ingredients—are discussed alongside emerging solutions such as circular economy approaches and by-product valorization. Advances in proteomics, biotechnology, and multi-omics integration present new opportunities for characterizing crab proteins and developing functional peptides with applications in food, aquaculture, and biomedicine. Overall, this review emphasizes that crab protein is not merely a growth substrate but a strategic lever for sustainable aquaculture, environmental resilience, and value-added innovation.

References

  • Abdel-Salam, H. (2014). Amino acid composition in the muscles of male and female commercially important crustaceans from Egyptian and Saudi Arabia coasts. American Journal of BioScience, 2(2), 73–78. https://doi.org/10.11648/j.ajbio.20140202.19 google scholar
  • Abisha, R., Krishnani, K. K., Sukhdhane, K., Verma, A. K., Brahmane, M., & Chadha, N. K. (2022). Sustainable development of climate-resilient aquaculture and culture- based fisheries through adaptation of abiotic stresses: A review. Journal of Water and Climate Change, 13(11), 4051–4068. https://doi.org/10.2166/wcc.2022.045 google scholar
  • Abol-Munafi, A. B., & Azra, M. N. (2018). Climate change and the crab aquaculture industry: Problems and challenges. Journal of Sustainability Science and Management, 13(2), 145–150. google scholar
  • Adamovsky, O., Buerger, A. N., Wormington, A. M., Ector, N., Griffitt, R. J., Bisesi, J. H., & Martyniuk, C. J. (2018). The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry, 37(11), 2758–2775. https://doi.org/10.1002/etc.4249 google scholar
  • Alboofetileh, M., Hamzeh, A., & Abdollahi, M. (2021). Seaweed proteins as a source of bioactive peptides. Current Pharmaceutical Design, 27(16), 1867–1877. https://doi.org/10.2174/1381612827666210208153249 google scholar
  • Amenyogbe, E. (2023). Application of probiotics for sustainable and environment-friendly aquaculture management: A review. Cogent Food & Agriculture, 9(1), 2226425. https://doi.org/10.1080/23311932.2023.2226425 google scholar
  • Anbarasan, R., Tiwari, B. K., & Mahendran, R. (2024). Upcycling of seafood side streams for circularity. In B. Caballero (Ed.), Advances in food and nutrition research (Vol. 99, pp. 105–142). Academic Press. https://doi.org/10.1016/bs.afnr.2023.11.002 google scholar
  • Apine, E., Rai, P.K., Mani, M.K., Subramanian, V., Karunasagar, I., Godhe, A., & Turner, L.M. (2021). Comparative analysis of the intestinal bacterial communities in mud crab Scylla serrata in South India. MicrobiologyOpen, 10. https://doi.org/10.1002/mbo3.1179 google scholar
  • Apine, E., Ramappa, P., Bhatta, R., Turner, L., & Rodwell, L. (2023). Challenges and opportunities in achieving sustainable mud crab aquaculture in tropical coastal regions. Ocean & Coastal Management, 242, 106711. https://doi.org/10.1016/j.ocecoaman.2023.106711 google scholar
  • Arena, R., Renda, G., Aalmo, G. O., Debeaufort, F., Messina, C., & Santulli, A. (2024). Valorization of the invasive blue crabs (Callinectes sapidus) in the Mediterranean: Nutritional value, bioactive compounds and sustainable by- products utilization. Marine Drugs, 22(9), 430. https://doi.org/10.3390/md22090430 google scholar
  • Arwani, A., Palupi, N., & Giriwono, P. E. (2022). Effects of different heat processing on molecular weight and allergenicity profile of white shrimp (Litopenaeus vannamei) and mud crab (Scylla serrata) from Indonesian waters. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 17(2), 63–72. https://doi.org/10.15578/squalen.629 google scholar
  • Assan, D., Kuebutornye, F. K., Hlordzi, V., Chen, H., Mráz, J., Mustapha, U. F., & Abarike, E. D. (2021). Effects of probiotics on digestive enzymes of fish (finfish and shellfish): Status and prospects—A mini review. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 257, 110653. https://doi.org/10.1016/j.cbpb.2021.110653 google scholar
  • Blakeley-Ruiz, J.A., Bartlett, A., McMillan, A.S., Awan, A., Vanhoy Walsh, M., Meyerhoffer, A.K., Vintila, S., Maier, J.L., Richie, T.G., Theriot, C.M., & Kleiner, M. (2024). Dietary protein source strongly alters gut microbiota composition and function. bioRxiv. https://doi.org/10.1101/2024.04.04.588169 google scholar
  • Boateng, A., Fred, B., Derrick, A., Tan, B., & Deng, J. (2025). Effects of replacing fish meal by plant protein sources in fish feed on serum and muscle cholesterol levels, cholesterol metabolism-related enzyme activity and gene expression of fish: A review. Annals of Animal Science, 25(1), 1–15. https://doi.org/10.2478/aoas- 2025-0065 google scholar
  • Bondad-Reantaso, M., Subasinghe, R., Josupeit, H., Cai, J., & Zhou, X. (2012). The role of crustacean fisheries and aquaculture in global food security: Past, present and future. Journal of Invertebrate Pathology, 110(2), 158–165. https://doi.org/10.1016/j.jip.2012.03.010 google scholar
  • Bowler, R., Wendt, C., Fessler, M., Foster, M. W., Kelly, R., Lasky-Su, J., Rogers, A., Stringer, K., & Winston, B. (2017). New strategies and challenges in lung proteomics and metabolomics: An official American Thoracic Society workshop report. Annals of the American Thoracic Society, 14(12), 1721–1743. https://doi.org/10.1513/AnnalsATS.201710-770WS google scholar
  • Catacutan, M. R. (2002). Growth and body composition of juvenile mud crab, Scylla serrata, fed different dietary protein and lipid levels and protein to energy ratios. Aquaculture, 208(1–2), 113–123. https://doi.org/10.1016/S0044-8486(02)00214-1 google scholar
  • Ceccarelli, D., & Colwell, R. R. (2014). Vibrio ecology, pathogenesis, and evolution. Frontiers in Microbiology, 5, 256. https://doi.org/10.3389/fmicb.2014.00256 google scholar
  • Champion, C., Broadhurst, M., Ewere, E., Benkendorff, K., Butcherine, P., Wolfe, K., & Coleman, M. (2020). Resilience to the interactive effects of climate change and discard stress in the commercially important blue swimmer crab (Portunus armatus). Marine Environmental Research, 162, 105009. https://doi.org/10.1016/j.marenvres.2020.105009 google scholar
  • Chandrapavan, A., Caputi, N., & Kangas, M. (2019). The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Frontiers in Marine Science, 6, 510. https://doi.org/10.3389/fmars.2019.00510 google scholar
  • Chen, J., Sun, R., Pan, C.-G., Sun, Y., Mai, B., & Li, Q. X. (2020). Antibiotics and food safety in aquaculture. Journal of Agricultural and Food Chemistry, 68(43), 11908–11919. https://doi.org/10.1021/acs.jafc.0c03996 google scholar
  • Cho, W. (2007). Proteomics technologies and challenges. Genomics, Proteomics & Bioinformatics, 5(2), 77–85. https://doi.org/10.1016/S1672-0229(07)60018-7 google scholar
  • Chramouli, K. (2016). Marine proteomics: Challenges and opportunities. Journal of Proteomics & Bioinformatics, 9(1), e122. https://doi.org/10.4172/2153-0602.1000E122 google scholar
  • Coates, C., & Rowley, A. (2022). Emerging diseases and epizootics in crabs under cultivation. Frontiers in Marine Science, 8, 809759. https://doi.org/10.3389/fmars.2021.809759 google scholar
  • Colombo, S., Roy, K., Mráz, J., Wan, A., Davies, S., Tibbetts, S., Øverland, M., Francis, D., Rocker, M. M., Gasco, L., Spencer, E., Metian, M., Trushenski, J., & Turchini, G. (2022). Towards achieving circularity and sustainability in feeds for farmed blue foods. Reviews in Aquaculture, 15(1), 1–29. https://doi.org/10.1111/raq.12766 google scholar
  • Cortes, J. R., Benitez, I. B., Baldoza, B. J. S., Pardillo, C. A. R., Auxtero, K. M. A., Badec, K. P., & Varela, D. A. B. (2025). Climate-smart aquaculture: Innovations and challenges in mitigating climate change impacts on fisheries and coastal agriculture. Aquaculture and Fisheries. Advance online publication. https://doi.org/10.1016/j.aaf.2025.08.009 google scholar
  • Dawson, R., & Holdsworth, E.S. (1962). An investigation into protein digestion with 14C-labelled protein. British Journal of Nutrition, 16, 13 - 25. https://doi.org/10.1079/BJN19620002 google scholar
  • de Santana Filho, J. J., Gaspar, P., de Souza, A. C., & Paço, A. (2024). Circular economy in guaiamum and uçá crab waste in Brazil: Potential by-products—A systematic literature review. Resources, 13(3), 46. https://doi.org/10.3390/resources13030046 google scholar
  • Diether, N. E., & Willing, B. P. (2019). Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction. Microorganisms, 7(1), 19. https://doi.org/10.3390/microorganisms7010019 google scholar
  • Diwan, A. D., Harke, S., & Panche, A. (2023). Host–microbiome interaction in fish and shellfish: An overview. Fish and Shellfish Immunology Reports, 4, 100091. https://doi.org/10.1016/j.fsirep.2023.100091 google scholar
  • do Vale Pereira, G., Teixeira, C., Couto, J., Dias, J., Rema, P., & Gonçalves, A.T. (2024). Dietary Protein Quality Affects the Interplay between Gut Microbiota and Host Performance in Nile Tilapia. Animals : an Open Access Journal from MDPI, 14. https://doi.org/10.3390/ani14050714 google scholar
  • El-Son, M. A. M., Elbahnaswy, S., Khormi, M. A., Aborasain, A. M., Abdelhaffez, H. H., & Zahran, E. (2025). Harnessing the fish gut microbiome and immune system to enhance disease resistance in aquaculture. Fish and Shellfish Immunology, 150, 110394. https://doi.org/10.1016/j.fsi.2025.110394 google scholar
  • Erickson, R.H., & Kim, Y.S. (1990). Digestion and absorption of dietary protein. Annual review of medicine, 41, 133-9. https://doi.org/10.1146/ANNUREV.ME.41.020190.001025 google scholar
  • Esmaeili, N., Ma, H., Kadri, S., & Tocher, D. R. (2024). Protein and lipid nutrition in crabs. Reviews in Aquaculture, 16(2), 1–28. https://doi.org/10.1111/raq.12908 google scholar
  • Fall, F., Ma, S., Sahandi, J., Chibuikem, C.K., Pan, M., Tabuariki, B.B., Guo, Y., Mai, K., & Zhang, W. (2023). Interactions between dietary protein level and water temperature on the growth performance, innate immunity and disease resistance of juvenile abalone Haliotis discus hannai Ino. Aquaculture Reports. google scholar
  • Fiers, W. D., Gao, I. H., & Iliev, I. (2019). Gut mycobiota under scrutiny: Fungal symbionts or environmental transients? Current Opinion in Microbiology, 50, 79–86. https://doi.org/10.1016/j.mib.2019.09.010 google scholar
  • Finegold, C. (2009). The importance of fisheries and aquaculture to development. In P. Wramner, M. Cullberg, & H. Ackefors (Eds.), Fisheries, sustainability and development (pp. 353–364). The Royal Swedish Academy of Agriculture and Forestry. google scholar
  • Foysal, M. J. (2023). Host habitat shapes the core gut bacteria of decapod crustaceans: A meta-analysis. Heliyon, 9(6), e16511. https://doi.org/10.1016/j.heliyon.2023.e16511 google scholar
  • Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., & Caruso, G. (2018). Fishmeal alternative protein sources for aquaculture feeds. In L. Gasco, F. Gai, & G. Maricchiolo (Eds.), Feeding and digestive functions of fishes (pp. 1–28). Springer. https://doi.org/10.1007/978-3-319-77941-6_1 google scholar
  • Gatlin, D. M., Barrows, F. T., Brown, P., Dąbrowski, K., Gaylord, T. G., Hardy, R. W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M. B., Sealey, W. M., Skonberg, D., Souza, E. J., Stone, D. A. J., Wilson, R. P., & Wurtele, E. S. (2007). Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquaculture Research, 38(6), 551–579. https://doi.org/10.1111/j.1365-2109.2007.01704.x google scholar
  • Genodepa, J., Southgate, P. C., & Zeng, C. (2004). Preliminary assessment of a microbound diet as an Artemia replacement for mud crab, Scylla serrata, megalopa. Aquaculture, 236(1–4), 497–509. https://doi.org/10.1016/j.aquaculture.2004.02.007 google scholar
  • Gyan, W. R., Ayiku, S., & Yang, Q. (2019). Effects of replacing fishmeal with soybean products in fish and crustaceans performance. Journal of Aquaculture Research & Development, 10(10), 573. https://doi.org/10.35248/2155-9546.19.10.573 google scholar
  • Hansen, S., Ashley, A., & Chung, B. (2015). Complex dietary protein improves growth through a complex mechanism of intestinal peptide absorption and protein digestion. JPEN Journal of Parenteral and Enteral Nutrition, 39(7), 848–855. https://doi.org/10.1177/0148607113501556 google scholar
  • Hasnidar et al., H. (2024). Impact of Iso-Protein Feed with Different Carbohydrate and Lipid Ratios on Growth and Feed Efficiency of the Mud Crab, Scylla serrata. Egyptian Journal of Aquatic Biology and Fisheries. https://doi.org/10.21608/ejabf.2024.345817 google scholar
  • Hau, H. H., & Gralnick, J. A. (2007). Ecology and biotechnology of the genus Shewanella. Annual Review of Microbiology, 61, 237–258. https://doi.org/10.1146/annurev.micro.61.080706.093257 google scholar
  • Hoseinifar, S. H., Dadar, M., & Ringø, E. (2017). Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: The functional feed additives scenario. Aquaculture Research, 48(8), 3987–4000. https://doi.org/10.1111/are.13368 google scholar
  • Hu, M., Liu, G., Yang, Y., Pan, T., Liu, Y., Sun, L., Cao, M., & Liu, G. (2017). Cloning, expression, and the effects of processing on sarcoplasmic-calcium-binding protein: An important allergen in mud crab. Journal of Agricultural and Food Chemistry, 65(30), 6227–6235. https://doi.org/10.1021/acs.jafc.7b02381 google scholar
  • Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., Praeger, C., Vucko, M. J., Zeng, C., Zenger, K., & Strugnell, J. M. (2019). The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth, 1(3), 316–329. https://doi.org/10.1016/j.oneear.2019.10.018 google scholar
  • Ikhwanuddin, M. (2020). Portunid crab breeding and larval rearing, paving the way for sustainable aquaculture. Pakistan Journal of Biological Sciences, 23(12), 1500–1505. https://doi.org/10.3923/pjbs.2020.1500.1505 google scholar
  • Infante-Villamil, S., Huerlimann, R., & Jerry, D. R. (2021). Microbiome diversity and dysbiosis in aquaculture. Reviews in Aquaculture, 13(2), 1077–1096. https://doi.org/10.1111/raq.12513 google scholar
  • Jannathulla, R., Rajaram, V., Ambasankar, K., Sravanthi, O., Gopikrishna, G., & Dayal, J. S. (2022). Insect meals as emerging protein source in the aquafeed sector: Emphasis on complementary effects to fishmeal, digestibility, carcass characterisation and immunomodulation in aquatic species. Indian Journal of Fisheries, 69(1), 1–13. https://doi.org/10.21077/ijf.2022.69.1.113037-20 google scholar
  • Jia, S., Li, X., He, W., & Wu, G. (2021). Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Research and Aquaculture. Advances in experimental medicine and biology, 1354, 237-261. https://doi.org/10.1007/978-3-030-85686-1_12 google scholar
  • Jiang, K., Liu, B., Sun, C., Zhou, Q., Zheng, X., Liu, M., Xu, G., Jin, W., Tian, H., & Hu, H. (2023). Promotion of improved intestinal barrier health by soybean- derived bioactive peptides in Chinese mitten crab (Eriocheir sinensis) fed a low fishmeal diet. British Journal of Nutrition, 130(10), 1456–1470. https://doi.org/10.1017/S0007114523002507 google scholar
  • Jiang, X., Niu, M., Qin, K., Hu, Y., Li, Y., Che, C., Wang, C., Mu, C., & Wang, H. (2023). The shared microbiome in mud crab (Scylla paramamosain) of Sanmen Bay, China: core gut microbiome. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1243334 google scholar
  • Jin, M., Zhou, Q. C., Zhang, W., Xie, F. J., Shentu, J. K., & Huang, X. L. (2013). Dietary protein requirements of the juvenile swimming crab, Portunus trituberculatus. Aquaculture, 414–415, 303–308. https://doi.org/10.1016/j.aquaculture.2013.08.028 google scholar
  • Jobling, M. (1986). Gastrointestinal overload — A problem with formulated feeds? Aquaculture, 51, 257-263. https://doi.org/10.1016/0044-8486(86)90317-0 google scholar
  • Kar, S.K., Jansman, A.J., Boeren, S., Kruijt, L., & Smits, M. (2016). Protein, peptide, amino acid composition, and potential functional properties of existing and novel dietary protein sources for monogastrics. Journal of Animal Science, 94, 30-39. https://doi.org/10.2527/JAS.2015-9677 google scholar
  • Kumar, P., Mehta, N., Abubakar, A., Verma, A. K., Kaka, U., Sharma, N., Sazili, A., Pateiro, M., Kumar, M., & Lorenzo, J. M. (2022). Potential alternatives of animal proteins for sustainability in the food sector. Food Reviews International, 39(8), 4752–4774. https://doi.org/10.1080/87559129.2022.2094403 google scholar
  • Langlois, L., Akhtar, N., Tam, K. C., Dixon, B., & Reid, G. (2021). Fishing for the right probiotic: Host–microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiology Reviews, 45(5), fuab030. https://doi.org/10.1093/femsre/fuab030 google scholar
  • Li, E., Xu, C., Wang, X., Wang, S., Zhao, Q., Zhang, M., Qin, J., & Chen, L. (2018). Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Aquaculture Research, 49(2), 593–607. https://doi.org/10.1080/23308249.2018.1440530 google scholar
  • Li, X., Han, T., Zheng, S., & Wu, G. (2021). Nutrition and Functions of Amino Acids in Aquatic Crustaceans. Advances in experimental medicine and biology, 1285, 169-198 . https://doi.org/10.1007/978-3-030-54462-1_9 google scholar
  • Lin, S., Luo, L., & Ye, Y. (2009). Effects of dietary protein level on growth, feed utilization and digestive enzyme activity of the Chinese mitten crab, Eriocheir sinensis. Aquaculture Research, 40(12), 1416–1424. https://doi.org/10.1111/j.1365-2095.2009.00664.x google scholar
  • Lisboa, H. M., Nascimento, A., Arruda, A., Sarinho, A., Lima, J., Batista, L., Dantas, M. F., & Andrade, R. (2024). Unlocking the potential of insect-based proteins: Sustainable solutions for global food security and nutrition. Foods, 13(12), 1846. https://doi.org/10.3390/foods13121846 google scholar
  • Lorgen-Ritchie, M., Uren Webster, T. M., McMurtrie, J., Bass, D., Tyler, C. R., Rowley, A. F., & Martin, S. A. M. (2023). Microbiomes in the context of developing sustainable intensified aquaculture. Frontiers in Microbiology, 14, 1200997. https://doi.org/10.3389/fmicb.2023.1200997 google scholar
  • Ma, N., Tian, Y., Wu, Y., & Ma, X. (2017). Contributions of the Interaction Between Dietary Protein and Gut Microbiota to Intestinal Health. Current protein & peptide science, 18 8, 795-808. https://doi.org/10.2174/1389203718666170216153505 google scholar
  • Ma, Y. C., Yang, Y. J., & Wang, G. L. (2010). Effects of salinity challenge on the immune factors of Scylla serrata. Acta Agriculturae Zhejiangensis, 22, 479–484. google scholar
  • Madhulika, Ngasotter, S., Meitei, M. M., Kara, T., Meinam, M., Sharma, S., Rathod, S. K., Singh, S. B., Singh, S. K., & Bhat, R. A. H. (2025). Multifaceted role of probiotics in enhancing health and growth of aquatic animals: Mechanisms, benefits, and applications in sustainable aquaculture—A review and bibliometric analysis. Aquaculture Nutrition, 2025, 5746972. https://doi.org/10.1155/anu/5746972 google scholar
  • Marcharla, E., Vishnuprasadh, A., Gnanasekaran, L., Vinayagam, S., Sundaram, T., & Ganesan, S. (2025). The role of functional feed in modulating fish gut microbiome to enhance resistance against aquaculture pathogens. Probiotics and Antimicrobial Proteins. Advance online publication. https://doi.org/10.1007/s12602-025-10660-w google scholar
  • Maulu, S. (2024). Utilizing Clostridium autoethanogenum for dietary protein in aquafeeds: Current progress in research and future perspectives. Journal of Applied Aquaculture, 36(4), 456–472. https://doi.org/10.1080/10454438.2024.2338900 google scholar
  • Médale, F., & Kaushik, S.J. (2009). Protein sources in feed for farmed fish. Cahiers Agricultures, 18, 103-111. https://doi.org/10.1684/AGR.2009.0279 google scholar
  • Méndez-Martínez, Y., Yamasaki-Granados, S., García-Guerrero, M. U., Martínez- Córdova, L. R., Rivas-Vega, M. E., Arcos-Ortega, F. G., & Cortes-Jacinto, E. (2017). Effect of dietary protein content on growth rate, survival and body composition of juvenile cauque river prawn, Macrobrachium americanum (Bate, 1868). Aquaculture Research, 48(3), 741–751. https://doi.org/10.1111/are.13193 google scholar
  • Menge, B. A., Olson, A. M., & Dahlhoff, E. P. (2002). Environmental stress, bottom-up effects, and community dynamics: Integrating molecular–physiological and ecological approaches. Integrative and Comparative Biology, 42(4), 892–908. https://doi.org/10.1093/icb/42.4.892 google scholar
  • Michael, K., & Sogbesan, O. (2017). Alternative protein sources in aquaculture diets: A review. Agricultural and Food Sciences. google scholar
  • Michiels, M.S., Valle, J.C., & Mañanes, A.A. (2013). Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae. Scientia Marina, 77, 129-136. https://doi.org/10.3989/SCIMAR.03687.09D google scholar
  • Michiels, M.S., Valle, J.C., & Mañanes, A.A. (2015). Lipase activity sensitive to dopamine, glucagon and cyclic AMP in the hepatopancreas of the euryhaline burrowing crab Neohelice granulata (Dana, 1851) (Decapoda, Grapsidae). Crustaceana, 88, 51-65. https://doi.org/10.1163/15685403-00003399 google scholar
  • Millikin, M., Biddle, G., Siewicki, T., Fortner, A., & Fair, P. (1980). Effects of various levels of dietary protein on survival, molting frequency and growth of juvenile blue crabs (Callinectes sapidus). Aquaculture, 20(3), 217–225. https://doi.org/10.1016/0044-8486(80)90016-2 google scholar
  • Möller, N., Scholz-Ahrens, K., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: Indication for health effects. European Journal of Nutrition, 47(4), 171–182. https://doi.org/10.1007/s00394-008-0710-2 google scholar
  • Moura, M., Martins, B., Oliveira, G., & Takahashi, J. (2022). Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition, 63(23), 3791–3806. https://doi.org/10.1080/10408398.2022.2085657 google scholar
  • Naimullah, M., Lan, K., Mammel, M., Chen, L.-C., Wu, Y., Hsiao, P.-Y., Liang, T.-Y., Fazhan, H., & Waiho, K. (2024). Effect of climate change on habitat suitability and recruitment dynamics of swimming crabs in the Taiwan Strait. Marine and Freshwater Research, 75(6), 449–462. https://doi.org/10.1071/mf24002 google scholar
  • Narayanasamy, A., Balde, A., Raghavender, P., Shashanth, D., Abraham, J., Joshi, I., & Nazeer, R. A. (2020). Isolation of marine crab (Charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. Biocatalysis and Agricultural Biotechnology, 28, 101577. https://doi.org/10.1016/j.bcab.2020.101577 google scholar
  • Nguyen, N.T., Wantiez, L., Lemaire, P., & Chim, L. (2022). Feed Efficiency, Tissue Growth and Energy Budget Changes during the Molting Cycle of Juvenile Mud Crab, Scylla serrata: Effects of Dietary Proteins, Fishmeal versus Soy Protein Concentrate. Fishes. https://doi.org/10.3390/fishes7060334 google scholar
  • Niiyama, T., Toyohara, H., & Tanaka, K. (2012). Cellulase Activity in Blood Cockle ( Anadara granosa ) in the Matang Mangrove Forest Reserve, Malaysia. Jarq-japan Agricultural Research Quarterly, 46, 355-359. https://doi.org/10.6090/JARQ.46.355 google scholar
  • Nikapitiya, C., Kim, W., Park, K., Kim, J., Lee, M.O., & Kwak, I. (2015). Chitinase gene responses and tissue sensitivity in an intertidal mud crab (Macrophthalmus japonicus) following low or high salinity stress. Cell Stress and Chaperones, 20, 517 - 526. https://doi.org/10.1007/s12192-015-0576-1 google scholar
  • Okagu, I., Aham, E. C., Ezeorba, T., Ndefo, J. C., Aguchem, R. N., & Udenigwe, C. C. (2022). Osteo-modulatory dietary proteins and peptides: A concise review. Journal of Food Biochemistry, 46(9), e14365. https://doi.org/10.1111/jfbc.14365 google scholar
  • Oli, A., Shivshetty, N., Javaregowda, P. K., & Chandrakanth, K. R. (2022). Extraction and purification of bioactive peptide with antimicrobial properties from horseshoe crab. Current Bioactive Compounds, 18(9), 1060–1067. https://doi.org/10.2174/1573407218666220606142023 google scholar
  • Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2), 83–108. https://doi.org/10.1111/j.1365-2761.2011.01333.x google scholar
  • Oliveira, A. V. S., Vieira, J. L., Maia, H. D., Gaeta, J., de Sousa, O. V., da Silva, J. L. S., & de Menezes, F. G. R. (2023). Diversity of symbiotic bacteria in the digestive and circulatory systems of lobster and crayfish: Important connections for efficient aquaculture. A systematic review. Crustaceana, 96(6), 681–708. https://doi.org/10.1163/15685403-bja10336 google scholar
  • Pavasović, M. (2004). Digestive profile and capacity of the mud crab (Scylla serrata). Agricultural and Food Sciences, Environmental Science, Biology. google scholar
  • Pelletier, N., Klinger, D. H., Sims, N., Yoshioka, J.-R., & Kittinger, J. N. (2018). Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: Joint consideration of potential synergies and trade-offs. Environmental Science & Technology, 52(10), 5532–5544. https://doi.org/10.1021/acs.est.7b05468 google scholar
  • Pereira, L., Cotas, J., & Gonçalves, A. (2024). Seaweed proteins: A step towards sustainability? Nutrients, 16(8), 1123. https://doi.org/10.3390/nu16081123 google scholar
  • Perera, E., Rodríguez-Viera, L., Montero-Alejo, V., & Perdomo-Morales, R. (2020). Crustacean Proteases and Their Application in Debridement. Tropical Life Sciences Research, 31, 187 - 209. https://doi.org/10.21315/tlsr2020.31.2.10 google scholar
  • Qi, C., Han, F., Wang, X., Xu, C., Huang, Z., Li, E., Qin, J., & Chen, L. (2020). High protein diet alleviates the high pH stress in Chinese mitten crab (Eriocheir sinensis). Aquaculture, 520, 734523. https://doi.org/10.1016/j.aquaculture.2019.734523 google scholar
  • Qin, F., Shi, M., Yuan, H., Yuan, L., Lu, W., Zhang, J., Tong, J., & Song, X. (2016). Dietary nano-selenium relieves hypoxia stress and improves immunity and disease resistance in the Chinese mitten crab (Eriocheir sinensis). Fish & Shellfish Immunology, 54, 481–488. https://doi.org/10.1016/j.fsi.2016.04.131 google scholar
  • Qu, X., Ma, Z., Wu, X., & Lv, L. (2025). Recent advances of processing and detection techniques on crustacean allergens: A review. Foods, 14(2), 285. https://doi.org/10.3390/foods14020285 google scholar
  • Rai, N., Kachore, A., Julka, J. M., Panigrahi, A., Das, S. P., & Nan, F.-H. (2025). Symbiotic strategies: Deciphering the role of gut microbiota in the nutrition and metabolism of fish and shellfish. Frontiers in Cellular and Infection Microbiology, 15, 1639426. https://doi.org/10.3389/fcimb.2025.1639426 google scholar
  • Raniah, N., Henri, H., & Kurniawan, K. (2022). On the abundance and occurrence of the mangrove crabs, Scylla spp. (Crustacea: Portunidae) from Munjang mangrove, Bangka Belitung Island. Jurnal Riset Biologi dan Aplikasinya. https://doi.org/10.26740/jrba.v4n2.p75-82 google scholar
  • Ravichandran, S., Sylvester Fredrick, W., Ajmal Khan, S., & Balasubramanian, T. (2011). Diversity of mangrove crabs in South and Southeast Asia. Journal of Oceanography & Marine Environmental System, 1(1), 1-7. IDOSI Publications. google scholar
  • Rivera-Perez, C. (2015). Marine invertebrate lipases: Comparative and functional genomic analysis. Comparative biochemistry and physiology. Part D, Genomics & proteomics, 15, 39-48. https://doi.org/10.1016/j.cbd.2015.06.001 google scholar
  • Rossano, R., Larocca, M., & Riccio, P. (2011). Digestive Enzymes of the Crusta ceans Munida and Their Application in Cheese Manufacturing: A Review. Marine Drugs, 9, 1220 - 1231. https://doi.org/10.3390/md9071220 google scholar
  • S, V., & G, V. (2020). Proximate composition of fresh meat and exoskeleton of marine crab Portunus pelagicus (Linnaeus, 1758). International Journal of Life Sciences, 8(2), 383–390. https://ijlsci.in/in/index.php/home/article/view/21 google scholar
  • Saadi, S., Saari, N., Anwar, F., Abdul Hamid, A., & Ghazali, H. (2015). Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnology Advances, 33(1), 80–116. https://doi.org/10.1016/j.biotechadv.2014.12.003 google scholar
  • Sahoo, K., Dhal, N. K., & Das, R. (2014). Production of amylase enzyme from mangrove fungal isolates. African Journal of Biotechnology. Retrieved from http://ajol.info google scholar
  • Samsing, F., & Barnes, A. C. (2024). The rise of the opportunists: What are the drivers of the increase in infectious diseases caused by environmental and commensal bacteria? Reviews in Aquaculture, 16(1), 1–18. https://doi.org/10.1111/raq.12922 google scholar
  • Santoso, J., Hanifa, Y. N., Indariani, S., Wardiatno, Y., & Mashar, A. (2015). Nutritional values of the Indonesian mole crab, Emerita emeritus: Are they affected by processing methods? AACL Bioflux, 8(4), 579–587. google scholar
  • Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S. E., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International, 34(8), 1215–1226. https://doi.org/10.1016/j.envint.2008.04.009 google scholar
  • Segaran, T. C., Azra, M. N., Seman, N. A., Agos, S. M., Arifin, H., Aouissi, H., Lananan, F., & Gao, H. (2023). A scientometric review of climate change and research on crabs. Journal of Sea Research, 194, 102386. https://doi.org/10.1016/j.seares.2023.102386 google scholar
  • Serra, V., Pastorelli, G., Tedesco, D. E. A., Turin, L., & Guerrini, A. (2024). Alternative protein sources in aquafeed: Current scenario and future perspectives. Veterinary and Animal Science, 28, 100381. https://doi.org/10.1016/j.vas.2024.100381 google scholar
  • Serrano, A.E. (2012). Ontogeny of endogenous and exogenous amylase and total protease activities in mud crab, Scylla serrata larvae fed live food. European Journal of Experimental Biology, 2. google scholar
  • Shapira, M. (2016). Gut microbiotas and host evolution: Scaling up symbiosis. Trends in Ecology & Evolution, 31(7), 539–549. https://doi.org/10.1016/j.tree.2016.03.006 google scholar
  • Shavandi, A., Hou, Y., Carne, A., McConnell, M., & Bekhit, A. (2019). Marine waste utilization as a source of functional and health compounds. In J. Henry (Ed.), Advances in food and nutrition research (Vol. 87, pp. 187–254). Academic Press. https://doi.org/10.1016/bs.afnr.2018.08.001 google scholar
  • Shiping, S., Pei-song, S., Qichao, Y., & Lili, P. (2009). Effects of dietary protein levels on the activities of digestive enzymes and the muscle compositon of juvenile red swamp crayfish Procambarus clarkii Girard. Journal of Anhui Agricultural University, 36, 231-235. google scholar
  • Song, M., Yu, Q., Li, E., Song, Y., Cai, X.-Y., Huang, Y.-X., Qin, C., Wang, X.-D., Qin, J., & Chen, L.-Q. (2024). Leucine improves dietary protein use efficiency by regulating protein synthesis by activating amino acid transporters and the mTORC1 pathways in Chinese mitten crab (Eriocheir sinensis). Aquaculture, 598, 740423. https://doi.org/10.1016/j.aquaculture.2023.740423 google scholar
  • Spencer, A.M., Fielding, A., & Kamemoto, F.I. (1979). The Relationship between Gill NaK- ATPase Activity and Osmoregulatory Capacity in Various Crabs. Physiological Zoology, 52, 1 - 10. https://doi.org/10.1086/physzool.52.1.30159927 google scholar
  • Sridhar, K., Inbaraj, B., & Chen, B.-H. (2021). Recent developments on production, purification and biological activity of marine peptides. Food Research International, 147, 110468. https://doi.org/10.1016/j.foodres.2021.110468 google scholar
  • Steffens, W. (1981). Protein utilization by rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio): A brief review. Aquaculture, 23, 337-345. https://doi.org/10.1016/0044-8486(81)90026-0 google scholar
  • Stevens, B., & Miller, T. (2020). Crab fisheries. In Fisheries and aquaculture (pp. 23–54). Oxford University Press. https://doi.org/10.1093/oso/9780190865627.003.0002 google scholar
  • Stevens, R., Myracle, A., & Grant, J. (2020). Optimizing extraction of proteins from Carcinus maenus after removal of low‐molecular weight chitins. The FASEB Journal, 34(S1), 03776. https://doi.org/10.1096/fasebj.2020.34.s1.03776 google scholar
  • Sulistiono, S., Yahya, N.M., & Riani, E. (2021). Distribusi Scylla spp. di perairan estuari Sungai Donan Segara Anakan Bagian Timur, Cilacap. Habitus Aquatica. https://doi.org/10.29244/haj.2.1.1 google scholar
  • Sundrum, A., Schneider, K., & Richter, D. (2005). Possibilities and limitations of protein supply in organic poultry and pig production. Agricultural and Food Sciences. Retrieved from organicresearchcentre.com google scholar
  • Tahergorabi, R. (2011). Seafood proteins. In B. K. Tiwari, A. Gowen, & B. McKenna (Eds.), Seafood processing: Technology, quality and safety (pp. 116–145). Woodhead Publishing. https://doi.org/10.1533/9780857093639.116 google scholar
  • Tamburini, E. (2024). The blue treasure: Comprehensive biorefinery of blue crab (Callinectes sapidus). Foods, 13(13), 2018. https://doi.org/10.3390/foods13132018 google scholar
  • Tamburini, E., Moore, D., & Castaldelli, G. (2025). Global comparison and future trends of major food proteins: Can shellfish contribute to sustainable food security? Foods, 14(13), 2205. https://doi.org/10.3390/foods14132205 google scholar
  • Tayyab, M., Zhao, Y., & Zhang, Y. (2025). Microbiome engineering to enhance disease resistance in aquaculture: Current strategies and future directions. Frontiers in Microbiology, 16, 1625265. https://doi.org/10.3389/fmicb.2025.1625265 google scholar
  • Tomé, D. (2013). Digestibility Issues of Vegetable versus Animal Proteins: Protein and Amino Acid Requirements—Functional Aspects. Food and Nutrition Bulletin, 34, 272 - 274. https://doi.org/10.1177/156482651303400225 google scholar
  • Tongununui, P., Kuriya, Y., Murata, M., Sawada, H., Araki, M., Nomura, M., Morioka, K., Ichie, T., Ikejima, K., & Adachi, K. (2021). Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0261654 google scholar
  • Truong, P. (2008). Nutrition and feeding behaviour in two species of mud crabs Scylla serrata and Scylla paramamosain. Agricultural and Food Sciences. google scholar
  • Udenigwe, C. C., & Aluko, R. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77(1), R11–R24. https://doi.org/10.1111/j.1750-3841.2011.02455.x google scholar
  • Unnikrishnan, U., & Paulraj, R.S. (2010). Dietary protein requirement of giant mud crab Scylla serrata juveniles fed iso-energetic formulated diets having graded protein levels. Aquaculture Research, 41, 278-294. https://doi.org/10.1111/J.1365- 2109.2009.02330.X google scholar
  • Unuofin, J.O., Odeniyi, O.A., Majengbasan, O.S., Igwaran, A., Moloantoa, K., Khetsha, Z.P., Iwarere, S.A., & Daramola, M.O. (2024). Chitinases: expanding the boundaries of knowledge beyond routinized chitin degradation. Environmental Science and Pollution Research International, 31, 38045 - 38060. https://doi.org/10.1007/s11356-024-33728-6 google scholar
  • Ursell, L. K., Metcalf, J. L., Parfrey, L. W., & Knight, R. (2012). Defining the human microbiome. Nutrition Reviews, 70(Suppl. 1), S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x google scholar
  • van den Borne, J.J., Verdonk, J., Schrama, J.W., & Gerrits, W.J. (2006). Reviewing the low efficiency of protein utilization in heavy preruminant calves–a reductionist approach. Reproduction, nutrition, development, 46 2, 121-37. https://doi.org/10.1051/RND:2006011 google scholar
  • Vásquez-Torres, W., Pereira Filho, M., & Arias-Castellanos, J. A. (2013). Optimum dietary crude protein requirement for juvenile cachama Piaractus brachypomus. Ciência Rural, 41(12), 2183–2189. https://doi.org/10.1590/S0103- 84782011001200023 google scholar
  • Vrabec, V., Kulma, M., & Cocan, D. (2015). Insects as an alternative protein source for animal feeding: A short review about chemical composition. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 72(1), 84–89. https://doi.org/10.15835/BUASVMCN-ASB:11656 google scholar
  • Wan Yusof, W. R., Ahmad, F., & Swamy, M. (2017). A brief review on the antioxidants and antimicrobial peptides revealed in mud crabs from the genus of Scylla. BioMed Research International, 2017, 1850928. https://doi.org/10.1155/2017/1850928 google scholar
  • Wei, H., Wang, H., Tang, L.S., Mu, C., Ye, C., Chen, L., & Wang, C. (2019). High- throughput sequencing reveals the core gut microbiota of the mud crab (Scylla paramamosain) in different coastal regions of southern China. BMC Genomics, 20. https://doi.org/10.1186/s12864-019-6219-7 google scholar
  • Wilson, R. P. (2002). Amino acids and proteins. In Fish Nutrition (3rd ed., pp. 143-179). Academic Press. https://doi.org/10.1016/B978-012319652-1/50004-5 google scholar
  • Wu, G. (2016). Dietary protein intake and human health. Food & Function, 7(3), 1251–1265. https://doi.org/10.1039/c5fo01530h google scholar
  • Wu, L., Tang, Z., Chen, H., Ren, Z., Ding, Q., Liang, K., & Sun, Z. (2021). Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Animal Nutrition, 7(1), 11–18. https://doi.org/10.1016/j.aninu.2020.11.006 google scholar
  • Wu, S., Bhat, Z. F., Gounder, R. S., Mohamed Ahmed, I. A., Al Juhaimi, F. Y., Ding, Y., & Bekhit, A. E. D. A. (2022). Effect of dietary protein and processing on gut microbiota — A systematic review. Nutrients, 14(3), 453. https://doi.org/10.3390/nu14030453 google scholar
  • Xiao, G. (2006). A review on digestive enzyme of crustacean larvae. Journal of Fishery Sciences of China. google scholar
  • Yadav, N. K., Patel, A. B., Singh, S. K., Mehta, N., Anand, V., Lal, J., Dekari, D., & Devi, N. C. (2024). Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: A review. Environmental Science and Pollution Research, 31(25), 37719–37739. https://doi.org/10.1007/s11356-024-33397-5 google scholar
  • Yang, Y., Zhang, Y., He, X., Huan, F., Chen, J., Liu, M., He, S., Gu, S., & Liu, G. (2025). An overview of seafood allergens: Structure–allergenicity relationship and allergenicity elimination processing techniques. Foods, 14(13), 2241. https://doi.org/10.3390/foods14132241 google scholar
  • Yeh, S., Chiu, C.H., Shiu, Y., Huang, Z., & Liu, C. (2014). Effects of diets supplemented with either individual or combined probiotics, Bacillus subtilis E20 and Lactobacillus plantarum 7-40, on the immune response and disease resistance of the mud crab, Scylla paramamosain (Estampador). Aquaculture Research, 45, 1164-1175. https://doi.org/10.1111/ARE.12061 google scholar
  • Zaky, A. A., Simal-Gándara, J., Eun, J., Shim, J., & Abd El‐Aty, A. M. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Frontiers in Nutrition, 8, 815640. https://doi.org/10.3389/fnut.2021.815640 google scholar
  • Zeng, Q., Xu, Y., Jeppesen, E., Gu, X., Mao, Z., & Chen, H. (2021). Farming practices affect the amino acid profiles of the aquaculture Chinese mitten crab. PeerJ, 9, e11605. https://doi.org/10.7717/peerj.11605 google scholar
  • Zhang, X., Zhang, M., Zheng, H., Ye, H., Zhang, X., & Li, S. (2019). Source of hemolymph microbiota and their roles in the immune system of mud crab. Developmental and comparative immunology, 103470. https://doi.org/10.1016/j.dci.2019.103470 google scholar
  • Zhang, Z., Li, S., Xie, C., Zhou, L., Li, C., Liu, W., & Wen, X. (2015). Innate immune response and gene expression of Scylla paramamosain under Vibrio parahaemolyticus infection. Aquaculture Research, 46, 462-471. https://doi.org/10.1111/ARE.12194 google scholar
  • Zhang, Z., Ma, Z., Song, L., & Farag, M. A. (2023). Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. Journal of Advanced Research, 48, 1–23. https://doi.org/10.1016/j.jare.2023.11.002 google scholar
  • Zhao, J., Zhang, X., Liu, H., Brown, M.A., & Qiao, S. (2018). Dietary Protein and Gut Microbiota Composition and Function. Current protein & peptide science, 20 2, 145-154. https://doi.org/10.2174/1389203719666180514145437 google scholar
  • Zheng, P., Han, T., Li, X., Wang, J., Su, H., Xu, H., Wang, Y., & Wang, C. (2020). Dietary protein requirement of juvenile mud crab Scylla paramamosain. Aquaculture, 518, 734852. https://doi.org/10.1016/j.aquaculture.2019.734852 google scholar
  • Zhou, Z., Gu, W., Wang, C., Zhou, Y., Tu, D., Liu, Z., Zhu, Q., & Shu, M. (2018). Seven transcripts from the chitinase gene family of the mud crabScylla paramamosain: Their expression profiles during development and moulting and under environmental stresses. Aquaculture Research. https://doi.org/10.1111/ARE.13793 google scholar
  • Michael, K. G., & Sogbesan, O. A. (2017). Alternative protein sources in aquaculture diets: A review. International Journal of Agriculture, Environment and Bioresearch, 2(05), 2017. google scholar
  • Médale, F. & Kaushik, S. (2009). Protein sources in feed for farmed fish. Cahiers Agricultures, 18(2), 103–111. google scholar
There are 153 citations in total.

Details

Primary Language English
Subjects Environmental Biotechnology (Other)
Journal Section Review
Authors

Jaynos Cortes 0009-0008-0020-1984

Submission Date October 26, 2025
Acceptance Date December 20, 2025
Publication Date January 20, 2026
DOI https://doi.org/10.26650/ASE.2026.1810998
IZ https://izlik.org/JA69RF49KE
Published in Issue Year 2026 Volume: 41 Issue: 1

Cite

APA Cortes, J. (2026). Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy. Aquatic Sciences and Engineering, 41(1), 65-80. https://doi.org/10.26650/ASE.2026.1810998
AMA 1.Cortes J. Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy. Aqua Sci Eng. 2026;41(1):65-80. doi:10.26650/ASE.2026.1810998
Chicago Cortes, Jaynos. 2026. “Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy”. Aquatic Sciences and Engineering 41 (1): 65-80. https://doi.org/10.26650/ASE.2026.1810998.
EndNote Cortes J (January 1, 2026) Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy. Aquatic Sciences and Engineering 41 1 65–80.
IEEE [1]J. Cortes, “Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy”, Aqua Sci Eng, vol. 41, no. 1, pp. 65–80, Jan. 2026, doi: 10.26650/ASE.2026.1810998.
ISNAD Cortes, Jaynos. “Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy”. Aquatic Sciences and Engineering 41/1 (January 1, 2026): 65-80. https://doi.org/10.26650/ASE.2026.1810998.
JAMA 1.Cortes J. Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy. Aqua Sci Eng. 2026;41:65–80.
MLA Cortes, Jaynos. “Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy”. Aquatic Sciences and Engineering, vol. 41, no. 1, Jan. 2026, pp. 65-80, doi:10.26650/ASE.2026.1810998.
Vancouver 1.Cortes J. Nutritional and Biofunctional Insights into Crab Proteins: Prospects for Food Security and Blue Economy. Aqua Sci Eng [Internet]. 2026 Jan. 1;41(1):65-80. Available from: https://izlik.org/JA69RF49KE

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.