Research Article
BibTex RIS Cite

Year 2026, Volume: 41 Issue: 1, 55 - 64, 20.01.2026
https://doi.org/10.26650/ASE.2026.1813296
https://izlik.org/JA96WM36GX

Abstract

References

  • Akşıray, F. (1987). Türkiye deniz balıkları tayin anahtarı [Identification key for marine fish in Türkiye]. Istanbul University Rectorate Publications. google scholar
  • Alvarez, M. C., Thode, G., & Cano, J. (1983). Somatic karyotypes of two Mediterranean teleost species: Phycis phycis (Gadidae) and Epinephelus alexandrinus (Serranidae). Cytobios, 38, 91–95. google scholar
  • Arai, K. (2011). Fish Karyotypes: A Check List. Springer. google scholar
  • Bat, L., Erdem, Y., Ustaoğlu Tırıl, S., & Yardım Ö. (2008). Balık sistematiği [Fish systematics]. Nobel Publishing Distribution Trade Ltd. Co. google scholar
  • Bektaş, Y., & Beldüz, A. O. (2007). Molecular characterization of the whiting (Merlangius merlangus euxinus Nordmann, 1840) in Turkish Black Sea coast by RAPD analysis. Journal of Animal and Veterinary Advances, 6(5), 739–744. https://doi.org/10.36478/javaa.2007.739.744 google scholar
  • Bilecenoğlu, M., Kaya, M., & Mater, S. (2011). Türkiye deniz balıkları atlası [Atlas of marine fish of Türkiye]. Ege University Faculty of Fisheries Publications. google scholar
  • Calì, F., Stranci, F., La Mesa, M., Mazzoldi, C., Arneri, E., & Santojanni, A. (2023). Whiting (Merlangius merlangus) grows slower and smaller in the Adriatic Sea: New insights from a comparison of two populations with a time interval of 30 years. Fishes, 8(7), 341. https://doi.org/10.3390/fishes8070341 google scholar
  • Charrier, G., Coombs, S. H., McQuinn, I. H., & Laroche, J. (2007). Genetic structure of whiting Merlangius merlangus in the northeast Atlantic and adjacent waters. Marine Ecology Progress Series, 330, 201–211. https://doi.org/10.3354/meps330201 google scholar
  • Cohen, D. M., Inada, T., Iwamoto, T., & Scialabba, N. (1990). FAO species catalogue. Vol. 10. Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers, and other gadiform fishes known to date. FAO Fisheries Synopsis, 125(10). FAO. google scholar
  • Doussau de Bazignan, M. & Ozouf-Costaz, C. (1985). Une technique rapide d’analyse chromosomique appliquée à sept espèces de poissons antarctiques. Cybium, 9(1), 57–74. https://doi.org/10.26028/cybium/1985-91-006 google scholar
  • Eiríksson, G.M., & Árnason, E. (2014). Mitochondrial DNA sequence variation in whiting Merlangius merlangus in the North East Atlantic. Environmental Biology of Fishes, 97, 103–110. https://doi.org/10.1007/s10641-013-0143-5 google scholar
  • Fan, Z., & Fox, D. P. (1991). Robertsonian polymorphism in plaice, Pleuronectes platessa L., and cod, Gadus morhua L. (Pisces Pleuronectiformes and Gadiformes). Journal of Fish Biology, 38(5), 635–640. https://doi.org/10.1111/j.1095-8649.1991.tb03152.x google scholar
  • Fricke, R., Eschmeyer, W. N., & Fong, J. D. (2025). Eschmeyer's Catalog of Fishes: Genera, Species. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Electronic version accessed 05.12.2023. Accessed 24 October 2025. google scholar
  • Froese, R., & Pauly, D. (Eds.) (2025). FishBase [version 04/2025]. World Wide Web electronic publication. http://www.fishbase.org. Accessed 17 September 2025. google scholar
  • García-Souto, D., Troncoso, T., Pérez, M., & Pasantes, J. J. (2015). Molecular Cytogenetic Analysis of the European Hake Merluccius merluccius (Merlucciidae, Gadiformes): U1 and U2 snRNA Gene Clusters Map to the Same Location. PLoS ONE 10(12), e0146150. https://doi.org/10.1371/journal.pone.0146150 google scholar
  • Ghigliotti, L., Fevolden, S. -E., Cheng, C. -H., Babiak, I., Dettai, A. & Pisano, E. (2012a). Karyotyping and cytogenetic mapping of Atlantic cod (Gadus morhua Linnaeus, 1758). Animal Genetics, 43(6), 746–752. https://doi.org/10.1111/j.1365-2052.2012.02343.x google scholar
  • Ghigliotti, L., Christiansen, J. S., Fevolden, S. -E., & Pisano, E. (2012b). Biodiversity of Arctic fishes: first karyological information on Gaidropsarus argentatus (Reinhardt, 1837), a new piece to the puzzle. Marine Biology Research, 8(10), 1032-1035. http://dx.doi.org/10.1080/17451000.2012.708419 google scholar
  • Ghigliotti, L., Mazzei, F., Christiansen, J. S., Fevolden, S. -E., & Pisano, E. (2005). From Antarctic to Arctic polar fishes: First cytogenetic analyses of three gadid species (Arctogadus glacialis, Boreogadus saida, and Gadus morhua). Polarnet Technical Report 1/2005, 69–73. google scholar
  • Gözen Tavşan, G., Arslan, A. Özçay Ekşi, B., Alpaslan, Z., Arslan, E., & Sember, A. (2025). Karyotype and Repetitive DNA Analysis in Turcichondrostoma fahirae (Cypriniformes, Leuciscidae): A Step toward the Use of Molecular Cytogenetics in Taxonomy of Freshwater Fishes in Türkiye. Cytogenetic and Genome Research, 165(1), 39–50. https://doi.org/10.1159/000544909 google scholar
  • Gür, Ü., Gürkanlı, C. T., & Çiftci, Y. (2023). Genetic structure and demographic history of whiting Merlangius merlangus (Linnaeus, 1758) populations distributed in Turkey inferred from variation in mitochondrial DNA sequences. Acta Adriatica 64, 157–166. https://doi.org/10.32582/aa.64.2.9 google scholar
  • Howell, W. M., & Black, A. (1980). Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia, 36, 1014–1015. https://doi.org/10.1007/BF01953855 google scholar
  • Ishii, K., & Yabu, H. (1985). Chromosomes in three species of Gadidae (Pisces). Bulletin of the Japanese Society of Scientific Fisheries, 51(1), 25–28. https://doi.org/10.2331/suisan.51.25 google scholar
  • Kirtiklis, L., Kuciński, M., Ocalewicz, K., Liszewski, T., Woźnicki, P., Nowosad, I., Kucharczyk, D., & Jankun, M. (2017). Heterochromatin organization and chromosome mapping of rRNA genes and telomeric DNA sequences in the burbot Lota lota (Linnaeus, 1758) (Teleostei: Gadiformes: Lotidae). Caryologia, 70(1), 15-20, https://doi.org/10.1080/00087114.2016.1254453 google scholar
  • Kligerman, A. D., & Bloom, S. E. (1977). Rapid chromosome preparations from solid tissues of fishes. Journal of the Fisheries Research Board of Canada, 34, 266–269. https://doi.org/10.1139/f77-039 google scholar
  • Klinkhardt, M. B. (1994). Karyotypic divergence between species of Gadidae (Pisces, Gadiformes). Cytobios, 77, 207–214. google scholar
  • Lajus, D.L. (2001, October). Chromosomal polymorphism of the White Sea fishes. Abstract volume of the 10th European Congress of Ichthyology, Prague. google scholar
  • Levan, A., Fredga, K., & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas, 52(2), 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x google scholar
  • McPhail, J. D. (2007). The freshwater fishes of British Columbia. The University of Alberta Press. google scholar
  • Molina, W. F., Amorim, K. D. J., Silva, S. A. S. da, Cioffi, M. de B., Bertollo, L. A. C., Soares, R. X., Motta-Netto, C.C. da, & Costa, G. W. W. F. da (2024). Karyotype evolutionary diversification in marine fishes. First classical and molecular cytogenetic data on four Atlantic species. New Zealand Journal of Marine and Freshwater Research, 59(2), 385–397. https://doi.org/10.1080/00288330.2024.2328138 google scholar
  • Nelson, J. S., Grande, T., & Wilson, M. V. H. (2016). Fishes of the World (5th ed.). John Wiley & Sons. google scholar
  • Nygren, A., Bergkvist, G., Windahl, T., & Jahnke, G. (1974). Cytological studies in Gadidae (Pisces). Hereditas, 76, 173–178. https://doi.org/10.1111/j.1601-5223.1974.tb01339.x google scholar
  • Ráb, P. (1986). Karyotype of the European burbot, Lota lota (L.) (Gadidae). Journal of Ichthyology, 26(2), 127–131. google scholar
  • Roques, S., Fox, C. J., Villasana, M. I., & Rico, C. (2006). The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: A detailed genomic comparison among closely related species of the Gadidae family. Gene, 383, 12–23. https://doi.org/10.1016/j.gene.2006.06.018 google scholar
  • Şalcıoğlu, A., Krey, G., Sönmez, A. Y., & Bilgin, R. (2020). Phylogeography and population dynamics of the Eastern Mediterranean whiting (Merlangius merlangus) from the Black Sea, the Turkish Straits System, and the North Aegean Sea. Fisheries Research 229, 105614. https://doi.org/10.1016/j.fishres.2020.105614 google scholar
  • Samsun, S. (2022). The Length-Weight Relationships (LWRs) of Some Fishes Along the Turkish Coasts of the Black Sea. Turkish Journal of Maritime and Marine Sciences, 8(2), 131–160. https://doi.org/10.52998/trjmms.1112696 google scholar
  • Saygun, S., & Ataç, T. (2010, July). Salmonidae (Pisces, Salmoniformes) Familyasında Görülen Kromozom Mutasyonlarının Türleşmedeki Evrimsel Rolü [The Evolutionary Role of Chromosome Mutations in Speciation in the Salmonidae Family (Pisces, Salmoniformes)]. 2.Ulusal Alabalık Sempozyumu, Konya. google scholar
  • Saygun, S. (2021). Türkiye’de Sitogenetik Çalışmalar: Balıklar (Vertebrata, Pisces) [Cytogenetic Studies in Turkey: Fishes (Vertebrata, Pisces)]. Turkish Journal of Bioscience and Collections, 5(1), 83–107. https://doi.org/10.26650/tjbc.2021857383 google scholar
  • Saygun, S., & Gündoğan, M. (2025a). Karyoevolutive Consideration of two sea fish species via the newest short-term culture method. Iranian Journal of Fisheries Sciences, 24(6), 1477–1493. https://doi.org/10.22092/ijfs.2025.134653 google scholar
  • Saygun, S., & Gündoğan, M. (2025b). The next level in marine fish cytogenetics via the latest developed short-term in vitro method: A novel karyoevolutive consideration of two marine fish species (Actinopterygii). Acta Ichthyologica et Piscatoria, 55, 297-308.https://doi.org/10.3897/aiep.55.158826 google scholar
  • Saygun, S., Bircan, R., & Karayücel, İ. (2003, September). Balık Karyotipinin Gelişimi [Evolution of the Fish Karyotype]. XII. Ulusal Su Ürünleri Sempozyumu, Elâzığ. google scholar
  • Seabright, M. (1971). A rapid banding technique for human chromosomes. Lancet, 298(7731), 971–972. https://doi.org/10.1016/S0140-6736(71)90287-X google scholar
  • Sepkoski, J. J. (2002). A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, 1–560. Retrieved from https://www.biodiversitylibrary.org/page/10698313#page/5/mode/1up google scholar
  • Stene, A. (1986). Light microscopical studies of chromosomes in embryos of cod, Gadus morhua L. Journal of Fish Biology, 31(4), 445–450. https://doi.org/10.1111/j.1095-8649.1987.tb05250.x google scholar
  • Sumner, A. T. (1972). A simple method for demonstrating centromeric heterochromatin. Experimental Cell Research, 75, 304–306. https://doi.org/10.1016/0014-4827(72)90558-7 google scholar
  • Sumner, A. T. (2003). Chromosomes: Organization and Function. Blackwell Science Ltd. google scholar
  • Turan, D., Küçük, F, Güçlü, S. S., & Aksu, İ. (2021). Turcichondrostoma, a new genus for the Leuciscidae (Teleostei: Cypriniformes) from Southwestern Anatolia. Journal Fish Biology, 99(6), 1968–1977. https://doi.org/10.1111/jfb.14903 google scholar
  • Vasil’ev, V. P. (1978). Karyotypes of 5 species of fishes (Pisces) from the Black Sea. Tsitologiya, 20, 1092–1094. (In Russian with English summary) google scholar
  • Vasil’ev, V. P. (1985). Evolutionary karyology of fishes. Publishing House Nauka. google scholar
  • Vitturi, R., Carbone, P., Macaluso, M., & Catalano, E. (1986). Karyotypic variability in the gadid fish, Gaidropsarus mediterraneus (Linnaeus, 1758). Copeia, 1986, 826–829. https://doi.org/10.2307/1444972 google scholar
  • Yildiz, T., Uzer, U., Yemişken, E., Karakulak, F. S., Kahraman, A. E., & Çanak, Ö. (2021). Conserve immatures and rebound the potential: stock status and reproduction of whiting (Merlangius merlangus [Linnaeus, 1758]) in the Western Black Sea. Marine Biology Research, 17(9–10), 815–827. https://doi.org/10.1080/17451000.2021.2019787 google scholar

The first identification of constitutive heterochromatin and NOR-bearing chromosomes in the prehistoric bony fish whiting, Merlangius merlangus, using the latest short-term method

Year 2026, Volume: 41 Issue: 1, 55 - 64, 20.01.2026
https://doi.org/10.26650/ASE.2026.1813296
https://izlik.org/JA96WM36GX

Abstract

This study is the first to characterize the chromosomes and cytogenetic features of Merlangius merlangus (Linnaeus, 1758), a typical commercial marine species in the Black Sea and the sole member of the order Gadiformes, which first appeared around 16 million years ago. Samples were collected from professional fishermen working in the coastal waters of Fatsa in autumn 2023. Postmortem fish samples were stored in PB-MAX culture medium for 2.5 hours, after which slides were prepared by conventional air-drying. These slides were stained with Giemsa, C-, GTG-, and AgNO3, respectively. The metaphases were examined and analyzed with AKAS image analysis software. Results showed that Merlangius merlangus has a diploid number (2n) of 20 chromosome pairs, with a karyotype comprising 18 pairs of bi-armed chromosomes (including five pairs of metacentric and four pairs of submetacentric) and 22 uni-armed chromosomes (with eight pairs of subtelocentric and three pairs of acrocentric). One metacentric chromosome with C+ regions, two different metacentric chromosomes with G+ regions, and one acrocentric chromosome with NOR regions were identified. The study aimed to determine the karyology and cytogenetic features of Merlangius merlangus, a species not previously studied cytogenetically, using sequential staining and banding techniques. As a migratory bottom-dwelling fish like other Gadidae, it is characterized by a high number of double-armed chromosomes and is consistently found in the Black Sea. This research will help identify 45S rDNA gene regions across populations from various geographic locations.

References

  • Akşıray, F. (1987). Türkiye deniz balıkları tayin anahtarı [Identification key for marine fish in Türkiye]. Istanbul University Rectorate Publications. google scholar
  • Alvarez, M. C., Thode, G., & Cano, J. (1983). Somatic karyotypes of two Mediterranean teleost species: Phycis phycis (Gadidae) and Epinephelus alexandrinus (Serranidae). Cytobios, 38, 91–95. google scholar
  • Arai, K. (2011). Fish Karyotypes: A Check List. Springer. google scholar
  • Bat, L., Erdem, Y., Ustaoğlu Tırıl, S., & Yardım Ö. (2008). Balık sistematiği [Fish systematics]. Nobel Publishing Distribution Trade Ltd. Co. google scholar
  • Bektaş, Y., & Beldüz, A. O. (2007). Molecular characterization of the whiting (Merlangius merlangus euxinus Nordmann, 1840) in Turkish Black Sea coast by RAPD analysis. Journal of Animal and Veterinary Advances, 6(5), 739–744. https://doi.org/10.36478/javaa.2007.739.744 google scholar
  • Bilecenoğlu, M., Kaya, M., & Mater, S. (2011). Türkiye deniz balıkları atlası [Atlas of marine fish of Türkiye]. Ege University Faculty of Fisheries Publications. google scholar
  • Calì, F., Stranci, F., La Mesa, M., Mazzoldi, C., Arneri, E., & Santojanni, A. (2023). Whiting (Merlangius merlangus) grows slower and smaller in the Adriatic Sea: New insights from a comparison of two populations with a time interval of 30 years. Fishes, 8(7), 341. https://doi.org/10.3390/fishes8070341 google scholar
  • Charrier, G., Coombs, S. H., McQuinn, I. H., & Laroche, J. (2007). Genetic structure of whiting Merlangius merlangus in the northeast Atlantic and adjacent waters. Marine Ecology Progress Series, 330, 201–211. https://doi.org/10.3354/meps330201 google scholar
  • Cohen, D. M., Inada, T., Iwamoto, T., & Scialabba, N. (1990). FAO species catalogue. Vol. 10. Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers, and other gadiform fishes known to date. FAO Fisheries Synopsis, 125(10). FAO. google scholar
  • Doussau de Bazignan, M. & Ozouf-Costaz, C. (1985). Une technique rapide d’analyse chromosomique appliquée à sept espèces de poissons antarctiques. Cybium, 9(1), 57–74. https://doi.org/10.26028/cybium/1985-91-006 google scholar
  • Eiríksson, G.M., & Árnason, E. (2014). Mitochondrial DNA sequence variation in whiting Merlangius merlangus in the North East Atlantic. Environmental Biology of Fishes, 97, 103–110. https://doi.org/10.1007/s10641-013-0143-5 google scholar
  • Fan, Z., & Fox, D. P. (1991). Robertsonian polymorphism in plaice, Pleuronectes platessa L., and cod, Gadus morhua L. (Pisces Pleuronectiformes and Gadiformes). Journal of Fish Biology, 38(5), 635–640. https://doi.org/10.1111/j.1095-8649.1991.tb03152.x google scholar
  • Fricke, R., Eschmeyer, W. N., & Fong, J. D. (2025). Eschmeyer's Catalog of Fishes: Genera, Species. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Electronic version accessed 05.12.2023. Accessed 24 October 2025. google scholar
  • Froese, R., & Pauly, D. (Eds.) (2025). FishBase [version 04/2025]. World Wide Web electronic publication. http://www.fishbase.org. Accessed 17 September 2025. google scholar
  • García-Souto, D., Troncoso, T., Pérez, M., & Pasantes, J. J. (2015). Molecular Cytogenetic Analysis of the European Hake Merluccius merluccius (Merlucciidae, Gadiformes): U1 and U2 snRNA Gene Clusters Map to the Same Location. PLoS ONE 10(12), e0146150. https://doi.org/10.1371/journal.pone.0146150 google scholar
  • Ghigliotti, L., Fevolden, S. -E., Cheng, C. -H., Babiak, I., Dettai, A. & Pisano, E. (2012a). Karyotyping and cytogenetic mapping of Atlantic cod (Gadus morhua Linnaeus, 1758). Animal Genetics, 43(6), 746–752. https://doi.org/10.1111/j.1365-2052.2012.02343.x google scholar
  • Ghigliotti, L., Christiansen, J. S., Fevolden, S. -E., & Pisano, E. (2012b). Biodiversity of Arctic fishes: first karyological information on Gaidropsarus argentatus (Reinhardt, 1837), a new piece to the puzzle. Marine Biology Research, 8(10), 1032-1035. http://dx.doi.org/10.1080/17451000.2012.708419 google scholar
  • Ghigliotti, L., Mazzei, F., Christiansen, J. S., Fevolden, S. -E., & Pisano, E. (2005). From Antarctic to Arctic polar fishes: First cytogenetic analyses of three gadid species (Arctogadus glacialis, Boreogadus saida, and Gadus morhua). Polarnet Technical Report 1/2005, 69–73. google scholar
  • Gözen Tavşan, G., Arslan, A. Özçay Ekşi, B., Alpaslan, Z., Arslan, E., & Sember, A. (2025). Karyotype and Repetitive DNA Analysis in Turcichondrostoma fahirae (Cypriniformes, Leuciscidae): A Step toward the Use of Molecular Cytogenetics in Taxonomy of Freshwater Fishes in Türkiye. Cytogenetic and Genome Research, 165(1), 39–50. https://doi.org/10.1159/000544909 google scholar
  • Gür, Ü., Gürkanlı, C. T., & Çiftci, Y. (2023). Genetic structure and demographic history of whiting Merlangius merlangus (Linnaeus, 1758) populations distributed in Turkey inferred from variation in mitochondrial DNA sequences. Acta Adriatica 64, 157–166. https://doi.org/10.32582/aa.64.2.9 google scholar
  • Howell, W. M., & Black, A. (1980). Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia, 36, 1014–1015. https://doi.org/10.1007/BF01953855 google scholar
  • Ishii, K., & Yabu, H. (1985). Chromosomes in three species of Gadidae (Pisces). Bulletin of the Japanese Society of Scientific Fisheries, 51(1), 25–28. https://doi.org/10.2331/suisan.51.25 google scholar
  • Kirtiklis, L., Kuciński, M., Ocalewicz, K., Liszewski, T., Woźnicki, P., Nowosad, I., Kucharczyk, D., & Jankun, M. (2017). Heterochromatin organization and chromosome mapping of rRNA genes and telomeric DNA sequences in the burbot Lota lota (Linnaeus, 1758) (Teleostei: Gadiformes: Lotidae). Caryologia, 70(1), 15-20, https://doi.org/10.1080/00087114.2016.1254453 google scholar
  • Kligerman, A. D., & Bloom, S. E. (1977). Rapid chromosome preparations from solid tissues of fishes. Journal of the Fisheries Research Board of Canada, 34, 266–269. https://doi.org/10.1139/f77-039 google scholar
  • Klinkhardt, M. B. (1994). Karyotypic divergence between species of Gadidae (Pisces, Gadiformes). Cytobios, 77, 207–214. google scholar
  • Lajus, D.L. (2001, October). Chromosomal polymorphism of the White Sea fishes. Abstract volume of the 10th European Congress of Ichthyology, Prague. google scholar
  • Levan, A., Fredga, K., & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas, 52(2), 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x google scholar
  • McPhail, J. D. (2007). The freshwater fishes of British Columbia. The University of Alberta Press. google scholar
  • Molina, W. F., Amorim, K. D. J., Silva, S. A. S. da, Cioffi, M. de B., Bertollo, L. A. C., Soares, R. X., Motta-Netto, C.C. da, & Costa, G. W. W. F. da (2024). Karyotype evolutionary diversification in marine fishes. First classical and molecular cytogenetic data on four Atlantic species. New Zealand Journal of Marine and Freshwater Research, 59(2), 385–397. https://doi.org/10.1080/00288330.2024.2328138 google scholar
  • Nelson, J. S., Grande, T., & Wilson, M. V. H. (2016). Fishes of the World (5th ed.). John Wiley & Sons. google scholar
  • Nygren, A., Bergkvist, G., Windahl, T., & Jahnke, G. (1974). Cytological studies in Gadidae (Pisces). Hereditas, 76, 173–178. https://doi.org/10.1111/j.1601-5223.1974.tb01339.x google scholar
  • Ráb, P. (1986). Karyotype of the European burbot, Lota lota (L.) (Gadidae). Journal of Ichthyology, 26(2), 127–131. google scholar
  • Roques, S., Fox, C. J., Villasana, M. I., & Rico, C. (2006). The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: A detailed genomic comparison among closely related species of the Gadidae family. Gene, 383, 12–23. https://doi.org/10.1016/j.gene.2006.06.018 google scholar
  • Şalcıoğlu, A., Krey, G., Sönmez, A. Y., & Bilgin, R. (2020). Phylogeography and population dynamics of the Eastern Mediterranean whiting (Merlangius merlangus) from the Black Sea, the Turkish Straits System, and the North Aegean Sea. Fisheries Research 229, 105614. https://doi.org/10.1016/j.fishres.2020.105614 google scholar
  • Samsun, S. (2022). The Length-Weight Relationships (LWRs) of Some Fishes Along the Turkish Coasts of the Black Sea. Turkish Journal of Maritime and Marine Sciences, 8(2), 131–160. https://doi.org/10.52998/trjmms.1112696 google scholar
  • Saygun, S., & Ataç, T. (2010, July). Salmonidae (Pisces, Salmoniformes) Familyasında Görülen Kromozom Mutasyonlarının Türleşmedeki Evrimsel Rolü [The Evolutionary Role of Chromosome Mutations in Speciation in the Salmonidae Family (Pisces, Salmoniformes)]. 2.Ulusal Alabalık Sempozyumu, Konya. google scholar
  • Saygun, S. (2021). Türkiye’de Sitogenetik Çalışmalar: Balıklar (Vertebrata, Pisces) [Cytogenetic Studies in Turkey: Fishes (Vertebrata, Pisces)]. Turkish Journal of Bioscience and Collections, 5(1), 83–107. https://doi.org/10.26650/tjbc.2021857383 google scholar
  • Saygun, S., & Gündoğan, M. (2025a). Karyoevolutive Consideration of two sea fish species via the newest short-term culture method. Iranian Journal of Fisheries Sciences, 24(6), 1477–1493. https://doi.org/10.22092/ijfs.2025.134653 google scholar
  • Saygun, S., & Gündoğan, M. (2025b). The next level in marine fish cytogenetics via the latest developed short-term in vitro method: A novel karyoevolutive consideration of two marine fish species (Actinopterygii). Acta Ichthyologica et Piscatoria, 55, 297-308.https://doi.org/10.3897/aiep.55.158826 google scholar
  • Saygun, S., Bircan, R., & Karayücel, İ. (2003, September). Balık Karyotipinin Gelişimi [Evolution of the Fish Karyotype]. XII. Ulusal Su Ürünleri Sempozyumu, Elâzığ. google scholar
  • Seabright, M. (1971). A rapid banding technique for human chromosomes. Lancet, 298(7731), 971–972. https://doi.org/10.1016/S0140-6736(71)90287-X google scholar
  • Sepkoski, J. J. (2002). A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, 1–560. Retrieved from https://www.biodiversitylibrary.org/page/10698313#page/5/mode/1up google scholar
  • Stene, A. (1986). Light microscopical studies of chromosomes in embryos of cod, Gadus morhua L. Journal of Fish Biology, 31(4), 445–450. https://doi.org/10.1111/j.1095-8649.1987.tb05250.x google scholar
  • Sumner, A. T. (1972). A simple method for demonstrating centromeric heterochromatin. Experimental Cell Research, 75, 304–306. https://doi.org/10.1016/0014-4827(72)90558-7 google scholar
  • Sumner, A. T. (2003). Chromosomes: Organization and Function. Blackwell Science Ltd. google scholar
  • Turan, D., Küçük, F, Güçlü, S. S., & Aksu, İ. (2021). Turcichondrostoma, a new genus for the Leuciscidae (Teleostei: Cypriniformes) from Southwestern Anatolia. Journal Fish Biology, 99(6), 1968–1977. https://doi.org/10.1111/jfb.14903 google scholar
  • Vasil’ev, V. P. (1978). Karyotypes of 5 species of fishes (Pisces) from the Black Sea. Tsitologiya, 20, 1092–1094. (In Russian with English summary) google scholar
  • Vasil’ev, V. P. (1985). Evolutionary karyology of fishes. Publishing House Nauka. google scholar
  • Vitturi, R., Carbone, P., Macaluso, M., & Catalano, E. (1986). Karyotypic variability in the gadid fish, Gaidropsarus mediterraneus (Linnaeus, 1758). Copeia, 1986, 826–829. https://doi.org/10.2307/1444972 google scholar
  • Yildiz, T., Uzer, U., Yemişken, E., Karakulak, F. S., Kahraman, A. E., & Çanak, Ö. (2021). Conserve immatures and rebound the potential: stock status and reproduction of whiting (Merlangius merlangus [Linnaeus, 1758]) in the Western Black Sea. Marine Biology Research, 17(9–10), 815–827. https://doi.org/10.1080/17451000.2021.2019787 google scholar
There are 50 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Article
Authors

Serkan Saygun 0000-0002-9789-3284

Submission Date October 30, 2025
Acceptance Date December 27, 2025
Publication Date January 20, 2026
DOI https://doi.org/10.26650/ASE.2026.1813296
IZ https://izlik.org/JA96WM36GX
Published in Issue Year 2026 Volume: 41 Issue: 1

Cite

APA Saygun, S. (2026). The first identification of constitutive heterochromatin and NOR-bearing chromosomes in the prehistoric bony fish whiting, Merlangius merlangus, using the latest short-term method. Aquatic Sciences and Engineering, 41(1), 55-64. https://doi.org/10.26650/ASE.2026.1813296
AMA 1.Saygun S. The first identification of constitutive heterochromatin and NOR-bearing chromosomes in the prehistoric bony fish whiting, Merlangius merlangus, using the latest short-term method. Aqua Sci Eng. 2026;41(1):55-64. doi:10.26650/ASE.2026.1813296
Chicago Saygun, Serkan. 2026. “The First Identification of Constitutive Heterochromatin and NOR-Bearing Chromosomes in the Prehistoric Bony Fish Whiting, Merlangius Merlangus, Using the Latest Short-Term Method”. Aquatic Sciences and Engineering 41 (1): 55-64. https://doi.org/10.26650/ASE.2026.1813296.
EndNote Saygun S (January 1, 2026) The first identification of constitutive heterochromatin and NOR-bearing chromosomes in the prehistoric bony fish whiting, Merlangius merlangus, using the latest short-term method. Aquatic Sciences and Engineering 41 1 55–64.
IEEE [1]S. Saygun, “The first identification of constitutive heterochromatin and NOR-bearing chromosomes in the prehistoric bony fish whiting, Merlangius merlangus, using the latest short-term method”, Aqua Sci Eng, vol. 41, no. 1, pp. 55–64, Jan. 2026, doi: 10.26650/ASE.2026.1813296.
ISNAD Saygun, Serkan. “The First Identification of Constitutive Heterochromatin and NOR-Bearing Chromosomes in the Prehistoric Bony Fish Whiting, Merlangius Merlangus, Using the Latest Short-Term Method”. Aquatic Sciences and Engineering 41/1 (January 1, 2026): 55-64. https://doi.org/10.26650/ASE.2026.1813296.
JAMA 1.Saygun S. The first identification of constitutive heterochromatin and NOR-bearing chromosomes in the prehistoric bony fish whiting, Merlangius merlangus, using the latest short-term method. Aqua Sci Eng. 2026;41:55–64.
MLA Saygun, Serkan. “The First Identification of Constitutive Heterochromatin and NOR-Bearing Chromosomes in the Prehistoric Bony Fish Whiting, Merlangius Merlangus, Using the Latest Short-Term Method”. Aquatic Sciences and Engineering, vol. 41, no. 1, Jan. 2026, pp. 55-64, doi:10.26650/ASE.2026.1813296.
Vancouver 1.Saygun S. The first identification of constitutive heterochromatin and NOR-bearing chromosomes in the prehistoric bony fish whiting, Merlangius merlangus, using the latest short-term method. Aqua Sci Eng [Internet]. 2026 Jan. 1;41(1):55-64. Available from: https://izlik.org/JA96WM36GX

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.