Research Article
BibTex RIS Cite
Year 2019, , 14 - 21, 07.01.2019
https://doi.org/10.26650/ASE2018500686

Abstract

References

  • Abucay, J. S., & Mair, G. C. (1997). Hormonal sex reversal of tilapias: implications of hormone treatment application in closed water systems. Aquaculture Research, 28, 841–845.
  • Alcántar-Vázquez J. P., Rueda-Curiel, P. D., Calzada-Ruíz, C., Antonio-Estrada, C., & Moreno-de la Torre, R. (2015). Feminization of the Nile tilapia Oreochromis niloticus by estradiol 17-ß Effects on growth, gonadal development and body composition. Hidrobiológica, 25(2), 275–283.
  • Arboleda-Obregón, D. A. (2005). Reversión sexual de las tilapias rojas (Oreochromis Sp), una guía básica para el acuicultor. Revista Electrónica de Veterinaria, 6, 1–5.
  • Arcand-Hoy, L. D., & Benson, W. H. (1998). Fish reproduction: an ecological relevant indicator of endocrine disruption. Environmental Toxicology and Chemistry, 17(1), 49–57.
  • Azaza, M. S, Dhraief, M.S., & Kraiem, M. M. (2008). Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. J Therm Biol, 33, 98–105.
  • Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29–35.
  • Bagenal, T. B., & Tesch F. W. (1978). Methods for assessment of Fish Production I Freshwaters. T. B. (9 ed.), London: Oxford Blackwell Scientific.
  • Beardmore, J. A., Mair, G. C., & Lewis, R. I. (2001). Monosex male production in finfish as exemplified by Tilapia: Applications, problems, and prospects. Aquaculture, 197, 283–301.
  • Chatain, B., Saillant, E., & Peruzzi, S. (1999). Production of monosex male populations of European seabass, Dicentrarchus labrax L. by use of the synthetic androgen 17ß-methyldehydrotestosterone. Aquaculture, 178, 225–234.
  • Daudpota, A. M., Abbas, G., Kalhoro, H., Shah, S. A., Ferrando, S., Gallus, L., ... Hafeez-ur-Rehman, M. (2016). Comparison of Growth, Feed Conversion and Body Composition of Juvenile Hybrid Red Tilapia (Oreochromis niloticus × O. mossambicus) and Nile Tilapia (O. niloticus) Reared in Concrete Tanks. Pakistan J. Zool., 48(3): 809–816.
  • Ganie, M. A., Bhat, M. D., Khan, M. I., Parveen, M., Balkhi, M. H. & Malla, M. A. (2013). Invasion of the Mozambique Tilapia, Oreochromis mossambicus (Pisces: Cichlidae; Peters, 1852) in the Yamuna river, Uttar Pradesh, India. Journal of Ecology and the Natural Environment, 5(10), 310–317.
  • Goto, R., Mori T., Kawamata K., Matsubara T., Mizuno S., Adachi S. ... Yamauchi K. (1999). Effects of temperature on gonadal sex determination in barfin flounder Verasper moseri. Fish. Sci., 65, 884–887.
  • Hatikakoty, G., & Biswas, S. P. (2002). Studies on certain aspects of the reproductive biology of mouth-brooding Tilapia, Oreochromis mossambicus (Peters) from Assam, India. Retrieved from http://ag.arizona.edii/azaqua/ista/ista6/ista6web /pdf/112.pdf.
  • Hayes, T. B. (2005). Welcome to the revolution: Integrative biology and assessing the impact of endocrine disruptors on environmental and public health, Integrat. Comp. Biol., 45(2), 321–329.
  • Hile, R. (1936). Age and growth of cisco Leucicthyes artedi le Suercur in the lake of north eastern highland. S. Bull. U.S.Bur. Fish, 48, 211–314.
  • Hunter, G. A., & Donaldson, E. M. (1983a). Hormonal Sex Control and Application to Fish Culture. In: W.S. Hoar, D.J. Randall and E.M. Donaldson (Editors), Fish Physiology, Vol. IX, Reproduction, 223-303, New York: London Academic.
  • Hunter, G. A., & Donaldson, E. M. (1983b). Hormonal sex control and its application to fish culture. In Fish Physiology, 9B, 223-252.
  • Inayat, L., & Salim, M. (2005). Feed conversion ratio of major carp, Cirrhins mrigala fingerlings fed on soybean meal, maize gluten and maize. Pakistan Vet. J., 25(1): 13–17.i
  • Iwama, G. K., Takemura, A., & Takano, K. (1997). Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water. Journal of Fish Biology, 51, 886–894.
  • Jiménez, B. M. L., & Arredondo, F. J. L. (2000). Manual técnico para la reversión sexual de tilapia. D.F., Mexico: UAM-Iztapalapa.
  • Johnstone, R., Simpson, T. H., & Youngson, A. F. (1979). Sex reversal in salmonid culture. Part II. The progeny of sex-reversed rainbow trout. Aquaculture, 18, 13–19.
  • Kalsoom, U. M. E., Salim, M., Shahzadi, T., & Barlas, A. (2009). Growth performance and feed conversion ratio (FCR) in hybrid fish (Catla catle x Labeo rohita) fed on feed bran, rice broken and blood meal. Pak. Vet. J., 29, 55–58.
  • Mair, G. C., Abucay J. S., Beardmore J. A., & Skibinsky O. F. (1995). Growth performance trials of genetically male tilapia (GMT) derived from YY-males in Oreochromis niloticus L.: On station comparisons with mixed sex and sex reversed male populations. Aquaculture, 137(1), 313–323.
  • Mair, G. C., Abucay, J. S., Skibinski, D. F., & Beardmore, J. A. (1997). Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus. Canadian Journal of Fisheries and Aquatic Sciences, 54, 396–404.
  • Malik, A., Waryani, B., Kalhor, I. B., Kalhoro, H., Shah, S. A., & Narejo, N.T. (2014). To observe the effect of growth performance and adaptation of exotic fish red tilapia (hybrid) in climate of Fish Hatchery Chilya, Thatta, Sindh-Pakistan. Sindh Univ. Res. J. (Sci. Ser.), 46, 461–464.
  • Martin, W. R. (1949). The mechanics of environmental control of body form in fishes. Univ. Toronto. Stud. Biol., 58, 1–91.
  • Pechsırı, J., & Yakupıtıyage, A. (2005). A comparative study of growth and feed utilization efficiency of sex-reversed diploid and triploid Nile tilapia, Oreochromis niloticus L. Aquaculture Research, 36, 45-51.
  • Phillippart, J. C. & Ruwet, J. C. (1982). Ecology and Distribution of Tilapias. (Chapter 12. pp. 277-320. In Bromage N.R. and Roberts R.J. (eds.) Broodstock Management and Egg and Larval Quality, Massachusetts: Blackwell Scientific.
  • Piferrer, F. (2001). Endocrine sex control strategies for the feminization of teleost fish. Aquaculture, 197, 229–281.
  • Rappaport, A., Sarig, S., & Marek, M. (1976). Results of tests of various aeration systems on the oxygen regime in the Genosar experimental ponds Israel and growth of fish there in 1975. Bamidgeh, 28, 35–49.
  • Rosenstein, S., & Hulata G. (1994). Sex reversal in the genus Oreochromis: optimization of feminization protocol. Aquaculture Research, 25(3): 329–339.
  • Schreck, C. B. (1974). Hormonal treatment and sex manipulation in fishes. (84–106). In: Control of Sex in Fishes. Ed; C.B., Virginia: Virginia Polytechnic Institute and State University Sea Grant Extension Division, Blacksburg.
  • Soltan, M. A., Hassaan, M. S., El-Nagaar, G. O., & Wahead, E. (2013). Effect of rearing temperature and hormone treatment on sex ratio, survival and body weight of Oreochromis niloticus fry. Egypt. J. Aquat. Biol. & Fish., 17(4), 13–23.
  • Tariq-Ezaz, M., Myers, J., Powell, S., Mcandrew, B., & Penman, D. (2004). Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L. Aquaculture, 232, 205–214.
  • Uğuz, C., Togan, İ., & İşcan, M. (2003). Developmental genetics and physiology of sex differentiation in vertebrates. 284 Environmental Toxicology and Pharmacology, 14(1-2), 9–16.
  • Varadaj, K. (1989). Feminization of Oreochromis mossambicus by the Administration of Diethylstilbestrol. Aquaculture, 80, 337–341.
  • Vera-Cruz, M. E., Mair, C. G., & Marino, P. R. (1996). Feminization of genotypically YY Nile tilapia Oreochromis niloticus L. Asian Fisheries Science, 9, 161–167.
  • Wang, H., Gao, Z., Beres, B., Ottobre, J., Wallat, G., Tiu, L., & Yao, H. (2008). Effects Of Estradiol-17ß On Survival, Growth Performance, Sex Reversal And Gonadal Structure Of Bluegill Sunfish Lepomis macrochirus. Elsevier B.V., 285, 216–223.

Effects of 17ß-estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852)

Year 2019, , 14 - 21, 07.01.2019
https://doi.org/10.26650/ASE2018500686

Abstract

In this study, the effects of 17-ß-estradiol hormone on the zootechnic performances and sex ratio of Mozambique Tilapia (Oreochromis mossambicus. Peters, 1852) fry were investigated in order to initially produce functional phenotypical females and then super males. To this end, different E2 concentrations (50, 100, 150 and 200 ppm) were tested over a period of 45 days in a closed recirculating system. The evaluations showed that the female ratio was significantly (p value= 0.04 and α=0.05) higher in all treatment groups ranging from 61.90% to 86.36% compared to the control group. Growth was significantly higher (F value=22.78 and p value=0.00) in the control group compared to the treatment ones.


References

  • Abucay, J. S., & Mair, G. C. (1997). Hormonal sex reversal of tilapias: implications of hormone treatment application in closed water systems. Aquaculture Research, 28, 841–845.
  • Alcántar-Vázquez J. P., Rueda-Curiel, P. D., Calzada-Ruíz, C., Antonio-Estrada, C., & Moreno-de la Torre, R. (2015). Feminization of the Nile tilapia Oreochromis niloticus by estradiol 17-ß Effects on growth, gonadal development and body composition. Hidrobiológica, 25(2), 275–283.
  • Arboleda-Obregón, D. A. (2005). Reversión sexual de las tilapias rojas (Oreochromis Sp), una guía básica para el acuicultor. Revista Electrónica de Veterinaria, 6, 1–5.
  • Arcand-Hoy, L. D., & Benson, W. H. (1998). Fish reproduction: an ecological relevant indicator of endocrine disruption. Environmental Toxicology and Chemistry, 17(1), 49–57.
  • Azaza, M. S, Dhraief, M.S., & Kraiem, M. M. (2008). Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. J Therm Biol, 33, 98–105.
  • Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29–35.
  • Bagenal, T. B., & Tesch F. W. (1978). Methods for assessment of Fish Production I Freshwaters. T. B. (9 ed.), London: Oxford Blackwell Scientific.
  • Beardmore, J. A., Mair, G. C., & Lewis, R. I. (2001). Monosex male production in finfish as exemplified by Tilapia: Applications, problems, and prospects. Aquaculture, 197, 283–301.
  • Chatain, B., Saillant, E., & Peruzzi, S. (1999). Production of monosex male populations of European seabass, Dicentrarchus labrax L. by use of the synthetic androgen 17ß-methyldehydrotestosterone. Aquaculture, 178, 225–234.
  • Daudpota, A. M., Abbas, G., Kalhoro, H., Shah, S. A., Ferrando, S., Gallus, L., ... Hafeez-ur-Rehman, M. (2016). Comparison of Growth, Feed Conversion and Body Composition of Juvenile Hybrid Red Tilapia (Oreochromis niloticus × O. mossambicus) and Nile Tilapia (O. niloticus) Reared in Concrete Tanks. Pakistan J. Zool., 48(3): 809–816.
  • Ganie, M. A., Bhat, M. D., Khan, M. I., Parveen, M., Balkhi, M. H. & Malla, M. A. (2013). Invasion of the Mozambique Tilapia, Oreochromis mossambicus (Pisces: Cichlidae; Peters, 1852) in the Yamuna river, Uttar Pradesh, India. Journal of Ecology and the Natural Environment, 5(10), 310–317.
  • Goto, R., Mori T., Kawamata K., Matsubara T., Mizuno S., Adachi S. ... Yamauchi K. (1999). Effects of temperature on gonadal sex determination in barfin flounder Verasper moseri. Fish. Sci., 65, 884–887.
  • Hatikakoty, G., & Biswas, S. P. (2002). Studies on certain aspects of the reproductive biology of mouth-brooding Tilapia, Oreochromis mossambicus (Peters) from Assam, India. Retrieved from http://ag.arizona.edii/azaqua/ista/ista6/ista6web /pdf/112.pdf.
  • Hayes, T. B. (2005). Welcome to the revolution: Integrative biology and assessing the impact of endocrine disruptors on environmental and public health, Integrat. Comp. Biol., 45(2), 321–329.
  • Hile, R. (1936). Age and growth of cisco Leucicthyes artedi le Suercur in the lake of north eastern highland. S. Bull. U.S.Bur. Fish, 48, 211–314.
  • Hunter, G. A., & Donaldson, E. M. (1983a). Hormonal Sex Control and Application to Fish Culture. In: W.S. Hoar, D.J. Randall and E.M. Donaldson (Editors), Fish Physiology, Vol. IX, Reproduction, 223-303, New York: London Academic.
  • Hunter, G. A., & Donaldson, E. M. (1983b). Hormonal sex control and its application to fish culture. In Fish Physiology, 9B, 223-252.
  • Inayat, L., & Salim, M. (2005). Feed conversion ratio of major carp, Cirrhins mrigala fingerlings fed on soybean meal, maize gluten and maize. Pakistan Vet. J., 25(1): 13–17.i
  • Iwama, G. K., Takemura, A., & Takano, K. (1997). Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water. Journal of Fish Biology, 51, 886–894.
  • Jiménez, B. M. L., & Arredondo, F. J. L. (2000). Manual técnico para la reversión sexual de tilapia. D.F., Mexico: UAM-Iztapalapa.
  • Johnstone, R., Simpson, T. H., & Youngson, A. F. (1979). Sex reversal in salmonid culture. Part II. The progeny of sex-reversed rainbow trout. Aquaculture, 18, 13–19.
  • Kalsoom, U. M. E., Salim, M., Shahzadi, T., & Barlas, A. (2009). Growth performance and feed conversion ratio (FCR) in hybrid fish (Catla catle x Labeo rohita) fed on feed bran, rice broken and blood meal. Pak. Vet. J., 29, 55–58.
  • Mair, G. C., Abucay J. S., Beardmore J. A., & Skibinsky O. F. (1995). Growth performance trials of genetically male tilapia (GMT) derived from YY-males in Oreochromis niloticus L.: On station comparisons with mixed sex and sex reversed male populations. Aquaculture, 137(1), 313–323.
  • Mair, G. C., Abucay, J. S., Skibinski, D. F., & Beardmore, J. A. (1997). Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus. Canadian Journal of Fisheries and Aquatic Sciences, 54, 396–404.
  • Malik, A., Waryani, B., Kalhor, I. B., Kalhoro, H., Shah, S. A., & Narejo, N.T. (2014). To observe the effect of growth performance and adaptation of exotic fish red tilapia (hybrid) in climate of Fish Hatchery Chilya, Thatta, Sindh-Pakistan. Sindh Univ. Res. J. (Sci. Ser.), 46, 461–464.
  • Martin, W. R. (1949). The mechanics of environmental control of body form in fishes. Univ. Toronto. Stud. Biol., 58, 1–91.
  • Pechsırı, J., & Yakupıtıyage, A. (2005). A comparative study of growth and feed utilization efficiency of sex-reversed diploid and triploid Nile tilapia, Oreochromis niloticus L. Aquaculture Research, 36, 45-51.
  • Phillippart, J. C. & Ruwet, J. C. (1982). Ecology and Distribution of Tilapias. (Chapter 12. pp. 277-320. In Bromage N.R. and Roberts R.J. (eds.) Broodstock Management and Egg and Larval Quality, Massachusetts: Blackwell Scientific.
  • Piferrer, F. (2001). Endocrine sex control strategies for the feminization of teleost fish. Aquaculture, 197, 229–281.
  • Rappaport, A., Sarig, S., & Marek, M. (1976). Results of tests of various aeration systems on the oxygen regime in the Genosar experimental ponds Israel and growth of fish there in 1975. Bamidgeh, 28, 35–49.
  • Rosenstein, S., & Hulata G. (1994). Sex reversal in the genus Oreochromis: optimization of feminization protocol. Aquaculture Research, 25(3): 329–339.
  • Schreck, C. B. (1974). Hormonal treatment and sex manipulation in fishes. (84–106). In: Control of Sex in Fishes. Ed; C.B., Virginia: Virginia Polytechnic Institute and State University Sea Grant Extension Division, Blacksburg.
  • Soltan, M. A., Hassaan, M. S., El-Nagaar, G. O., & Wahead, E. (2013). Effect of rearing temperature and hormone treatment on sex ratio, survival and body weight of Oreochromis niloticus fry. Egypt. J. Aquat. Biol. & Fish., 17(4), 13–23.
  • Tariq-Ezaz, M., Myers, J., Powell, S., Mcandrew, B., & Penman, D. (2004). Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L. Aquaculture, 232, 205–214.
  • Uğuz, C., Togan, İ., & İşcan, M. (2003). Developmental genetics and physiology of sex differentiation in vertebrates. 284 Environmental Toxicology and Pharmacology, 14(1-2), 9–16.
  • Varadaj, K. (1989). Feminization of Oreochromis mossambicus by the Administration of Diethylstilbestrol. Aquaculture, 80, 337–341.
  • Vera-Cruz, M. E., Mair, C. G., & Marino, P. R. (1996). Feminization of genotypically YY Nile tilapia Oreochromis niloticus L. Asian Fisheries Science, 9, 161–167.
  • Wang, H., Gao, Z., Beres, B., Ottobre, J., Wallat, G., Tiu, L., & Yao, H. (2008). Effects Of Estradiol-17ß On Survival, Growth Performance, Sex Reversal And Gonadal Structure Of Bluegill Sunfish Lepomis macrochirus. Elsevier B.V., 285, 216–223.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Karl Christofer Kingueleoua Koyakomanda This is me

Muamer Kürşat Fırat This is me

Cüneyt Süzer This is me

Serhat Engin This is me

Müge Hekimoğlu

Hülya Sayğı This is me

Osman Özden This is me

Fatih Güleç

Şahin Saka This is me

Publication Date January 7, 2019
Submission Date December 21, 2018
Published in Issue Year 2019

Cite

APA Kingueleoua Koyakomanda, K. C., Fırat, M. K., Süzer, C., Engin, S., et al. (2019). Effects of 17ß-estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852). Aquatic Sciences and Engineering, 34(1), 14-21. https://doi.org/10.26650/ASE2018500686
AMA Kingueleoua Koyakomanda KC, Fırat MK, Süzer C, Engin S, Hekimoğlu M, Sayğı H, Özden O, Güleç F, Saka Ş. Effects of 17ß-estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852). Aqua Sci Eng. January 2019;34(1):14-21. doi:10.26650/ASE2018500686
Chicago Kingueleoua Koyakomanda, Karl Christofer, Muamer Kürşat Fırat, Cüneyt Süzer, Serhat Engin, Müge Hekimoğlu, Hülya Sayğı, Osman Özden, Fatih Güleç, and Şahin Saka. “Effects of 17ß-Estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis Mossambicus, Peters, 1852)”. Aquatic Sciences and Engineering 34, no. 1 (January 2019): 14-21. https://doi.org/10.26650/ASE2018500686.
EndNote Kingueleoua Koyakomanda KC, Fırat MK, Süzer C, Engin S, Hekimoğlu M, Sayğı H, Özden O, Güleç F, Saka Ş (January 1, 2019) Effects of 17ß-estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852). Aquatic Sciences and Engineering 34 1 14–21.
IEEE K. C. Kingueleoua Koyakomanda, M. K. Fırat, C. Süzer, S. Engin, M. Hekimoğlu, H. Sayğı, O. Özden, F. Güleç, and Ş. Saka, “Effects of 17ß-estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852)”, Aqua Sci Eng, vol. 34, no. 1, pp. 14–21, 2019, doi: 10.26650/ASE2018500686.
ISNAD Kingueleoua Koyakomanda, Karl Christofer et al. “Effects of 17ß-Estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis Mossambicus, Peters, 1852)”. Aquatic Sciences and Engineering 34/1 (January 2019), 14-21. https://doi.org/10.26650/ASE2018500686.
JAMA Kingueleoua Koyakomanda KC, Fırat MK, Süzer C, Engin S, Hekimoğlu M, Sayğı H, Özden O, Güleç F, Saka Ş. Effects of 17ß-estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852). Aqua Sci Eng. 2019;34:14–21.
MLA Kingueleoua Koyakomanda, Karl Christofer et al. “Effects of 17ß-Estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis Mossambicus, Peters, 1852)”. Aquatic Sciences and Engineering, vol. 34, no. 1, 2019, pp. 14-21, doi:10.26650/ASE2018500686.
Vancouver Kingueleoua Koyakomanda KC, Fırat MK, Süzer C, Engin S, Hekimoğlu M, Sayğı H, Özden O, Güleç F, Saka Ş. Effects of 17ß-estradiol Hormone on Growth and Sex Differentiation in the Mozambique Tilapia (Oreochromis mossambicus, Peters, 1852). Aqua Sci Eng. 2019;34(1):14-21.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.