Research Article
BibTex RIS Cite
Year 2023, Volume: 38 Issue: 1, 74 - 80, 24.01.2023
https://doi.org/10.26650/ASE20221199598

Abstract

References

  • Aguedach, A., Brosillon, S., Morvan, J., Lhadi, E.K., 2005. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titaniumdioxide. Appl. Catal. B. 57 55-62.
  • Aleboyeh, A., Kasiri, M.B., Aleboyeh, H., 2012. Influence of dyeing auxiliaries on AB74 dye degradation by UV/H2O2 process, J. Environ. Manag. 113, 426-431.
  • Anastas P.T., Warner, J.C., 1998. Green Chemistry: Theory and Practice; Oxford University Press, London.
  • Babuponnusami, A., Muthukumar, K., 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Engin. 2, 557-572.
  • Chan, S.H.S., Wu, T.Y., Juan, J.C., The C.Y., 2011. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86, 1130-1158.
  • Channei, D., Inceesungvorn, B., Wetchakun, N., 2014. Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light, Sci. Rep. 4, 1-7.
  • Choe, E., Min, D. B., 2006. Chemistry and Reactions of Reactive Oxygen Species in Foods, J. Food Sci. 70, 142-159.
  • Corma, A., Atienzar, P., Garcia, H., Chane-Ching, J.Y., 2004. Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use. Nature Mater. 3, 394-397.
  • Dong X., Lin Y., Ren G., Ma Y., Zhao L., 2021. Catalytic Degradation of Methylene Blue by Fenton-like Oxidation of Ce-doped MOF. Colloids and Surfaces A 608 125-578.
  • Foo, K.Y., Hameed, B.H., 2012. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation, Bioresour. Technol. 104, 679-686.
  • Ghaedi, M., Golestani Nasab, A., Khodadoust, S., Rajabi, M., Azizian, S., 2014. Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study, J. Ind. Eng. Chem. 20, 2317-2324.
  • Ghaedi, M., Mazaheri, H., Khodadoust, S., Hajati, S., Purkait, M.K., 2015. Application of central composite design for simultaneous removal of methylene blue and Pb(2+) ions by walnut wood activated carbon, Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 479-490.
  • Ghaly, A., Ananthashankar, R., Al-Hattab, M.K., Ramakrishnan, V., 2014. Production, Characterization and Treatment of Textile Effluents: A Critical Review, J. Chem. Eng. Process Technol. 5, 1-18.
  • Gogoi, A., Sarma, K.C., 2017. Synthesis of the novel P—cyclodextrin supported CeO2 nanoparticles for the catalytic degradation of methylene blue in aqueous suspension. Mater. Chem. Phys. 194, 327-336.
  • Grulke, E., Reed, K., Beck, M., Huang, X., Cormack, A., Seal, S., 2014. Nanoceria: factors affecting its pro- and anti-oxidant properties. Environ. Sci.: Nano. 1, 429-444.
  • Hameed, B.H., 2009. Spent tea leaves: a new non-conventional and lowcost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753-759.
  • Hong, Q., Hardcastle, J.L., Mckeown, R.A.J., Marken, F., Compton, R.G., 1999. The 20 kHz sonochemical degradation of trace cyanide and dye stuffs in aqueous media, New J. Chem. 23, 845-849.
  • Jin, Y., Li, N., Liu, H., Hua, X., Zhang, Q., Chen, M., Teng, F., 2014. Highly efficient degradation of dye pollutants by Ce-doped MoO3 catalyst at room temperature, Dalton Trans. 43 12860-12870.
  • Jo, W.K., Tayade, R.J., 2014. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes, Chin. J. Catal. 35, 1781-1792.
  • Joshi, M., Bansal, R., Purwar, R., 2004. Colour removal from textile effluents, Indian J. Fibre Text, 29, 239-259.
  • Kamer, G., Demirata, B., Bayraktar, R., Ozyurt, D., Apak, R., 2019. Nanoceria-based reactive species scavenging activity of antioxidants using N,N-dimethyl-pphenylenediamine (DMPD) probe, Anal. Methods 14, 1837- 1986.
  • Katafias, A., Lipinska, M., Strutynski, K., 2010. Alkaline hydrogen peroxide as a degradation agent of methylene blue—kinetic and mechanistic studies, React. Kinet. Mech. Catal. 101, 251-266.
  • Liu, B., Sun, Z., Jimmy Huang, P.J., Liu, J., 2015. Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum, J. Am. Chem. Soc. 137, 1290-1295.
  • Lu, X., Zhai, T., Cui, H., Shi, J., Xie, S., Huang, Y., Liang, C., Tong, Y., 2011. Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods, J. Mater. Chem. 21, 5569-5572.
  • Maezawa, A., Nakadoi, H., Suzuki, K., Furusawa, T., Suzuki, Y., Uchida, S., 2007. Treatment of dye wastewater by using photo-catalytic oxidation with sonication, Ultrason. Sonochem. 14, 615-620.
  • Martinez, S., Sanchez, J.V., Estrada, J.R.M., Velasquez, R.F., 2011. FeIII supported on ceria as effective catalyst for the heterogeneous photo-oxidation of basic orange in aqueous solution with sunlight, Sol. Energy Mater. Sol Cell. 95, 2010 -2017.
  • Mills, A., Wang, J., 1999. Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?, J. Photoch. Photobio. A.Chem. 127123134.
  • Mohammad, M., Ansari, S., Pradhan, D., Han, D., Lee, J., Cho, M., 2014. Defect-induced band gap narrowed CeO2 nanostructures for visible light activities, Ind. Eng. Chem. Res. 53, 9754-9763.
  • Munter, R., 2001. Advanced Oxidation Processes: Current Status and Prospects, Proc. Estonian Acad. Sci. Chem, 50, 59-80.
  • Natarajan, T.S., Natarajan, K., Bajaj, H.C., Tayade, R.J., 2013. Study on identification of leather industry waste water constituents and its photocatalytic treatment, Int. J. Environ. Sci. Technol. 10, 855-864.
  • Natarajan, S., Bajaj, H.C., Tayad, R.J., 2018. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process, J. Environ. Sci. 65, 201-202.
  • Navgire, M.E., Gogoi, P., Mallesham, B., Rangaswamy, A., Reddy, B.M., Lande, M.K., 2016. P—Cyclodextrin supported MoO3 - CeO2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol, RSC Adv. 6, 28679-28687.
  • Nguyen, A.T., Juang, R.S., 2014. Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation. J. Environ. Manag. 147, 271-277. google scholar Ni, P., Wei, X., Guo, J., Ye, X., Yang, S., 2015. On the origin of the oxidizing ability of ceria nanoparticles, RSC Adv. 5, 97512-97519.
  • Ozdemir Olgun, F.A., Üzer, A., Ozturk, B.D., Apak, R., 2018. A novel cerium oxide nanoparticles-based colorimetric sensor using tetramethyl benzidine reagent for antioxidant activity assay, Talanta 182, 55-61.
  • Pathania, D., Sharma, S., Singh, P., 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arab. J. Chem. 10, 1445-1451.
  • Rao, A.N., Sivasankar, B., Sadasivam, V., 2009. Kinetic studies on the photocatalytic degradation of direct yellow 12 in the presence of ZnO catalyst, J. Mol. Catal. A Chem. 306, 77-81.
  • Reddy, P.V., Kim, K.H., 2015. Review of photochemical approaches for the treatment of a wide range of pesticides. J. Hazard. Mater. 285, 325-335.
  • Reza, K. M., Kurny, A.S.W., Gulshan, F., 2017. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci. 7, 1569-1578.
  • Safardoust-Hojaghan, H., Salavati-Niasari, M., 2017. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/ titanium dioxide nanocomposite, J. Clean. Prod. 148, 31-36.
  • Shinde, S.S., Bhosale, C.H., Rajpure, K.Y., 2014. Photodegradation of organic pollutants using N-titanium oxide catalyst. J. Photochem. Photobiol. B. 141, 186-191.
  • Sobana, N., Swaminathan, M., 2007. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of direct blue 53, Sol. Energy Mater. Sol. Cells 91, 727-734.
  • Solano, C., Lessard, R.A., Roberge, P.C., 1987. Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography, Appl. Opt. 26, 1989-1997.
  • Srivastava, P., Goyal, S., Tayade, R., 2013. Ultrasound-assisted adsorption of reactive blue 21 dye on TiO2 in the presence of some rare earths (La, Ce, Pr and Gd). Can. J. Chem. Eng. 9999, 1-11.
  • Tufekci, N., Sivri, N., Toroz, i., 2007. Pollutants of Textile Industry Wastewater and Assessment of its Discharge Limits by Water Quality Standards, Turkish J. Fisheries Aquatic. Sciences 7, 97-103.
  • Xu, C., Qu, X., 2014. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications, NPG Asia Mater. 6, 1-16.
  • Xiazhang L, Ni C., Yao C., Chen Z. 2012. Development of attapulgite/ Ce1-xZrxO2 nanocomposite as catalyst for the degradation of methylene blue, Applied Catalysis B: Environmental, 117, 118-124.
  • Wei, X., Wang, Y., Feng,Y., Xie, X., Li, X., Yang, S. 2019. Different adsorption-degradation behavior of methylene blue and Congo red in nanoceria/H2O2 system under alkaline conditions, Scientific Reports, 9:4964, 1-10.
  • Yang, X.J., Xu, X.M., Xu, J., Han, Y.F., 2013. Iron oxychloride (FeOCl): an efficient fentonlike catalyst for producing hydroxyl radicals in degradation of organic contaminants, J. Am. Chem. Soc. 135, 16058 -16061.
  • Yang, S., He, H., Wu, D., Chen, D., Liang, X., Qin, Z., Fan, M., Zhu, J., Yuan, P., 2009. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3xTixO4 (0 < x < 0.78) at neutral pH values, Appl Catal B-Environ. 89, 527-535.
  • Yurkov, G.Yu., Fionov, A.S., Koksharov, Yu.A., Koleso, V.V., Gubin, S. P., 2007. Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles, Inorg. Mater. 43, 834-844.
  • Zaera, F., 2013. Nanostructured materials for applications in heterogeneous catalysis, Chem. Soc. Rev. 7, 2473-3174.
  • Zang C., Zhang X., Hu S., Chen F., 2017. The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the Orange II, Applied Catalysis B: Environmental 216, 106-113.
  • Zheng, X., Huang, S., Yang, D., Zhai, H., You, Y., Fu, X., Yuan, J., Zhou, X., Wen, J., Liu, Y., 2017. Synthesis of X-architecture CeO2 for the photodegradation of methylene blue under UV-light irradiation, J. Alloys Compd. 705, 131-137.
  • Zidan, H.M., El-Ghamaz, N.A., Abdelghany, A.M., Waly, A.L., 2018. Photodegradation of methylene blue with PVA/PVP blend under UV light irradiation, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 199, 220-227.

Green Synthesized Nanoceria Applied as a Fenton-Like Catalyst for Degrading Methylene Blue

Year 2023, Volume: 38 Issue: 1, 74 - 80, 24.01.2023
https://doi.org/10.26650/ASE20221199598

Abstract

Nanomaterials are preferred for scientific studies due to their spectral properties and perfect surface appearance. This study aims to introduce a novel, environmentally friendly, photocatalytic method for degrading methylene blue (MB) in aqueous solutions. With this purpose in mind, the study synthesizes nanoceria particles and coats them with zahter (Thymbra spicata; zahter-coated nanoceria, ZCNC) following the main outlines of green chemistry as characterized by SEM and FTIR analyses. The study proposes this new nanoparticle (with the aid of H2 O2 and UV combinations) as an alternative to iron in Fenton-type reactions for enabling MB degradation. The maximum efficiency was observed through the ternary combination of zahter-coated nanoceria, UV light, and H2 O2 at 63% concentration. The degradation of the MB solution was achieved by installing a small amount of ZCNC (0.1g), after which the absorbance values were measured at 664 nm. According to the possible reaction kinetics discussed within the study, the reaction rate was calculated at 1.49 × 10-2 min -1, thus enabling a faster reaction for a better evaluation of the reaction mechanism compared to other degradation processes that have been previously investigated.

References

  • Aguedach, A., Brosillon, S., Morvan, J., Lhadi, E.K., 2005. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titaniumdioxide. Appl. Catal. B. 57 55-62.
  • Aleboyeh, A., Kasiri, M.B., Aleboyeh, H., 2012. Influence of dyeing auxiliaries on AB74 dye degradation by UV/H2O2 process, J. Environ. Manag. 113, 426-431.
  • Anastas P.T., Warner, J.C., 1998. Green Chemistry: Theory and Practice; Oxford University Press, London.
  • Babuponnusami, A., Muthukumar, K., 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Engin. 2, 557-572.
  • Chan, S.H.S., Wu, T.Y., Juan, J.C., The C.Y., 2011. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86, 1130-1158.
  • Channei, D., Inceesungvorn, B., Wetchakun, N., 2014. Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light, Sci. Rep. 4, 1-7.
  • Choe, E., Min, D. B., 2006. Chemistry and Reactions of Reactive Oxygen Species in Foods, J. Food Sci. 70, 142-159.
  • Corma, A., Atienzar, P., Garcia, H., Chane-Ching, J.Y., 2004. Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use. Nature Mater. 3, 394-397.
  • Dong X., Lin Y., Ren G., Ma Y., Zhao L., 2021. Catalytic Degradation of Methylene Blue by Fenton-like Oxidation of Ce-doped MOF. Colloids and Surfaces A 608 125-578.
  • Foo, K.Y., Hameed, B.H., 2012. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation, Bioresour. Technol. 104, 679-686.
  • Ghaedi, M., Golestani Nasab, A., Khodadoust, S., Rajabi, M., Azizian, S., 2014. Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study, J. Ind. Eng. Chem. 20, 2317-2324.
  • Ghaedi, M., Mazaheri, H., Khodadoust, S., Hajati, S., Purkait, M.K., 2015. Application of central composite design for simultaneous removal of methylene blue and Pb(2+) ions by walnut wood activated carbon, Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 479-490.
  • Ghaly, A., Ananthashankar, R., Al-Hattab, M.K., Ramakrishnan, V., 2014. Production, Characterization and Treatment of Textile Effluents: A Critical Review, J. Chem. Eng. Process Technol. 5, 1-18.
  • Gogoi, A., Sarma, K.C., 2017. Synthesis of the novel P—cyclodextrin supported CeO2 nanoparticles for the catalytic degradation of methylene blue in aqueous suspension. Mater. Chem. Phys. 194, 327-336.
  • Grulke, E., Reed, K., Beck, M., Huang, X., Cormack, A., Seal, S., 2014. Nanoceria: factors affecting its pro- and anti-oxidant properties. Environ. Sci.: Nano. 1, 429-444.
  • Hameed, B.H., 2009. Spent tea leaves: a new non-conventional and lowcost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753-759.
  • Hong, Q., Hardcastle, J.L., Mckeown, R.A.J., Marken, F., Compton, R.G., 1999. The 20 kHz sonochemical degradation of trace cyanide and dye stuffs in aqueous media, New J. Chem. 23, 845-849.
  • Jin, Y., Li, N., Liu, H., Hua, X., Zhang, Q., Chen, M., Teng, F., 2014. Highly efficient degradation of dye pollutants by Ce-doped MoO3 catalyst at room temperature, Dalton Trans. 43 12860-12870.
  • Jo, W.K., Tayade, R.J., 2014. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes, Chin. J. Catal. 35, 1781-1792.
  • Joshi, M., Bansal, R., Purwar, R., 2004. Colour removal from textile effluents, Indian J. Fibre Text, 29, 239-259.
  • Kamer, G., Demirata, B., Bayraktar, R., Ozyurt, D., Apak, R., 2019. Nanoceria-based reactive species scavenging activity of antioxidants using N,N-dimethyl-pphenylenediamine (DMPD) probe, Anal. Methods 14, 1837- 1986.
  • Katafias, A., Lipinska, M., Strutynski, K., 2010. Alkaline hydrogen peroxide as a degradation agent of methylene blue—kinetic and mechanistic studies, React. Kinet. Mech. Catal. 101, 251-266.
  • Liu, B., Sun, Z., Jimmy Huang, P.J., Liu, J., 2015. Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum, J. Am. Chem. Soc. 137, 1290-1295.
  • Lu, X., Zhai, T., Cui, H., Shi, J., Xie, S., Huang, Y., Liang, C., Tong, Y., 2011. Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods, J. Mater. Chem. 21, 5569-5572.
  • Maezawa, A., Nakadoi, H., Suzuki, K., Furusawa, T., Suzuki, Y., Uchida, S., 2007. Treatment of dye wastewater by using photo-catalytic oxidation with sonication, Ultrason. Sonochem. 14, 615-620.
  • Martinez, S., Sanchez, J.V., Estrada, J.R.M., Velasquez, R.F., 2011. FeIII supported on ceria as effective catalyst for the heterogeneous photo-oxidation of basic orange in aqueous solution with sunlight, Sol. Energy Mater. Sol Cell. 95, 2010 -2017.
  • Mills, A., Wang, J., 1999. Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?, J. Photoch. Photobio. A.Chem. 127123134.
  • Mohammad, M., Ansari, S., Pradhan, D., Han, D., Lee, J., Cho, M., 2014. Defect-induced band gap narrowed CeO2 nanostructures for visible light activities, Ind. Eng. Chem. Res. 53, 9754-9763.
  • Munter, R., 2001. Advanced Oxidation Processes: Current Status and Prospects, Proc. Estonian Acad. Sci. Chem, 50, 59-80.
  • Natarajan, T.S., Natarajan, K., Bajaj, H.C., Tayade, R.J., 2013. Study on identification of leather industry waste water constituents and its photocatalytic treatment, Int. J. Environ. Sci. Technol. 10, 855-864.
  • Natarajan, S., Bajaj, H.C., Tayad, R.J., 2018. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process, J. Environ. Sci. 65, 201-202.
  • Navgire, M.E., Gogoi, P., Mallesham, B., Rangaswamy, A., Reddy, B.M., Lande, M.K., 2016. P—Cyclodextrin supported MoO3 - CeO2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol, RSC Adv. 6, 28679-28687.
  • Nguyen, A.T., Juang, R.S., 2014. Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation. J. Environ. Manag. 147, 271-277. google scholar Ni, P., Wei, X., Guo, J., Ye, X., Yang, S., 2015. On the origin of the oxidizing ability of ceria nanoparticles, RSC Adv. 5, 97512-97519.
  • Ozdemir Olgun, F.A., Üzer, A., Ozturk, B.D., Apak, R., 2018. A novel cerium oxide nanoparticles-based colorimetric sensor using tetramethyl benzidine reagent for antioxidant activity assay, Talanta 182, 55-61.
  • Pathania, D., Sharma, S., Singh, P., 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arab. J. Chem. 10, 1445-1451.
  • Rao, A.N., Sivasankar, B., Sadasivam, V., 2009. Kinetic studies on the photocatalytic degradation of direct yellow 12 in the presence of ZnO catalyst, J. Mol. Catal. A Chem. 306, 77-81.
  • Reddy, P.V., Kim, K.H., 2015. Review of photochemical approaches for the treatment of a wide range of pesticides. J. Hazard. Mater. 285, 325-335.
  • Reza, K. M., Kurny, A.S.W., Gulshan, F., 2017. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci. 7, 1569-1578.
  • Safardoust-Hojaghan, H., Salavati-Niasari, M., 2017. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/ titanium dioxide nanocomposite, J. Clean. Prod. 148, 31-36.
  • Shinde, S.S., Bhosale, C.H., Rajpure, K.Y., 2014. Photodegradation of organic pollutants using N-titanium oxide catalyst. J. Photochem. Photobiol. B. 141, 186-191.
  • Sobana, N., Swaminathan, M., 2007. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of direct blue 53, Sol. Energy Mater. Sol. Cells 91, 727-734.
  • Solano, C., Lessard, R.A., Roberge, P.C., 1987. Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography, Appl. Opt. 26, 1989-1997.
  • Srivastava, P., Goyal, S., Tayade, R., 2013. Ultrasound-assisted adsorption of reactive blue 21 dye on TiO2 in the presence of some rare earths (La, Ce, Pr and Gd). Can. J. Chem. Eng. 9999, 1-11.
  • Tufekci, N., Sivri, N., Toroz, i., 2007. Pollutants of Textile Industry Wastewater and Assessment of its Discharge Limits by Water Quality Standards, Turkish J. Fisheries Aquatic. Sciences 7, 97-103.
  • Xu, C., Qu, X., 2014. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications, NPG Asia Mater. 6, 1-16.
  • Xiazhang L, Ni C., Yao C., Chen Z. 2012. Development of attapulgite/ Ce1-xZrxO2 nanocomposite as catalyst for the degradation of methylene blue, Applied Catalysis B: Environmental, 117, 118-124.
  • Wei, X., Wang, Y., Feng,Y., Xie, X., Li, X., Yang, S. 2019. Different adsorption-degradation behavior of methylene blue and Congo red in nanoceria/H2O2 system under alkaline conditions, Scientific Reports, 9:4964, 1-10.
  • Yang, X.J., Xu, X.M., Xu, J., Han, Y.F., 2013. Iron oxychloride (FeOCl): an efficient fentonlike catalyst for producing hydroxyl radicals in degradation of organic contaminants, J. Am. Chem. Soc. 135, 16058 -16061.
  • Yang, S., He, H., Wu, D., Chen, D., Liang, X., Qin, Z., Fan, M., Zhu, J., Yuan, P., 2009. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3xTixO4 (0 < x < 0.78) at neutral pH values, Appl Catal B-Environ. 89, 527-535.
  • Yurkov, G.Yu., Fionov, A.S., Koksharov, Yu.A., Koleso, V.V., Gubin, S. P., 2007. Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles, Inorg. Mater. 43, 834-844.
  • Zaera, F., 2013. Nanostructured materials for applications in heterogeneous catalysis, Chem. Soc. Rev. 7, 2473-3174.
  • Zang C., Zhang X., Hu S., Chen F., 2017. The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the Orange II, Applied Catalysis B: Environmental 216, 106-113.
  • Zheng, X., Huang, S., Yang, D., Zhai, H., You, Y., Fu, X., Yuan, J., Zhou, X., Wen, J., Liu, Y., 2017. Synthesis of X-architecture CeO2 for the photodegradation of methylene blue under UV-light irradiation, J. Alloys Compd. 705, 131-137.
  • Zidan, H.M., El-Ghamaz, N.A., Abdelghany, A.M., Waly, A.L., 2018. Photodegradation of methylene blue with PVA/PVP blend under UV light irradiation, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 199, 220-227.
There are 54 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Dilek Özyurt 0000-0003-1388-2121

Fatos Ayca Ozdemir Olgun 0000-0003-1077-2621

Birsen Demirata 0000-0002-0978-0977

Mustafa Reşat Apak 0000-0003-1739-5814

Publication Date January 24, 2023
Submission Date November 4, 2022
Published in Issue Year 2023 Volume: 38 Issue: 1

Cite

APA Özyurt, D., Ozdemir Olgun, F. A., Demirata, B., Apak, M. R. (2023). Green Synthesized Nanoceria Applied as a Fenton-Like Catalyst for Degrading Methylene Blue. Aquatic Sciences and Engineering, 38(1), 74-80. https://doi.org/10.26650/ASE20221199598
AMA Özyurt D, Ozdemir Olgun FA, Demirata B, Apak MR. Green Synthesized Nanoceria Applied as a Fenton-Like Catalyst for Degrading Methylene Blue. Aqua Sci Eng. January 2023;38(1):74-80. doi:10.26650/ASE20221199598
Chicago Özyurt, Dilek, Fatos Ayca Ozdemir Olgun, Birsen Demirata, and Mustafa Reşat Apak. “Green Synthesized Nanoceria Applied As a Fenton-Like Catalyst for Degrading Methylene Blue”. Aquatic Sciences and Engineering 38, no. 1 (January 2023): 74-80. https://doi.org/10.26650/ASE20221199598.
EndNote Özyurt D, Ozdemir Olgun FA, Demirata B, Apak MR (January 1, 2023) Green Synthesized Nanoceria Applied as a Fenton-Like Catalyst for Degrading Methylene Blue. Aquatic Sciences and Engineering 38 1 74–80.
IEEE D. Özyurt, F. A. Ozdemir Olgun, B. Demirata, and M. R. Apak, “Green Synthesized Nanoceria Applied as a Fenton-Like Catalyst for Degrading Methylene Blue”, Aqua Sci Eng, vol. 38, no. 1, pp. 74–80, 2023, doi: 10.26650/ASE20221199598.
ISNAD Özyurt, Dilek et al. “Green Synthesized Nanoceria Applied As a Fenton-Like Catalyst for Degrading Methylene Blue”. Aquatic Sciences and Engineering 38/1 (January 2023), 74-80. https://doi.org/10.26650/ASE20221199598.
JAMA Özyurt D, Ozdemir Olgun FA, Demirata B, Apak MR. Green Synthesized Nanoceria Applied as a Fenton-Like Catalyst for Degrading Methylene Blue. Aqua Sci Eng. 2023;38:74–80.
MLA Özyurt, Dilek et al. “Green Synthesized Nanoceria Applied As a Fenton-Like Catalyst for Degrading Methylene Blue”. Aquatic Sciences and Engineering, vol. 38, no. 1, 2023, pp. 74-80, doi:10.26650/ASE20221199598.
Vancouver Özyurt D, Ozdemir Olgun FA, Demirata B, Apak MR. Green Synthesized Nanoceria Applied as a Fenton-Like Catalyst for Degrading Methylene Blue. Aqua Sci Eng. 2023;38(1):74-80.

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.