Research Article
BibTex RIS Cite

Santa Maria armudu püresinde LOX aktivitesi üzerine bazı katkı maddelerinin inhibisyon etkileri

Year 2022, Volume: 2 Issue: 1, 35 - 39, 11.11.2022

Abstract

Lipoksigenaz (EC 1.13.11.34.; LOX ) enzimleri; yapısında iki ya da daha fazla doymamış bağ bulunduran yağ asitlerini oksitleyen, yapılarında hem grubu bulundurmayan demir taşıyıcı dioksigenazlardır. LOX'lar bitkiler, hayvan dokuları ve siyanobakterilerde bulunurlar. Bu çalışmada Santa Maria armudu püresindeki LOX enzimi aktivitesinin fumarik asit, sirinjik asit ve rosmarinik asitin farklı konsantrasyonlarına ve pişirme işlemine bağlı olarak değişimi 7 gün boyunca takip edilmiştir. Fumarik asitin LOX aktivitesini artırdığı gözlenmiştir. Bu artışa pişirme işlemi de engel olamamıştır. Sirinjik asit ve rosmarinik asitin LOX aktivitesini gün geçtikçe azalttığı, ek olarak pişirme uygulanan örneklerde daha hızlı bir aktivite azalışı olduğu görülmüştür. 7 gün sonunda rosmarinik asitin yaklaşık % 60'lık inhibisyona sebep olduğu, sirinjik asitin ise yaklaşık %80'lik bir inhibisyona sebep olduğu görülmüştür. Bu sonuçlardan yola çıkarak bebek ek gıdaları ve meyve sularında sıkça kullanılan armudun tat, koku ve lezzet kaybının önlenmesi için ortama rosmarinik asit ya da sirinjik asitin eklenmesiyle birlikte pişirme işlemi uygulanması raf ömrünü uzatmaktadır diyebiliriz.

References

  • Chedea, V.S., Jisaka, M., ‘’Lipoxygenase and carotenoids: A co-oxidation story’’, Afr. J. Biotechnol. (2013), 12, 2786–2791.
  • [2] Newcomer, M.E., Brash, A.R., ‘’The structural basis for specificity in lipoxygenase catalysis’’, Protein Sci. (2015), 24, 298–309.
  • [3] Pallavi, P.C., Singh, A.K., Singh, S., Singh, N.K, ‘’In Silico Structural and Functional Insights into the Lipoxygenase Enzyme of Legume Cajanus Cajan’’, Int. J. Recent Innov. Trends Comput. Commun. (2014), 5, 87–91.
  • [4] Srivastava, P., Vyas, V.K., Variya, B., Patel, P., Qureshi, G., Ghate, M,. ‘’Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives’’, Bioorg. Chem. (2016), 67, 130–138.
  • [5] Baysal, T., Demirdöven, A., ‘’Lipoxygenase in fruits and vegetables: A review’’, Enzym. Microb. Technol. (2007), 40, 491–496.
  • [6] Lampi, A.M., Yang, Z., Mustonen, O., Piironen, V., ‘’Potential of faba bean lipase and lipoxygenase to promote formation of volatile lipid oxidation products in food models’’, Food Chem. (2020), 311, 125982.
  • [7] Porta, H., Rocha-Sosa, M., ‘’Plant lipoxygenases. Physiological and molecular features’’, Plant Physiol. (2002), 130, 15–21
  • [8] Kermasha, S., Dioum, N., Bisakowski, B., ‘’Biocatalysis of lipoxygenase in selected organic solvent media’’, J. Mol. Catal. B Enzym, (2001), 11, 909–919.
  • [9] Ogorodnikova, A.V., Mukhitova, F.K., Grechkin, A.N., ‘’Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones’’, Phytochemistry, (2015), 118, 42–50.
  • [10] Padilla, M.N., Hernández, M.L., Sanz, C., ‘’Martínez-Rivas, J.M. Stress-dependent regulation of 13 lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp’’, Phytochemistry, (2014), 102, 80–88.
  • [11] Dzoyem, J.P., Eloff, J.N., ‘’Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa’’, J. Ethnopharmacol. (2015), 160, 194–201
  • [12] Car, E., Straathof, A.J.J., Zijlmans, T.W., van Gulik, W.M., van der Wielen, L.A.M., ‘’Fumaric acid production by fermentation’’, Appl Microbiol Biotechnol (2008), 78:379–389 DOI 10.1007/s00253-007-1341-x
  • [13] Nast, A., Kopp, I., Augustin, M., et al. ‘’German evidence-based guidelines for the treatment of Psoriasis vulgaris’’, Arch Dermatol Res (2007), 299: 111–138
  • [14] Linker, R.A., Haghikia, A., ‘’Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy’’, Ther Adv Chronic Dis (2016), 7: 198–207
  • [15] Pacheco-Palencia, L.A., Mertens-Talcott, S., Talcott, S.T., ‘’Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from Acai (Euterpe oleracea Mart.)’’, J Agric Food Chemistry, 56 (2008), pp. 4631-4636
  • [16] Pezzuto, J.M., ‘’Grapes and human health: a perspective’’, J Agric Food Chemistry, 56 (2008), pp. 6777-6784
  • [17] Kiran, P., Denni, M., Daniel, M., ‘’Antidiabetic principles, phospholipids and fixed oil of kodo millet (Paspalum scrobiculatum Linn)’’, Ind J Appl Res., 4 (2014), pp. 13-15.
  • [18] Abe, T., Masai, E., Miyauchi, K., Katayama, Y., Fukuda, M., ‘’Tetrahydrofolate-Dependent O-Demethylase, LigM, Is Crucial for Catabolism of Vanillate and Syringate in Sphingomonas paucimobilis SYK-6’’, J of Bacteriology. (2005), pp. 2030-2037.
  • [19] Petersen, M., Simmonds, M.S., ‘’Rosmarinic acid. Phytochemistry’’, (2003), 62: 121–125
  • [20] Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hucherig, S., Janiak, V., Kim, K.H., Sander, M., Weitzel, C., Wolters, S., ‘’Evolution of rosmarinic acid biosynthesis,’’ Phytochemistry, (2009), 70: 1663–1679.
  • [21] Hiti, M., Kladar, N., Gavaric, N., Bozin, B., ‘’Rosmarinic Acid–Human Pharmacokinetics and Health Benefits’’, Planta Med (2021), 87: 273–282. https://doi.org/10.1055/a-1301-8648.
  • [22] Budhiraja, A., Dhingra, G., ‘’Development and characterization of a novel antiacne niosomal gel of rosmarinic acid,’’ Drug Deliv (2015), 22: 723–730
  • [23] Tundis, R., Loizzo, MR., ‘’Bonesi M, Menichini F. Potential role of natural compounds against skin aging,’’ Curr Med Chem (2015), 22: 1515–1538.
  • [24] Yucel, C., Seker Karatoprak, G., Degim, IT., ‘’Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes,’’ J Microencapsul (2019), 36: 180–191
  • [25] Bhatt, R., Singh, D., Prakash, A., Mishra, N., ‘’Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntingtonʼs diseas,’’. Drug Deliv., (2015), 22: 931–939
  • [26] Lu, P., Xing, Y., Xue, Z., Ma, Z., Zhang, B., Peng, H., Zhou, QT., Liu, H., Liu, Z., Li, J., ‘’Pharmacokinetics of salvianolic acid B, rosmarinic acid and Danshensu in rat after pulmonary administration of Salvia miltiorrhiza polyphenolic acid solutio,’’ Biomed Chromatogr., (2019), 33: e4561
  • [27] da Silva, SB., Ferreira, D., Pintado, M., Sarmento, B., ‘’Chitosan-based nanoparticles for rosmarinic acid ocular delivery–in vitro tests,’’ Int J Biol Macromol., (2016), 84: 112–120
  • [28] Jia, JY., Lu, YL., Li, XC., Liu, GY., Li, SJ., Liu, Y., Liu, YM., Yu, C., Wang, YP., ‘’Pharmacokinetics of depside salts from Salvia miltiorrhiza in healthy Chinese volunteers: a randomized, open-label, single-dose study,’’ Curr Ther Res Clin Exp., (2010), 71: 260–271
  • [29] Ozturk Kesebir, A., Kilic, D., Kufrevioglu O.I., ‘’ Partial Purification and Characterization of Lipoxygenase Enzyme From Bovine Liver, Effects of Salicylic Acid and Some Flavons on the Enzyme’’, Journal of the Institute of Science and Technology, (2019), 9(3): 1452-1459. DOI: 10.21597/jist.510855.
  • [30] Yashaswini, P.S., Rao, A.G., Singh, S.A., ‘’Inhibition of lipoxygenase by sesamol corroborates its potential anti-inflammatory activity’’, Int J Biol Macromol., (2017), 94(Pt B):781-787.
  • [31] Barrett, D.M., Theerakulkait, C., ‘’Quality indicators in blanched, frozen, stored vegetables’’,Food Technology, (1995), 49(62):64–65.
  • [32] Barrett, D.M., Garcia, E.L., Russell, G.F., Ramirez, E., Shirazi, A., ‘’Blanch time and cultivar effects on quality of frozen and stored corn broccoli’’, Journal of Food Science, (2000), 65(3): 534-540.
  • [33] Cabibel, M., Nicolas, J., ‘’Lipoxygenase from tomato fruit (Lycopersicon esculentum L.). Partial purification, some properties and in vitro cooxidation of some carotenoid pigments’'. Sciences des Aliments, (1990), 11(2): 277-290.
  • [34] Calligaris, S., Falcone, P., Anese, M., ‘’Color changes of tomato purees during storage at freezing temperatures’'. Journal of Food Science, (2002), 67(6): 2432-2435.

Inhibitory effects of some additives on LOX activity in Santa Maria pear puree

Year 2022, Volume: 2 Issue: 1, 35 - 39, 11.11.2022

Abstract

Lipoxygenase (EC 1.13.11.34.; LOX) enzymes; They are iron carrier dioxygenases that oxidize fatty acids with two or more unsaturated bonds in their structure and do not contain heme groups in their structure. LOXs are found in plants, animal tissues, and cyanobacteria. In this study, the change of LOX enzyme activity in Santa Maria pear puree depending on different concentrations of fumaric acid, syringic acid and rosmarinic acid and cooking process was followed for 7 days. It has been observed that fumaric acid increases LOX activity. This increase was not prevented by the cooking process. It was observed that syringic acid and rosmarinic acid decreased LOX activity day by day, and a faster decrease in activity was observed in the samples that were additionally cooked. At the end of 7 days, it was observed that rosmarinic acid caused approximately 60% inhibition, while syringic acid caused approximately 80% inhibition. Based on these results, we can say that the cooking process with the addition of rosmarinic acid or syringic acid to the medium in order to prevent the loss of taste, smell and flavor of the pear, which is frequently used in baby complementary foods and fruit juices, extends the shelf life.

References

  • Chedea, V.S., Jisaka, M., ‘’Lipoxygenase and carotenoids: A co-oxidation story’’, Afr. J. Biotechnol. (2013), 12, 2786–2791.
  • [2] Newcomer, M.E., Brash, A.R., ‘’The structural basis for specificity in lipoxygenase catalysis’’, Protein Sci. (2015), 24, 298–309.
  • [3] Pallavi, P.C., Singh, A.K., Singh, S., Singh, N.K, ‘’In Silico Structural and Functional Insights into the Lipoxygenase Enzyme of Legume Cajanus Cajan’’, Int. J. Recent Innov. Trends Comput. Commun. (2014), 5, 87–91.
  • [4] Srivastava, P., Vyas, V.K., Variya, B., Patel, P., Qureshi, G., Ghate, M,. ‘’Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives’’, Bioorg. Chem. (2016), 67, 130–138.
  • [5] Baysal, T., Demirdöven, A., ‘’Lipoxygenase in fruits and vegetables: A review’’, Enzym. Microb. Technol. (2007), 40, 491–496.
  • [6] Lampi, A.M., Yang, Z., Mustonen, O., Piironen, V., ‘’Potential of faba bean lipase and lipoxygenase to promote formation of volatile lipid oxidation products in food models’’, Food Chem. (2020), 311, 125982.
  • [7] Porta, H., Rocha-Sosa, M., ‘’Plant lipoxygenases. Physiological and molecular features’’, Plant Physiol. (2002), 130, 15–21
  • [8] Kermasha, S., Dioum, N., Bisakowski, B., ‘’Biocatalysis of lipoxygenase in selected organic solvent media’’, J. Mol. Catal. B Enzym, (2001), 11, 909–919.
  • [9] Ogorodnikova, A.V., Mukhitova, F.K., Grechkin, A.N., ‘’Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones’’, Phytochemistry, (2015), 118, 42–50.
  • [10] Padilla, M.N., Hernández, M.L., Sanz, C., ‘’Martínez-Rivas, J.M. Stress-dependent regulation of 13 lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp’’, Phytochemistry, (2014), 102, 80–88.
  • [11] Dzoyem, J.P., Eloff, J.N., ‘’Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa’’, J. Ethnopharmacol. (2015), 160, 194–201
  • [12] Car, E., Straathof, A.J.J., Zijlmans, T.W., van Gulik, W.M., van der Wielen, L.A.M., ‘’Fumaric acid production by fermentation’’, Appl Microbiol Biotechnol (2008), 78:379–389 DOI 10.1007/s00253-007-1341-x
  • [13] Nast, A., Kopp, I., Augustin, M., et al. ‘’German evidence-based guidelines for the treatment of Psoriasis vulgaris’’, Arch Dermatol Res (2007), 299: 111–138
  • [14] Linker, R.A., Haghikia, A., ‘’Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy’’, Ther Adv Chronic Dis (2016), 7: 198–207
  • [15] Pacheco-Palencia, L.A., Mertens-Talcott, S., Talcott, S.T., ‘’Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from Acai (Euterpe oleracea Mart.)’’, J Agric Food Chemistry, 56 (2008), pp. 4631-4636
  • [16] Pezzuto, J.M., ‘’Grapes and human health: a perspective’’, J Agric Food Chemistry, 56 (2008), pp. 6777-6784
  • [17] Kiran, P., Denni, M., Daniel, M., ‘’Antidiabetic principles, phospholipids and fixed oil of kodo millet (Paspalum scrobiculatum Linn)’’, Ind J Appl Res., 4 (2014), pp. 13-15.
  • [18] Abe, T., Masai, E., Miyauchi, K., Katayama, Y., Fukuda, M., ‘’Tetrahydrofolate-Dependent O-Demethylase, LigM, Is Crucial for Catabolism of Vanillate and Syringate in Sphingomonas paucimobilis SYK-6’’, J of Bacteriology. (2005), pp. 2030-2037.
  • [19] Petersen, M., Simmonds, M.S., ‘’Rosmarinic acid. Phytochemistry’’, (2003), 62: 121–125
  • [20] Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hucherig, S., Janiak, V., Kim, K.H., Sander, M., Weitzel, C., Wolters, S., ‘’Evolution of rosmarinic acid biosynthesis,’’ Phytochemistry, (2009), 70: 1663–1679.
  • [21] Hiti, M., Kladar, N., Gavaric, N., Bozin, B., ‘’Rosmarinic Acid–Human Pharmacokinetics and Health Benefits’’, Planta Med (2021), 87: 273–282. https://doi.org/10.1055/a-1301-8648.
  • [22] Budhiraja, A., Dhingra, G., ‘’Development and characterization of a novel antiacne niosomal gel of rosmarinic acid,’’ Drug Deliv (2015), 22: 723–730
  • [23] Tundis, R., Loizzo, MR., ‘’Bonesi M, Menichini F. Potential role of natural compounds against skin aging,’’ Curr Med Chem (2015), 22: 1515–1538.
  • [24] Yucel, C., Seker Karatoprak, G., Degim, IT., ‘’Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes,’’ J Microencapsul (2019), 36: 180–191
  • [25] Bhatt, R., Singh, D., Prakash, A., Mishra, N., ‘’Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntingtonʼs diseas,’’. Drug Deliv., (2015), 22: 931–939
  • [26] Lu, P., Xing, Y., Xue, Z., Ma, Z., Zhang, B., Peng, H., Zhou, QT., Liu, H., Liu, Z., Li, J., ‘’Pharmacokinetics of salvianolic acid B, rosmarinic acid and Danshensu in rat after pulmonary administration of Salvia miltiorrhiza polyphenolic acid solutio,’’ Biomed Chromatogr., (2019), 33: e4561
  • [27] da Silva, SB., Ferreira, D., Pintado, M., Sarmento, B., ‘’Chitosan-based nanoparticles for rosmarinic acid ocular delivery–in vitro tests,’’ Int J Biol Macromol., (2016), 84: 112–120
  • [28] Jia, JY., Lu, YL., Li, XC., Liu, GY., Li, SJ., Liu, Y., Liu, YM., Yu, C., Wang, YP., ‘’Pharmacokinetics of depside salts from Salvia miltiorrhiza in healthy Chinese volunteers: a randomized, open-label, single-dose study,’’ Curr Ther Res Clin Exp., (2010), 71: 260–271
  • [29] Ozturk Kesebir, A., Kilic, D., Kufrevioglu O.I., ‘’ Partial Purification and Characterization of Lipoxygenase Enzyme From Bovine Liver, Effects of Salicylic Acid and Some Flavons on the Enzyme’’, Journal of the Institute of Science and Technology, (2019), 9(3): 1452-1459. DOI: 10.21597/jist.510855.
  • [30] Yashaswini, P.S., Rao, A.G., Singh, S.A., ‘’Inhibition of lipoxygenase by sesamol corroborates its potential anti-inflammatory activity’’, Int J Biol Macromol., (2017), 94(Pt B):781-787.
  • [31] Barrett, D.M., Theerakulkait, C., ‘’Quality indicators in blanched, frozen, stored vegetables’’,Food Technology, (1995), 49(62):64–65.
  • [32] Barrett, D.M., Garcia, E.L., Russell, G.F., Ramirez, E., Shirazi, A., ‘’Blanch time and cultivar effects on quality of frozen and stored corn broccoli’’, Journal of Food Science, (2000), 65(3): 534-540.
  • [33] Cabibel, M., Nicolas, J., ‘’Lipoxygenase from tomato fruit (Lycopersicon esculentum L.). Partial purification, some properties and in vitro cooxidation of some carotenoid pigments’'. Sciences des Aliments, (1990), 11(2): 277-290.
  • [34] Calligaris, S., Falcone, P., Anese, M., ‘’Color changes of tomato purees during storage at freezing temperatures’'. Journal of Food Science, (2002), 67(6): 2432-2435.
There are 34 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Arzu Öztürk Kesebir This is me 0000-0003-2603-7509

Işıl Nihan Korkmaz This is me 0000-0003-4896-5226

Ömer İrfan Küfrevioğlu This is me 0000-0002-1877-3154

Publication Date November 11, 2022
Published in Issue Year 2022 Volume: 2 Issue: 1

Cite

APA Öztürk Kesebir, A., Korkmaz, I. N., & Küfrevioğlu, Ö. İ. (2022). Santa Maria armudu püresinde LOX aktivitesi üzerine bazı katkı maddelerinin inhibisyon etkileri. Ata-Kimya Dergisi, 2(1), 35-39.
AMA Öztürk Kesebir A, Korkmaz IN, Küfrevioğlu Öİ. Santa Maria armudu püresinde LOX aktivitesi üzerine bazı katkı maddelerinin inhibisyon etkileri. J Ata-Chem. November 2022;2(1):35-39.
Chicago Öztürk Kesebir, Arzu, Işıl Nihan Korkmaz, and Ömer İrfan Küfrevioğlu. “Santa Maria Armudu püresinde LOX Aktivitesi üzerine Bazı Katkı Maddelerinin Inhibisyon Etkileri”. Ata-Kimya Dergisi 2, no. 1 (November 2022): 35-39.
EndNote Öztürk Kesebir A, Korkmaz IN, Küfrevioğlu Öİ (November 1, 2022) Santa Maria armudu püresinde LOX aktivitesi üzerine bazı katkı maddelerinin inhibisyon etkileri. Ata-Kimya Dergisi 2 1 35–39.
IEEE A. Öztürk Kesebir, I. N. Korkmaz, and Ö. İ. Küfrevioğlu, “Santa Maria armudu püresinde LOX aktivitesi üzerine bazı katkı maddelerinin inhibisyon etkileri”, J Ata-Chem, vol. 2, no. 1, pp. 35–39, 2022.
ISNAD Öztürk Kesebir, Arzu et al. “Santa Maria Armudu püresinde LOX Aktivitesi üzerine Bazı Katkı Maddelerinin Inhibisyon Etkileri”. Ata-Kimya Dergisi 2/1 (November 2022), 35-39.
JAMA Öztürk Kesebir A, Korkmaz IN, Küfrevioğlu Öİ. Santa Maria armudu püresinde LOX aktivitesi üzerine bazı katkı maddelerinin inhibisyon etkileri. J Ata-Chem. 2022;2:35–39.
MLA Öztürk Kesebir, Arzu et al. “Santa Maria Armudu püresinde LOX Aktivitesi üzerine Bazı Katkı Maddelerinin Inhibisyon Etkileri”. Ata-Kimya Dergisi, vol. 2, no. 1, 2022, pp. 35-39.
Vancouver Öztürk Kesebir A, Korkmaz IN, Küfrevioğlu Öİ. Santa Maria armudu püresinde LOX aktivitesi üzerine bazı katkı maddelerinin inhibisyon etkileri. J Ata-Chem. 2022;2(1):35-9.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724