Research Article
BibTex RIS Cite

Yeni 4-(2-aminoetil)morfolin substitüe siklotrifosfazenin sentezi ve yapı analizi

Year 2022, Volume: 2 Issue: 1, 40 - 45, 11.11.2022

Abstract

Bu çalışmada, hekzaklorosiklotrifosfazenin primer bir amin olan 4-(2-aminoetil) morfolin ile reaksiyonu THF içerisinde trimetilamin varlığında gerçekleştirilmiştir. Final bileşiğin moleküler yapısı, kütle spektrometresi, FT-IR 31P, 1H ve 13C NMR spektroskopi teknikleri ile doğrulandı. Oluşan ürünün yapı analizi kullanılarak, reaksiyon için olası ilerleme mekanizması önerildi.

References

  • [1] Wang, L., Yang. Y.X., Shi. X., Mignani S., Caminde, A.M., Majoral, J.P., “Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances”, J.Mater.Chem.B, (2018), 6,884-895.
  • [2] Caminade, A.M., Hameauaand, A., Majorala J.P., “The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers”, Dalton Trans., (2016), 45,1810-1822.
  • [3] Ainscough, E.W., Brodiei A.M., Derwahl, A., Kirk, S., Otter, C.A. “Conformationally Rigid Chelate Rings in Metal Complexes of Pyridyloxy-Substituted 2,2′-Dioxybiphenyl-Cyclotetra- and Cyclotriphosphazene Platforms”, Inorg. Chem., (2007), 46, 9841-9852.
  • [4] Allen, C.W., “Regio- and stereochemical control in substitution reactions of cyclophosphazenes”, Chem Rev., (1991), 91,119-135.
  • [5] Beşli, S., Coles, S.J., Davies, D.B., Kılıç, A., Shaw, R.A., “Bridged cyclophosphazenes resulting from deprotonation reactions of cyclotriphophazenes bearing a P–NH group”, Dalton Trans., (2011), 40, 5307-5315.
  • [6] Kagit, R., Yildirim, M., Ozay, O., Yesilot, S., Ozay, H. “Phosphazene Based Multicentered Naked-Eye Fluorescent Sensor with High Selectivity for Fe3+ Ions”, Inorg. Chem., (2014), 53, 4, 2144-2151.
  • [7] Tümay S. O., A Novel Selective “Turn-On” Fluorescent Chemosensor Based on Thiophene Appended Cyclotriphosphazene Schiff Base for Detection of Ag+ Ions, Chemistry Select, (2021), 6, 39, 10561-10572.
  • [8] Yıldırım, T., Bilgin, K., Yenilmez Çiftçi, G., Tanrıverdi Eçik, E., Senkuytu, E., Uludag, Y., Tomak, L., Kılıç, A., “Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents”, Eur. J. Med. Chem., (2012), 52, 213-220.
  • [9] Bozkurt B., Elmas G., Yakut M., Okumuş A., Çerçi N. A., Zeyrek C. T., Kılıç Z., Açık L., T. Hökelek, “Phosphorus-nitrogen compounds part 59. The syntheses of tetrachloro and tetraamino-2-pyridylmethylspiro(N/N)ethylenediaminocyclotriphosphazenes: Structural characterization, bioactivity, and molecular docking studies”, J. Chin. Chem. Soc., (2021), 69, 310-331.
  • [10] Elmas G., Okumuş A., Kılıç Z., Özbeden P., Açık L., Tunalı B. Ç., Türk M., Çerçi N. A., Hökelek T., “Phosphorus-nitrogen compounds. Part 48. Syntheses of the phosphazenium salts containing 2-pyridyl pendant arm: Structural characterizations, thermal analysis, antimicrobial and cytotoxic activity studies”, Indian J. Chem. Sec. A, (2020), 59A, 533-550.
  • [11] Mucur S. P., Canımkurbey B., Kavak P., Akbaş H., Karadağ A., “Charge carrier performance of phosphazene-based ionic liquids doped hole transport layer in organic light-emitting diodes”, Appl. Phys. A, (2020), 126, 923.
  • [12] Rao, M. R., Bolligarla, R., Butcher, R.J., Ravikanth, M., “Hexa Boron-Dipyrromethene Cyclotriphosphazenes: Synthesis, Crystal Structure, and Photophysical Properties”, Inorg. Chem., (2010), 40, 10606-10616.
  • [13] Çiftçi, G.Y., Şenkuytu, E, İncir, S.E., Tanrıverdi-Eçik, E., Zorlu, Y, Ölçer, Z., Uludağ, Y., “Characterization of paraben substituted cyclotriphosphazenes, and a DNA interaction study with a real-time electrochemical profiling based biosensor”, Microchim Acta, (2017), 184, 2307–2315.
  • [14] Sarıkaya, S.Y., Yeşilot, S., Kılıç, A., Okutan, E., “Novel BODIPY-Cyclotriphosphazene- Fullerene triads: Synthesis, characterization and singlet oxygen generation efficiency”, Dyes and Pigments, (2018), 153, 26–34.
  • [15] Şenkuytu E., Okutan E., Tanrıverdi-Eçik E., “Cyclotriphosphazene-BODIPY Dyads: Synthesis, halogen atom effect on the photophysical and singlet oxygen generation properties” Inorg. Chem Acta., (2020), 502, 119342.
  • [16] Ainscough, E.W., Brodie, A.M., Derwahl, A., Kirk, S., Otter, C.A. “Conformationally Rigid Chelate Rings in Metal Complexes of Pyridyloxy-Substituted 2,2′-Dioxybiphenyl-Cyclotetra- and Cyclotriphosphazene Platforms”, Inorg. Chem., (2007), 46, 9841-9852.
  • [17] Chaplin, A.B., Harrison, J.A., Dyson, P.J. “Revisiting the Electronic Structure of Phosphazenes”, Inorg. Chem., (2005), 44, 8407−8417.
  • [18] Chandrasekhar, V., Thilagar, P., Pandian, B. M., “Cyclophosphazene-based multi-site coordination ligands”, Coord. Chem. Rev., (2007), 251, 1045-1074.
  • [19] Eçik, E.T., Beşli, S., Çiftçi, G.Y., Davies, D.B., Kılıç, A., Yuksel, F. “Stereo-selectivity in a cyclotriphosphazene derivative bearing an exocyclic P–O moiety”. Dalton Trans., (2012), 41, 6715-6725.
  • [20] Ganapathiappan, S., Krishnamurthy, S. S., "Studies of phosphazenes. Part 30. Reactions of hexachlorocyclotriphosphazene with aromatic primary amines: interplay of geminal and non-geminal modes of chlorine replacement", J. Chem. Soc., Dalton Trans., (1987), 579-584.
  • [21] Lee, S. B., Song, S.-C., Jin, J.-I., Sohn, Y. S. " Thermosensitive Cyclotriphosphazenes", J. Am. Chem. Soc., (2000), 122, 8315-8316.
  • [22] Uslu, A., Yeşilot, S., “Chiral configurations in cyclophosphazene chemistry”, Coord. Chem. Rev., (2015), 291, 28-67.
  • [23] Uslu, A., Özcan, E., Dural, S., Yuksel, F., “Synthesis and characterization of cyclotriphosphazene derivatives bearing azole groups”, Polyhedron, (2016), 117, 394-403.
  • [24] Ibisoglu, H., Besli, S., Yuksel, F., Un, I., Kılıç, A., “Investigation of nucleophilic substitution pathway for the reactions of 1,4-benzodioxan-6-amine with chlorocyclophosphazenes”, Inorganica Chimica Acta (2014), 409, 216-226.
  • [25] Bartlett, S.W., Coles, S.J, Davies, D.B., Hursthouse, M.B., Ibisoglu H., et al. “Structural investigations of phosphorus–nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3Cl(6-n)(NHBut)n derivatives” Acta Crystallographica Section B (2006), B62, 321-329.
  • [26] Besli, S., Balcı, C. M., Doğan S., Allen, C.W.,” Regiochemical Control in the Substitution Reactions of Cyclotriphosphazene Derivatives with Secondary Amines” Inorg. Chem., (2018), 57, 19, 12066-12077.
  • [27] Kourounakis A.P., Xanthopoulos D., Tzara A. “Morpholine as a Privileged Structure: A Review on the Medicinal Chemistry and Pharmacological Activity of Morpholine Containing Bioactive Molecules” Med. Res. Rev., (2019), 1-44.
  • [28] Tzara A., Kourounakis A.P., Xanthopoulos D. “Morpholine As a Scaffold in Medicinal Chemistry: An Update on Synthetic Strategies” ChemMedChem, (2020), 15, 392-403.
  • [29] Kumari A., Singh R.K. “Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR)” Bioorganic Chem., (2020), 96, 103578
  • [30] Uslu, A., Güvenaltın, S., “The investigation of structural and thermosensitive properties of new phosphazene derivatives bearing glycol and amino acid” Dalton Trans, (2010), 39, 10685–10691.
  • [31] Tanrıvedi-Eçik, E., İbisoğlu, H., Yenilmez-Çiftçi, G., Demir, G., Erdemir, E., Yuksel, F., “Nucleophilic subtitution reactions of mono-functional nucleophilic reagents with cyclotriphosphazenes containing 2, 2- dioxybiphenyl units”, Turkish Journal of Chemistry, (2020), 44, 87-98.

Synthesis and structure analysis of the novel 4-(2-aminoethyl)morpholine substituted cyclotriphosphazene

Year 2022, Volume: 2 Issue: 1, 40 - 45, 11.11.2022

Abstract

In this study, the reaction of hexachlorocyclotriphosphazene with 4-(2-aminoethyl) morpholine which is a primary amine was carried out in the presence of Trimethylamine in THF. The molecular structure of the final compound was confirmed by mass spectrometry, FT-IR, 31P, 1H and 13C NMR spectroscopies. The possible progress mechanism of the reaction was proposed using the structure analysis of the product formed.

References

  • [1] Wang, L., Yang. Y.X., Shi. X., Mignani S., Caminde, A.M., Majoral, J.P., “Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances”, J.Mater.Chem.B, (2018), 6,884-895.
  • [2] Caminade, A.M., Hameauaand, A., Majorala J.P., “The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers”, Dalton Trans., (2016), 45,1810-1822.
  • [3] Ainscough, E.W., Brodiei A.M., Derwahl, A., Kirk, S., Otter, C.A. “Conformationally Rigid Chelate Rings in Metal Complexes of Pyridyloxy-Substituted 2,2′-Dioxybiphenyl-Cyclotetra- and Cyclotriphosphazene Platforms”, Inorg. Chem., (2007), 46, 9841-9852.
  • [4] Allen, C.W., “Regio- and stereochemical control in substitution reactions of cyclophosphazenes”, Chem Rev., (1991), 91,119-135.
  • [5] Beşli, S., Coles, S.J., Davies, D.B., Kılıç, A., Shaw, R.A., “Bridged cyclophosphazenes resulting from deprotonation reactions of cyclotriphophazenes bearing a P–NH group”, Dalton Trans., (2011), 40, 5307-5315.
  • [6] Kagit, R., Yildirim, M., Ozay, O., Yesilot, S., Ozay, H. “Phosphazene Based Multicentered Naked-Eye Fluorescent Sensor with High Selectivity for Fe3+ Ions”, Inorg. Chem., (2014), 53, 4, 2144-2151.
  • [7] Tümay S. O., A Novel Selective “Turn-On” Fluorescent Chemosensor Based on Thiophene Appended Cyclotriphosphazene Schiff Base for Detection of Ag+ Ions, Chemistry Select, (2021), 6, 39, 10561-10572.
  • [8] Yıldırım, T., Bilgin, K., Yenilmez Çiftçi, G., Tanrıverdi Eçik, E., Senkuytu, E., Uludag, Y., Tomak, L., Kılıç, A., “Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents”, Eur. J. Med. Chem., (2012), 52, 213-220.
  • [9] Bozkurt B., Elmas G., Yakut M., Okumuş A., Çerçi N. A., Zeyrek C. T., Kılıç Z., Açık L., T. Hökelek, “Phosphorus-nitrogen compounds part 59. The syntheses of tetrachloro and tetraamino-2-pyridylmethylspiro(N/N)ethylenediaminocyclotriphosphazenes: Structural characterization, bioactivity, and molecular docking studies”, J. Chin. Chem. Soc., (2021), 69, 310-331.
  • [10] Elmas G., Okumuş A., Kılıç Z., Özbeden P., Açık L., Tunalı B. Ç., Türk M., Çerçi N. A., Hökelek T., “Phosphorus-nitrogen compounds. Part 48. Syntheses of the phosphazenium salts containing 2-pyridyl pendant arm: Structural characterizations, thermal analysis, antimicrobial and cytotoxic activity studies”, Indian J. Chem. Sec. A, (2020), 59A, 533-550.
  • [11] Mucur S. P., Canımkurbey B., Kavak P., Akbaş H., Karadağ A., “Charge carrier performance of phosphazene-based ionic liquids doped hole transport layer in organic light-emitting diodes”, Appl. Phys. A, (2020), 126, 923.
  • [12] Rao, M. R., Bolligarla, R., Butcher, R.J., Ravikanth, M., “Hexa Boron-Dipyrromethene Cyclotriphosphazenes: Synthesis, Crystal Structure, and Photophysical Properties”, Inorg. Chem., (2010), 40, 10606-10616.
  • [13] Çiftçi, G.Y., Şenkuytu, E, İncir, S.E., Tanrıverdi-Eçik, E., Zorlu, Y, Ölçer, Z., Uludağ, Y., “Characterization of paraben substituted cyclotriphosphazenes, and a DNA interaction study with a real-time electrochemical profiling based biosensor”, Microchim Acta, (2017), 184, 2307–2315.
  • [14] Sarıkaya, S.Y., Yeşilot, S., Kılıç, A., Okutan, E., “Novel BODIPY-Cyclotriphosphazene- Fullerene triads: Synthesis, characterization and singlet oxygen generation efficiency”, Dyes and Pigments, (2018), 153, 26–34.
  • [15] Şenkuytu E., Okutan E., Tanrıverdi-Eçik E., “Cyclotriphosphazene-BODIPY Dyads: Synthesis, halogen atom effect on the photophysical and singlet oxygen generation properties” Inorg. Chem Acta., (2020), 502, 119342.
  • [16] Ainscough, E.W., Brodie, A.M., Derwahl, A., Kirk, S., Otter, C.A. “Conformationally Rigid Chelate Rings in Metal Complexes of Pyridyloxy-Substituted 2,2′-Dioxybiphenyl-Cyclotetra- and Cyclotriphosphazene Platforms”, Inorg. Chem., (2007), 46, 9841-9852.
  • [17] Chaplin, A.B., Harrison, J.A., Dyson, P.J. “Revisiting the Electronic Structure of Phosphazenes”, Inorg. Chem., (2005), 44, 8407−8417.
  • [18] Chandrasekhar, V., Thilagar, P., Pandian, B. M., “Cyclophosphazene-based multi-site coordination ligands”, Coord. Chem. Rev., (2007), 251, 1045-1074.
  • [19] Eçik, E.T., Beşli, S., Çiftçi, G.Y., Davies, D.B., Kılıç, A., Yuksel, F. “Stereo-selectivity in a cyclotriphosphazene derivative bearing an exocyclic P–O moiety”. Dalton Trans., (2012), 41, 6715-6725.
  • [20] Ganapathiappan, S., Krishnamurthy, S. S., "Studies of phosphazenes. Part 30. Reactions of hexachlorocyclotriphosphazene with aromatic primary amines: interplay of geminal and non-geminal modes of chlorine replacement", J. Chem. Soc., Dalton Trans., (1987), 579-584.
  • [21] Lee, S. B., Song, S.-C., Jin, J.-I., Sohn, Y. S. " Thermosensitive Cyclotriphosphazenes", J. Am. Chem. Soc., (2000), 122, 8315-8316.
  • [22] Uslu, A., Yeşilot, S., “Chiral configurations in cyclophosphazene chemistry”, Coord. Chem. Rev., (2015), 291, 28-67.
  • [23] Uslu, A., Özcan, E., Dural, S., Yuksel, F., “Synthesis and characterization of cyclotriphosphazene derivatives bearing azole groups”, Polyhedron, (2016), 117, 394-403.
  • [24] Ibisoglu, H., Besli, S., Yuksel, F., Un, I., Kılıç, A., “Investigation of nucleophilic substitution pathway for the reactions of 1,4-benzodioxan-6-amine with chlorocyclophosphazenes”, Inorganica Chimica Acta (2014), 409, 216-226.
  • [25] Bartlett, S.W., Coles, S.J, Davies, D.B., Hursthouse, M.B., Ibisoglu H., et al. “Structural investigations of phosphorus–nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3Cl(6-n)(NHBut)n derivatives” Acta Crystallographica Section B (2006), B62, 321-329.
  • [26] Besli, S., Balcı, C. M., Doğan S., Allen, C.W.,” Regiochemical Control in the Substitution Reactions of Cyclotriphosphazene Derivatives with Secondary Amines” Inorg. Chem., (2018), 57, 19, 12066-12077.
  • [27] Kourounakis A.P., Xanthopoulos D., Tzara A. “Morpholine as a Privileged Structure: A Review on the Medicinal Chemistry and Pharmacological Activity of Morpholine Containing Bioactive Molecules” Med. Res. Rev., (2019), 1-44.
  • [28] Tzara A., Kourounakis A.P., Xanthopoulos D. “Morpholine As a Scaffold in Medicinal Chemistry: An Update on Synthetic Strategies” ChemMedChem, (2020), 15, 392-403.
  • [29] Kumari A., Singh R.K. “Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR)” Bioorganic Chem., (2020), 96, 103578
  • [30] Uslu, A., Güvenaltın, S., “The investigation of structural and thermosensitive properties of new phosphazene derivatives bearing glycol and amino acid” Dalton Trans, (2010), 39, 10685–10691.
  • [31] Tanrıvedi-Eçik, E., İbisoğlu, H., Yenilmez-Çiftçi, G., Demir, G., Erdemir, E., Yuksel, F., “Nucleophilic subtitution reactions of mono-functional nucleophilic reagents with cyclotriphosphazenes containing 2, 2- dioxybiphenyl units”, Turkish Journal of Chemistry, (2020), 44, 87-98.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Elif Yıldız Gül This is me 0000-0001-7422-5665

Merve Bal This is me 0000-0003-0069-0286

Buse Köse This is me 0000-0001-8121-0875

Esra Tanrıverdi Eçik This is me 0000-0003-2953-6872

Publication Date November 11, 2022
Published in Issue Year 2022 Volume: 2 Issue: 1

Cite

APA Yıldız Gül, E., Bal, M., Köse, B., Tanrıverdi Eçik, E. (2022). Yeni 4-(2-aminoetil)morfolin substitüe siklotrifosfazenin sentezi ve yapı analizi. Ata-Kimya Dergisi, 2(1), 40-45.
AMA Yıldız Gül E, Bal M, Köse B, Tanrıverdi Eçik E. Yeni 4-(2-aminoetil)morfolin substitüe siklotrifosfazenin sentezi ve yapı analizi. J Ata-Chem. November 2022;2(1):40-45.
Chicago Yıldız Gül, Elif, Merve Bal, Buse Köse, and Esra Tanrıverdi Eçik. “Yeni 4-(2-aminoetil)morfolin substitüe Siklotrifosfazenin Sentezi Ve Yapı Analizi”. Ata-Kimya Dergisi 2, no. 1 (November 2022): 40-45.
EndNote Yıldız Gül E, Bal M, Köse B, Tanrıverdi Eçik E (November 1, 2022) Yeni 4-(2-aminoetil)morfolin substitüe siklotrifosfazenin sentezi ve yapı analizi. Ata-Kimya Dergisi 2 1 40–45.
IEEE E. Yıldız Gül, M. Bal, B. Köse, and E. Tanrıverdi Eçik, “Yeni 4-(2-aminoetil)morfolin substitüe siklotrifosfazenin sentezi ve yapı analizi”, J Ata-Chem, vol. 2, no. 1, pp. 40–45, 2022.
ISNAD Yıldız Gül, Elif et al. “Yeni 4-(2-aminoetil)morfolin substitüe Siklotrifosfazenin Sentezi Ve Yapı Analizi”. Ata-Kimya Dergisi 2/1 (November 2022), 40-45.
JAMA Yıldız Gül E, Bal M, Köse B, Tanrıverdi Eçik E. Yeni 4-(2-aminoetil)morfolin substitüe siklotrifosfazenin sentezi ve yapı analizi. J Ata-Chem. 2022;2:40–45.
MLA Yıldız Gül, Elif et al. “Yeni 4-(2-aminoetil)morfolin substitüe Siklotrifosfazenin Sentezi Ve Yapı Analizi”. Ata-Kimya Dergisi, vol. 2, no. 1, 2022, pp. 40-45.
Vancouver Yıldız Gül E, Bal M, Köse B, Tanrıverdi Eçik E. Yeni 4-(2-aminoetil)morfolin substitüe siklotrifosfazenin sentezi ve yapı analizi. J Ata-Chem. 2022;2(1):40-5.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724