Research Article
BibTex RIS Cite

The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro)

Year 2025, Volume: 5 Issue: 1, 28 - 37, 21.05.2025
https://doi.org/10.62425/atakim.1662709

Abstract

Although global human mobility has normalized after the COVID-19 pandemic, the disease remains a major threat due to the emergence of new variants, keeping it a key target for drug development. Considerable efforts have been put to understand the disease, to create treatment options, and ultimately to eradicate it. It has been shown that these viruses have the largest genome size among all known RNA viruses, with their genome consisting of an RNA strand enclosed in a protein coat. PLpro is an enzymatic protein which is necessary for the replication process of SARS-CoV-2 and during viral infection, it is essential in helping coronaviruses evade the host's innate immune defense. Consequently, targeting PLpro in antiviral drug development could be an effective approach to inhibit viral replication and interfere with signaling pathways in infected cells. This study aims to provide new potential inhibitor candidates for PLpro (PDB: 7LOS) by molecular modelling study. A total of over 2 million molecules from ZINC15 database have been screened against PLpro by structure- based virtual screening, followed by molecular docking. The docking scores of the top five ligands were in the range of -81.57 kcal/mol and -83.19 kcal/mol, which were much better than that of co-crystallized ligand Y97 (-58.25 kcal/mol). The docking results indicated that ligands interact with the key residues (Asp 164, Arg 166, and Glu167) in the active pocket of PLpro. H02 revealed some physicochemical properties as a potential hit according to the ADME results.

Supporting Institution

TUBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu), TUBİTAK ULAKBIM (TRUBA Resources)

Thanks

The author (AAB) would like to thank TUBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu) due to the postgraduate scholarship in the scope of 2211-C. Authors are also grateful to TUBİTAK ULAKBIM, High Performance and Grid Computing Center, for allowing the use of (TRUBA resources) during the molecular docking process.

References

  • 1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–192.
  • 2. Malik YA. Properties of coronavirus and SARS-CoV-2. Malays. J Pathol. 2020;42:3–11.
  • 3. Palayew A, Norgaard O, Safreed-Harmon K, Andersen TH, Rasmussen LN, Lazarus JV. Pandemic publishing poses a new COVID-19 challenge. Nat Hum Behav. 2020;4:666–669.
  • 4. Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21:2657.
  • 5. Li Q, Guan X, Wu P, et al. Early transmission dynamics in wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382:1199–1207.
  • 6. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594:259−264.
  • 7. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270−273.
  • 8. Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51:482–491.
  • 9. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. J Virol. 2019;16:1–22.
  • 10. Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses: current knowledge. Heliyon. 2020;6:4743-54.
  • 11. Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol. 2020;92:455–459.
  • 12. Gao H, Dai R, Su R. Computer-aided drug design for the pain-like protease (PLpro) inhibitors against SARS-CoV-2. Biomed Pharmacother. 2023;159:114247.
  • 13. Kim H, Hauner D, Laureanti JA, Agustin K, Raugei S, Kumar N. Mechanistic investigation of SARS-CoV-2 main protease to accelerate design of covalent inhibitors. Sci Rep. 2022;12:21037.
  • 14. Malone B, Urakova N, Snijder E, Campbell EA. Structure and function of the coronavirus replication-transcription complex. Nature Reviews Microbiol. 2022;20(3):181–194.
  • 15. Mielech AM, Kilianski A, Baez-Santos, YM, et al. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities, Virology. 2014;450(451):64–70.
  • 16. Lindner HA, Lytvyn V, Ql H, et al., Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007;466(1):8–14.
  • 17. Barretto N, Jukneliene D, Ratia K, et al. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol. 2005;79(24):15189–15198.
  • 18. Zhou P, Yang XL, Wang XG, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • 19. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N Engl J Med. 2022;386:509−520.
  • 20. Eng H, Dantonio AL, Kadar EP, et al. Disposition of Nirmatrelvir, an Orally Bioavailable Inhibitor of SARS-CoV-2 3C-Like Protease, across Animals and Humans. Drug Metab Dispos. 2022;50:576−590.
  • 21. Xia Z, Sacco M, Hu Y, et al. Rational Design of Hybrid SARSCoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. ACS Pharmacol Transl Sci. 2021;4:1408−1421.
  • 22. Ma C, Sacco MD, Hurst B, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30: 678−692.
  • 23. Ferreira GM, Pillaiyar T, Hirata MH, Poso A, Kronenberger T. Inhibitors induced conformational changes in SARS-COV-2 papain-like protease. Sci Rep. 2022;12:11585.
  • 24. Thangavel N, Albratty M. Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for identification of marine natural products as SARS-CoV-2 papain-like protease inhibitors. Arabian J Chem. 2022;15:1-12
  • 25. Jadhav P, Huang B, Osipiuk J, et al. Structure-based design of SARS-CoV-2 papain-like protease inhibitors. Eur J Med Chem. 2024;264:116011.
  • 26. Dhananjay J, Selvaraj A, Vyshnavi T, et al. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases. Eur J Pharma. 2021;901:174082,
  • 27. Deepesh KP, Harish KM, Elizabeth S. Exploring the binding dynamics of covalent inhibitors within active site of PLpro in SARS-CoV-2. Comp Bio Chem. 2024;12:108132.
  • 28. Richards FM. Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng. 1977;6:151–176. 29. Connolly ML. Solvent-accessible surfaces of proteins and nucleic acids. Dissertation. University of California, Berkeley; 1981.
  • 30. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161(2):269–288.
  • 31. Ashouri M, Firouzi R. Virtual Screening and Binding Mode Analysis of Selected FDA Approved Drugs Against PLpro Target: An Effort to Identify Therapeutics to Combat COVID-19. Med Discoveries. 2023;2(9):1070.
  • 32. Garland O, Ton AT, Moradi S, et al. Large-scale virtual screening for the discovery of SARS-CoV-2 papain-like protease (PLpro) non-covalent inhibitors. J Chem Inform Model. 2023;63(7):2158–2169.

SARS-COV-2 Papain Benzeri Proteaz (PLpro) İçin Yeni İnhibitörlerin Sanal Tarama ve Moleküler Yerleştirme Çalışması

Year 2025, Volume: 5 Issue: 1, 28 - 37, 21.05.2025
https://doi.org/10.62425/atakim.1662709

Abstract

COVID-19 salgını sonrasında küresel insan hareketliliği normale dönmüş olsa da, hastalık yeni varyantların ortaya çıkması nedeniyle büyük bir tehdit olmaya devam ediyor. Bu sebeple, hastalığı anlamak, tedavi seçenekleri oluşturmak ve nihayetinde ortadan kaldırmak için önemli çabalar sarf edilmektedir. Bu virüslerin, bilinen tüm RNA virüsleri arasında en büyük genom boyutuna sahip olduğu ve genomlarının bir protein kılıfı içinde bulunan bir RNA ipliğinden oluştuğu kanıtlanmıştır. PLpro, SARS-CoV-2'nin replikasyon süreci için gerekli olan enzimatik bir proteinidir ve viral enfeksiyon sırasında koronavirüslerin konağın doğuştan gelen bağışıklık savunmasından kaçmasına yardımcı olmakta görevlidir. Sonuç olarak, antiviral ilaç geliştirmede PLpro'yu hedeflemek, viral replikasyonu inhibe etmek ve enfekte hücrelerdeki sinyal yollarına müdahale etmek için etkili bir yaklaşım olabilir. Bu çalışma, moleküler modelleme çalışmasıyla PLpro (PDB: 7LOS) için yeni potansiyel inhibitör adayları sağlamayı amaçlamaktadır. ZINC15 veritabanından 2 milyondan fazla molekül, yapı tabanlı sanal tarama ve ardından moleküler yerleştirme ile PLpro'ya karşı tarandı. İlk beş ligandın yerleştirme puanları, eş-kristalize ligand Y97'nin (-58,25 kcal/mol) puanlarından çok daha iyi olan -81,57 kcal/mol ve -83,19 kcal/mol aralığındaydı. Yerleştirme sonuçları, ligandların PLpro'nun aktif cebindeki anahtar kalıntılarla (Asp 164, Arg 166 ve Glu167) etkileşime girdiğini gösterdi. ADME sonuçlarına göre H02, potansiyel bir hedef olarak bazı fizikokimyasal özellikler ortaya koydu.

References

  • 1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–192.
  • 2. Malik YA. Properties of coronavirus and SARS-CoV-2. Malays. J Pathol. 2020;42:3–11.
  • 3. Palayew A, Norgaard O, Safreed-Harmon K, Andersen TH, Rasmussen LN, Lazarus JV. Pandemic publishing poses a new COVID-19 challenge. Nat Hum Behav. 2020;4:666–669.
  • 4. Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21:2657.
  • 5. Li Q, Guan X, Wu P, et al. Early transmission dynamics in wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382:1199–1207.
  • 6. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594:259−264.
  • 7. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270−273.
  • 8. Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51:482–491.
  • 9. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. J Virol. 2019;16:1–22.
  • 10. Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses: current knowledge. Heliyon. 2020;6:4743-54.
  • 11. Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol. 2020;92:455–459.
  • 12. Gao H, Dai R, Su R. Computer-aided drug design for the pain-like protease (PLpro) inhibitors against SARS-CoV-2. Biomed Pharmacother. 2023;159:114247.
  • 13. Kim H, Hauner D, Laureanti JA, Agustin K, Raugei S, Kumar N. Mechanistic investigation of SARS-CoV-2 main protease to accelerate design of covalent inhibitors. Sci Rep. 2022;12:21037.
  • 14. Malone B, Urakova N, Snijder E, Campbell EA. Structure and function of the coronavirus replication-transcription complex. Nature Reviews Microbiol. 2022;20(3):181–194.
  • 15. Mielech AM, Kilianski A, Baez-Santos, YM, et al. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities, Virology. 2014;450(451):64–70.
  • 16. Lindner HA, Lytvyn V, Ql H, et al., Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007;466(1):8–14.
  • 17. Barretto N, Jukneliene D, Ratia K, et al. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol. 2005;79(24):15189–15198.
  • 18. Zhou P, Yang XL, Wang XG, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • 19. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N Engl J Med. 2022;386:509−520.
  • 20. Eng H, Dantonio AL, Kadar EP, et al. Disposition of Nirmatrelvir, an Orally Bioavailable Inhibitor of SARS-CoV-2 3C-Like Protease, across Animals and Humans. Drug Metab Dispos. 2022;50:576−590.
  • 21. Xia Z, Sacco M, Hu Y, et al. Rational Design of Hybrid SARSCoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. ACS Pharmacol Transl Sci. 2021;4:1408−1421.
  • 22. Ma C, Sacco MD, Hurst B, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30: 678−692.
  • 23. Ferreira GM, Pillaiyar T, Hirata MH, Poso A, Kronenberger T. Inhibitors induced conformational changes in SARS-COV-2 papain-like protease. Sci Rep. 2022;12:11585.
  • 24. Thangavel N, Albratty M. Pharmacophore model-aided virtual screening combined with comparative molecular docking and molecular dynamics for identification of marine natural products as SARS-CoV-2 papain-like protease inhibitors. Arabian J Chem. 2022;15:1-12
  • 25. Jadhav P, Huang B, Osipiuk J, et al. Structure-based design of SARS-CoV-2 papain-like protease inhibitors. Eur J Med Chem. 2024;264:116011.
  • 26. Dhananjay J, Selvaraj A, Vyshnavi T, et al. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases. Eur J Pharma. 2021;901:174082,
  • 27. Deepesh KP, Harish KM, Elizabeth S. Exploring the binding dynamics of covalent inhibitors within active site of PLpro in SARS-CoV-2. Comp Bio Chem. 2024;12:108132.
  • 28. Richards FM. Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng. 1977;6:151–176. 29. Connolly ML. Solvent-accessible surfaces of proteins and nucleic acids. Dissertation. University of California, Berkeley; 1981.
  • 30. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161(2):269–288.
  • 31. Ashouri M, Firouzi R. Virtual Screening and Binding Mode Analysis of Selected FDA Approved Drugs Against PLpro Target: An Effort to Identify Therapeutics to Combat COVID-19. Med Discoveries. 2023;2(9):1070.
  • 32. Garland O, Ton AT, Moradi S, et al. Large-scale virtual screening for the discovery of SARS-CoV-2 papain-like protease (PLpro) non-covalent inhibitors. J Chem Inform Model. 2023;63(7):2158–2169.
There are 31 citations in total.

Details

Primary Language English
Subjects Computational Chemistry
Journal Section Research Articles
Authors

Alev Arslantürk Bingül 0000-0003-0744-0968

Necmettin Pirinççioğlu 0000-0001-9805-9745

Publication Date May 21, 2025
Submission Date March 21, 2025
Acceptance Date May 3, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Arslantürk Bingül, A., & Pirinççioğlu, N. (2025). The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro). Ata-Kimya Dergisi, 5(1), 28-37. https://doi.org/10.62425/atakim.1662709
AMA Arslantürk Bingül A, Pirinççioğlu N. The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro). J Ata-Chem. May 2025;5(1):28-37. doi:10.62425/atakim.1662709
Chicago Arslantürk Bingül, Alev, and Necmettin Pirinççioğlu. “The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro)”. Ata-Kimya Dergisi 5, no. 1 (May 2025): 28-37. https://doi.org/10.62425/atakim.1662709.
EndNote Arslantürk Bingül A, Pirinççioğlu N (May 1, 2025) The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro). Ata-Kimya Dergisi 5 1 28–37.
IEEE A. Arslantürk Bingül and N. Pirinççioğlu, “The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro)”, J Ata-Chem, vol. 5, no. 1, pp. 28–37, 2025, doi: 10.62425/atakim.1662709.
ISNAD Arslantürk Bingül, Alev - Pirinççioğlu, Necmettin. “The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro)”. Ata-Kimya Dergisi 5/1 (May2025), 28-37. https://doi.org/10.62425/atakim.1662709.
JAMA Arslantürk Bingül A, Pirinççioğlu N. The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro). J Ata-Chem. 2025;5:28–37.
MLA Arslantürk Bingül, Alev and Necmettin Pirinççioğlu. “The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro)”. Ata-Kimya Dergisi, vol. 5, no. 1, 2025, pp. 28-37, doi:10.62425/atakim.1662709.
Vancouver Arslantürk Bingül A, Pirinççioğlu N. The Virtual Screening and Molecular Docking Study of New Inhibitors for SARS-COV-2 Papain-Like Protease (PLpro). J Ata-Chem. 2025;5(1):28-37.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724