Research Article
BibTex RIS Cite

Yeni Bir İndolin-2-on Temelli Schiff Bazı Bileşiğin Sentezi, Spektroskopik Karakterizasyonları ve In Silico ADMET Analizi

Year 2025, Volume: 5 Issue: 2, 45 - 53, 28.11.2025
https://doi.org/10.62425/atakim.1784881

Abstract

Bu çalışmada yeni bir propargil sübstitüenti taşıyan indolin-2-on temelli Schiff bazı başarıyla sentezlenmiştir. Bileşik, FT-IR, 1H-NMR, 13C-NMR ve UV-Vis spektroskopisi dâhil olmak üzere çeşitli spektroskopik tekniklerle kapsamlı biçimde karakterize edilmiş ve hedef molekülün yapısı doğrulanmıştır. Kütle spektrometrisi analizi hedef bileşiğin başarılı bir şekilde hazırlandığını desteklemiştir. Sentezlenen bileşiğin ilaç-benzeri özelliklerini değerlendirmek amacıyla In silico farmakokinetik ve ADMET analizleri gerçekleştirilmiştir. Sonuçlar, bileşiğin yüksek gastrointestinal emilim ve iyi biyoyararlanım gösterdiğini ve Lipinski’nin beş kuralına uymayan herhangi bir durum olmadığını ortaya koymuştur. Ayrıca, bileşik uygun sentezlenebilirlik ve düşük toksisite riski profilleri sergilemiştir. Çok yönlü bir farmakoforik motif olan propargil grubunun varlığı, biyolojik aktiviteyi ve moleküler etkileşimleri artırmak amacıyla ek yapısal modifikasyonlara olanak sağlamaktadır. Bu bulgular, elde edilen bileşiğin gelecekteki ilaç geliştirme çalışmaları ve biyolojik aktivite optimizasyonu için umut verici bir potansiyele sahip olduğunu göstermektedir.

References

  • 1. Altamimi M, Syed SA, Tuzun B, Alhazani MR, Alnemer O, Bari A. Synthesis, biological evaluation, and molecular docking of isatin hybrids as anti-cancer and anti-microbial agents. J Enzyme Inhib Med Chem. 2024;39(1):2288548.
  • 2. Zhou Y, Ju Y, Yang Y, et al. Discovery of hybrids of indolin-2-one and nitroimidazole as potent inhibitors against drug-resistant bacteria. J Antibiot. 2018;71(10):887-897.
  • 3. Fawazy NG, Panda SS, Mostafa A, et al. Development of spiro-3-indolin-2-one containing compounds of antiproliferative and anti-SARS-CoV-2 properties. Sci Rep. 2022;12(1):13880.
  • 4. Göktürk T, Güp R, Zengin T, et al. Effects of electron donating and withdrawing substituents on crystal structures, cytotoxicity and in silico DNA interactions of isatinoxime Schiff base ligands. Res Chem Intermed. 2025;51(1):433-457.
  • 5. Pradeep SD, Gopalakrishnan AK, Manoharan DK, Soumya RS, Gopalan RK, Mohanan PV. Isatin derived novel Schiff bases: An efficient pharmacophore for versatile biological applications. J Mol Struct. 2023;1271:134121.
  • 6. Li N, Binder WH. Click-chemistry for nanoparticle-modification. J Mater Chem. 2011;21(42):16717-16734. 7. Grée D, Grée R. Effect of fluorine or oxygen atom(s) in propargylic position on the reactivity in click chemistry. Tetrahedron Lett. 2010;51(17):2218-2221.
  • 8. Alshams MA, Nafie MS, Ashour HF, Yassen AS. A comprehensive review and recent advances on isatin-based compounds as a versatile framework for anticancer therapeutics (2020–2025). RSC Adv. 2025;15(39):32188-32218.
  • 9. Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem. 2021;111:104869.
  • 10. Al-Amiery AA, Betti N, Isahak WNRW, Al-Azzawi WK, Wan Nik WMN. Exploring the effectiveness of isatin–schiff base as an environmentally friendly corrosion inhibitor for mild steel in hydrochloric acid. Lubricants. 2023;11(5):211.
  • 11. Oguntoye OS, Hamid AA, Iloka GS, Bodede SO, Owalude SO, Tella AC. Synthesis and spectroscopic analysis of Schiff bases of Imesatin and isatin derivatives. J Appl Sci Environ Manage. 2016;20(3):653-657.
  • 12. Safin DA, Mitoraj MP, Babashkina MG, et al. Alternative route toward nitrones: Experimental and theoretical findings. J Org Chem. 2017;82(3):1666-1675.
  • 13. Mohite B, Chabhadiya BK, Kapadiya KM, Khedkar VM, Jauhari S. Design and synthesis of isatin-1,2,3-triazole hybrids as anticancer agents. ChemistrySelect. 2024;9:e202404601.
  • 14. Preeti A, Raza R, Sharma AK, Sharma V, Kumar V. Design, synthesis, anti-proliferative, and apoptotic assessment of spirocyclopropyl oxindole-isatin hybrids on triple-negative breast cancer. Chem Biodivers. 2024;e202402910.
  • 15. Göktürk T, Çetin ES, Pekel H, et al. Role of acetate/benzoate substituents on the anticancer activities, in vitro and in silico DNA/BSA interactions of new 1,4-disubstituted 1,2,3-triazole derivatives. J Mol Struct. 2025;1338:142273.
  • 16. Gokturk T, Sakallı Çetin E, Hokelek T, et al. Synthesis, structural investigations, DNA/BSA interactions, molecular docking studies, and anticancer activity of a new 1,4-disubstituted 1,2,3-triazole derivative. ACS Omega. 2023;8(35):31839-31856.
  • 17. Uyanır E, Šoral M, Seyhan G, et al. Alpha‐Glucosidase Inhibitory Effects of Flavonoids, Phenolic Acids and Iridoids Isolated From Vinca Soneri: In Vitro and In Silico Perspectives. Chem Biodivers. 2024;21:e202401386.
  • 18. Göktürk T, Topkaya C, Zengin T, et al. Nickel(II) complex of p-tolylglyoxime: structural investigations, ADMET predictions, in-silico DNA and HSA binding assessments. J Coord Chem. 2025;78(10):1160-1179.
  • 19. Özbağcı Dİ. Interaction of two key biological targets-trypsin and DNA—with phenolic phytochemicals: Insights from molecular docking and radical scavenging potential. Arch Biochem Biophys. 2025;110567.
  • 20. Sarikavakli N, Genc O, Çalişkan ŞG, Erol F. Molecular docking, HOMO-LUMO and quantum chemical computation analysis of anti-glyoximehydrazone derivatives containing pyrazolone moiety and their transition metal complexes. J Indian Chem Soc. 2023;100(5):100981.
  • 21. Saltan GM, Gümüştaş S, Saltan F. 1-H-Indol-2,3-dione-based Schiff base derivatives: synthesis, optoelectronic properties, and DFT-theoretical insights for photovoltaic applications. Opt Mater. 2025;117446.
  • 22. Güngör SA, Tümer M, Köse M, Erkan S. Benzaldehyde derivatives with functional propargyl groups as α-glucosidase inhibitors. J Mol Struct. 2020;1206:127780.
  • 23. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.
  • 24. Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024;52(W1):W513-W520.
  • 25. Venkatesh G, Vennila P, Kaya S, et al. Synthesis and spectroscopic characterization of Schiff base metal complexes, biological activity, and molecular docking studies. ACS Omega. 2024;9(7):8123-8138.
  • 26. Bal M, Köse A. Schiff bases containing 1,2,3-triazole group and phenanthroline: synthesis, characterization, and investigation of DNA binding properties. J Photochem Photobiol A Chem. 2024;448:115320.
  • 27. Zhang NN, Sa RJ, Sun SS, et al. Photoresponsive triazole-based donor-acceptor molecules: color change and heat/air-stable diradicals. J Mater Chem C. 2019;7:3100-3104.
  • 28. Bal M, Tümer M, Köse M. Investigation of chemosensing and color properties of Schiff base compounds containing a 1,2,3-triazole group. J Fluoresc. 2022;32(6):2237-2256.
  • 29. Romero EL, D’Vries RF, Zuluaga F, Chaur MN. Multiple dynamics of hydrazone based compounds. J Braz Chem Soc. 2015;26(6):1265-1273.
  • 30. Khan KM, Khan M, Ali M, et al. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorg Med Chem. 2009;17(22):7795-7801.
  • 31. Kulaksizoğlu S, Gökçe C, Gup R. Asymmetric bis(bidentate) azine ligand and transition metal complexes: synthesis, characterization, DNA-binding and cleavage studies and extraction properties for selected metals and dichromate anions. J Chil Chem Soc. 2012;57(3):1213-1218.
  • 32. Sadavarte NV, Patil SS, Avadhani CV, Wadgaonkar PP. New organosoluble aromatic poly(esterimide)s containing pendent pentadecyl chains: synthesis and characterization. High Perform Polym. 2013;25(7):735-743.
  • 33. Şahin İ, Çeşme M, Özgeriş FB, Güngör Ö, Tümer F. Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: biological evaluation, in silico molecular docking and ADME screening. J Mol Struct. 2022;1247:131344.
  • 34. Daina A, Zoete V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11(11):1117-1121.
  • 35. Lee J, Beers JL, Geffert RM, Jackson KD. A review of CYP-mediated drug interactions: mechanisms and in vitro drug-drug interaction assessment. Biomolecules. 2024;14(1):99.
  • 36. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663-669.
  • 37. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4-17.
  • 38. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55-68.
  • 39. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-2623.
  • 40. Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43(19):3867-3877.
  • 41. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44(12):1841-1846.
  • 42. Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci. 2004;44(3):1000-1005.
  • 43. Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. J Chem Inf Model. 2012;52(11):2950-2957.

Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-one-Based Schiff Base Compound

Year 2025, Volume: 5 Issue: 2, 45 - 53, 28.11.2025
https://doi.org/10.62425/atakim.1784881

Abstract

In this study, a new indolin-2-one-based Schiff base bearing a propargyl substituent was successfully synthesized. The compound was thoroughly characterized by a combination of spectroscopic techniques including FT-IR, 1H-NMR,13C-NMR and UV-Vis spectrometry, which confirmed the target molecular framework. Mass spectrometry analysis further validated the molecular composition, supporting the successful preparation of the target compound. In silico pharmacokinetic and ADMET analyses were performed to evaluate the drug-likeness properties of the synthesized compound. The results demonstrated high gastrointestinal absorption and bioavailability score of 0.55, with no predicted violations of Lipinski’s rule of five. Furthermore, the compound exhibited favorable synthetic accessibility and low toxicity risks. The presence of a propargyl group, which is a versatile pharmacophoric motif, suggests additional opportunities for further structural modifications to enhance biological activity and molecular interactions. These findings highlight the potential of the obtained compound as promising scaffold for future drug development and bioactivity optimization.

References

  • 1. Altamimi M, Syed SA, Tuzun B, Alhazani MR, Alnemer O, Bari A. Synthesis, biological evaluation, and molecular docking of isatin hybrids as anti-cancer and anti-microbial agents. J Enzyme Inhib Med Chem. 2024;39(1):2288548.
  • 2. Zhou Y, Ju Y, Yang Y, et al. Discovery of hybrids of indolin-2-one and nitroimidazole as potent inhibitors against drug-resistant bacteria. J Antibiot. 2018;71(10):887-897.
  • 3. Fawazy NG, Panda SS, Mostafa A, et al. Development of spiro-3-indolin-2-one containing compounds of antiproliferative and anti-SARS-CoV-2 properties. Sci Rep. 2022;12(1):13880.
  • 4. Göktürk T, Güp R, Zengin T, et al. Effects of electron donating and withdrawing substituents on crystal structures, cytotoxicity and in silico DNA interactions of isatinoxime Schiff base ligands. Res Chem Intermed. 2025;51(1):433-457.
  • 5. Pradeep SD, Gopalakrishnan AK, Manoharan DK, Soumya RS, Gopalan RK, Mohanan PV. Isatin derived novel Schiff bases: An efficient pharmacophore for versatile biological applications. J Mol Struct. 2023;1271:134121.
  • 6. Li N, Binder WH. Click-chemistry for nanoparticle-modification. J Mater Chem. 2011;21(42):16717-16734. 7. Grée D, Grée R. Effect of fluorine or oxygen atom(s) in propargylic position on the reactivity in click chemistry. Tetrahedron Lett. 2010;51(17):2218-2221.
  • 8. Alshams MA, Nafie MS, Ashour HF, Yassen AS. A comprehensive review and recent advances on isatin-based compounds as a versatile framework for anticancer therapeutics (2020–2025). RSC Adv. 2025;15(39):32188-32218.
  • 9. Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem. 2021;111:104869.
  • 10. Al-Amiery AA, Betti N, Isahak WNRW, Al-Azzawi WK, Wan Nik WMN. Exploring the effectiveness of isatin–schiff base as an environmentally friendly corrosion inhibitor for mild steel in hydrochloric acid. Lubricants. 2023;11(5):211.
  • 11. Oguntoye OS, Hamid AA, Iloka GS, Bodede SO, Owalude SO, Tella AC. Synthesis and spectroscopic analysis of Schiff bases of Imesatin and isatin derivatives. J Appl Sci Environ Manage. 2016;20(3):653-657.
  • 12. Safin DA, Mitoraj MP, Babashkina MG, et al. Alternative route toward nitrones: Experimental and theoretical findings. J Org Chem. 2017;82(3):1666-1675.
  • 13. Mohite B, Chabhadiya BK, Kapadiya KM, Khedkar VM, Jauhari S. Design and synthesis of isatin-1,2,3-triazole hybrids as anticancer agents. ChemistrySelect. 2024;9:e202404601.
  • 14. Preeti A, Raza R, Sharma AK, Sharma V, Kumar V. Design, synthesis, anti-proliferative, and apoptotic assessment of spirocyclopropyl oxindole-isatin hybrids on triple-negative breast cancer. Chem Biodivers. 2024;e202402910.
  • 15. Göktürk T, Çetin ES, Pekel H, et al. Role of acetate/benzoate substituents on the anticancer activities, in vitro and in silico DNA/BSA interactions of new 1,4-disubstituted 1,2,3-triazole derivatives. J Mol Struct. 2025;1338:142273.
  • 16. Gokturk T, Sakallı Çetin E, Hokelek T, et al. Synthesis, structural investigations, DNA/BSA interactions, molecular docking studies, and anticancer activity of a new 1,4-disubstituted 1,2,3-triazole derivative. ACS Omega. 2023;8(35):31839-31856.
  • 17. Uyanır E, Šoral M, Seyhan G, et al. Alpha‐Glucosidase Inhibitory Effects of Flavonoids, Phenolic Acids and Iridoids Isolated From Vinca Soneri: In Vitro and In Silico Perspectives. Chem Biodivers. 2024;21:e202401386.
  • 18. Göktürk T, Topkaya C, Zengin T, et al. Nickel(II) complex of p-tolylglyoxime: structural investigations, ADMET predictions, in-silico DNA and HSA binding assessments. J Coord Chem. 2025;78(10):1160-1179.
  • 19. Özbağcı Dİ. Interaction of two key biological targets-trypsin and DNA—with phenolic phytochemicals: Insights from molecular docking and radical scavenging potential. Arch Biochem Biophys. 2025;110567.
  • 20. Sarikavakli N, Genc O, Çalişkan ŞG, Erol F. Molecular docking, HOMO-LUMO and quantum chemical computation analysis of anti-glyoximehydrazone derivatives containing pyrazolone moiety and their transition metal complexes. J Indian Chem Soc. 2023;100(5):100981.
  • 21. Saltan GM, Gümüştaş S, Saltan F. 1-H-Indol-2,3-dione-based Schiff base derivatives: synthesis, optoelectronic properties, and DFT-theoretical insights for photovoltaic applications. Opt Mater. 2025;117446.
  • 22. Güngör SA, Tümer M, Köse M, Erkan S. Benzaldehyde derivatives with functional propargyl groups as α-glucosidase inhibitors. J Mol Struct. 2020;1206:127780.
  • 23. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.
  • 24. Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024;52(W1):W513-W520.
  • 25. Venkatesh G, Vennila P, Kaya S, et al. Synthesis and spectroscopic characterization of Schiff base metal complexes, biological activity, and molecular docking studies. ACS Omega. 2024;9(7):8123-8138.
  • 26. Bal M, Köse A. Schiff bases containing 1,2,3-triazole group and phenanthroline: synthesis, characterization, and investigation of DNA binding properties. J Photochem Photobiol A Chem. 2024;448:115320.
  • 27. Zhang NN, Sa RJ, Sun SS, et al. Photoresponsive triazole-based donor-acceptor molecules: color change and heat/air-stable diradicals. J Mater Chem C. 2019;7:3100-3104.
  • 28. Bal M, Tümer M, Köse M. Investigation of chemosensing and color properties of Schiff base compounds containing a 1,2,3-triazole group. J Fluoresc. 2022;32(6):2237-2256.
  • 29. Romero EL, D’Vries RF, Zuluaga F, Chaur MN. Multiple dynamics of hydrazone based compounds. J Braz Chem Soc. 2015;26(6):1265-1273.
  • 30. Khan KM, Khan M, Ali M, et al. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorg Med Chem. 2009;17(22):7795-7801.
  • 31. Kulaksizoğlu S, Gökçe C, Gup R. Asymmetric bis(bidentate) azine ligand and transition metal complexes: synthesis, characterization, DNA-binding and cleavage studies and extraction properties for selected metals and dichromate anions. J Chil Chem Soc. 2012;57(3):1213-1218.
  • 32. Sadavarte NV, Patil SS, Avadhani CV, Wadgaonkar PP. New organosoluble aromatic poly(esterimide)s containing pendent pentadecyl chains: synthesis and characterization. High Perform Polym. 2013;25(7):735-743.
  • 33. Şahin İ, Çeşme M, Özgeriş FB, Güngör Ö, Tümer F. Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: biological evaluation, in silico molecular docking and ADME screening. J Mol Struct. 2022;1247:131344.
  • 34. Daina A, Zoete V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11(11):1117-1121.
  • 35. Lee J, Beers JL, Geffert RM, Jackson KD. A review of CYP-mediated drug interactions: mechanisms and in vitro drug-drug interaction assessment. Biomolecules. 2024;14(1):99.
  • 36. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663-669.
  • 37. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4-17.
  • 38. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55-68.
  • 39. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-2623.
  • 40. Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43(19):3867-3877.
  • 41. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44(12):1841-1846.
  • 42. Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci. 2004;44(3):1000-1005.
  • 43. Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. J Chem Inf Model. 2012;52(11):2950-2957.
There are 42 citations in total.

Details

Primary Language English
Subjects Organic Chemistry (Other), Biologically Active Molecules
Journal Section Research Article
Authors

Tolga Göktürk 0000-0002-7234-8079

Publication Date November 28, 2025
Submission Date September 16, 2025
Acceptance Date November 3, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Göktürk, T. (2025). Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-one-Based Schiff Base Compound. Ata-Kimya Dergisi, 5(2), 45-53. https://doi.org/10.62425/atakim.1784881
AMA Göktürk T. Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-one-Based Schiff Base Compound. J Ata-Chem. November 2025;5(2):45-53. doi:10.62425/atakim.1784881
Chicago Göktürk, Tolga. “Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-One-Based Schiff Base Compound”. Ata-Kimya Dergisi 5, no. 2 (November 2025): 45-53. https://doi.org/10.62425/atakim.1784881.
EndNote Göktürk T (November 1, 2025) Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-one-Based Schiff Base Compound. Ata-Kimya Dergisi 5 2 45–53.
IEEE T. Göktürk, “Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-one-Based Schiff Base Compound”, J Ata-Chem, vol. 5, no. 2, pp. 45–53, 2025, doi: 10.62425/atakim.1784881.
ISNAD Göktürk, Tolga. “Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-One-Based Schiff Base Compound”. Ata-Kimya Dergisi 5/2 (November2025), 45-53. https://doi.org/10.62425/atakim.1784881.
JAMA Göktürk T. Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-one-Based Schiff Base Compound. J Ata-Chem. 2025;5:45–53.
MLA Göktürk, Tolga. “Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-One-Based Schiff Base Compound”. Ata-Kimya Dergisi, vol. 5, no. 2, 2025, pp. 45-53, doi:10.62425/atakim.1784881.
Vancouver Göktürk T. Synthesis, Spectroscopic Characterizations and In Silico ADMET Analysis of a New Indolin-2-one-Based Schiff Base Compound. J Ata-Chem. 2025;5(2):45-53.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

30724