Review
BibTex RIS Cite

Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar

Year 2017, Volume: 12 Issue: 3, 327 - 337, 20.12.2017
https://doi.org/10.17094/ataunivbd.368903

Abstract

Ruminantlarda ructus yoluyla salınan metan bir
taraftan yemlerle alınan enerjinin kaybına neden olduğu için ekonomik kayba,
diğer taraftan sera gazı etkisine sahip olduğu için küresel ısınmaya katkı yapan
ekolojik bir probe sebep olmaktadır. Küresel ısınmanın yaklaşık %18’lik
kısmının ruminatlardan kaynaklandığı tahmin edilmektedir. Bu yüzden, ruminantlardan
salınan metan gazının azaltılması ekonomik ve ekolojik açıdan faydalı
olacaktır. Bu derlemede ruminatlarda metan gazı salınımın azaltılmasına yönelik
olarak yapılmış çalışmalar üzerinde durulmuştur.

References

  • 1. Hegarty RS., Klieve AV., 1999. Opportunities for biological control of ruminal methanogenesis. Aust J Agric Res, 50, 1315-1320.
  • 2. Moss A., Jouany JP., Newbold J., 2000. Methane production by ruminants: Its contribution to global warming. Ann Zootech, 49, 231-253. 3. Görgülü M., Darcan NK., Karakök SG., 2009. Hayvancılık ve Küresel Isınma. V. Ulusal Hayvan Besleme Kongresi 30 Eylül-3 Ekim 2009 Çorlu, Tekirdağ.
  • 4. Johnson KA., Johnson DE., 1995. Methane emisions from cattle. J Anim Sci, 73, 2483-2492.
  • 5. McAllister TA., Okine EK., Mathison GW., Cheng KJ., 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can J Anim Sci, 76, 231-243.
  • 6. Türkiye Cumhuriyeti Resmi Gazetesi, 13.05.2009 tarih ve 27227 sayılı nüshası.
  • 7. IPCC., 2001. Intergovernmental Panel on Climate Change. Climate Change: Synthesis report. A contribution of Working Groups I, II and III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, UK.
  • 8. Akçil E., Denek N., 2013. Farklı seviyelerde okaliptus (Eucalyptus camaldulensis) yaprağının bazı kaba yemlerin in vitro metan gazı üretimi üzerine etkisinin araştırılması. Harran Üniv Vet Fak Derg, 2, 75-81.
  • 9. Dohme F., Machmüller A., Wasserfallen A., Kreuzer M., 2000. Comparative efficiency of various fats rich in medium chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can J Anim Sci, 80, 473-482.
  • 10. McGinn SM., Beauchemin KA., Coates T., Colombatto D., 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci, 82, 3346-3356.
  • 11. Giger-Reverdin S., Morand-Fehr P., Tan G., 2003. Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livest Prod Sci, 82, 73-79.
  • 12. Martin C., Morgavi DP., Doreau M., Jouany JP., 2006. Comment reduire la production de methane chez les ruminants? Fourrages, 187, 283-300.
  • 13. Blaxter KL., Czerkawsky J., 1966. Modification of the methane production of the sheep by supplementation of its diet. J Sci Food Agric, 17, 417-421.
  • 14. Soliva CR., Meile L., Cieslak A., Kreuzer M., Machmüller A., 2004. Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br J Nutr, 92, 689-700.
  • 15. Odongo NE., Or-Rashid MM., Kebreab E., France J., McBride BW., 2007. Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J Dairy Sci, 90, 1851-1858.
  • 16. Martin C., Rouel J., Jouany JP., Doreau M., Chilliard Y., 2008. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J Anim Sci, 86, 2642-2650.
  • 17. Johnson KA., Kincaid RL., Westberg HH., Gasking CT., Lamb BK., Cronth JD., 2002. The effect of oilseeds in diets of lactating cows on milk production and methane emissions. J Anim Sci, 85, 1509-1515.
  • 18. Kim ET., Park CG., Lim DH., Kwon EG., Ki KS., Kim SB., Moon YH., Shin NH., Lee SS., 2014. Effects of coconut materials on in vitro ruminal methanogenesis and fermentation characteristics. Asian-Aust J Anim Sci, 27, 1721-1725.
  • 19. Blanco C., Bodas R., Prieto N., Moran L., Andres S., Lopez S., Giraldez FJ., 2012. Vegetable oil soapstocks reduce methane production and modify ruminal fermentation. Anim Feed Sci Technol, 176, 40-46.
  • 20. Lovett D., Lovell S., Stack L., Callan J., Finlay M., Conolly J., O’Mara FP., 2003. Effect of forage/concenrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest Prod Sci, 84, 135-146.
  • 21. Broudiscou L., Lassalas B., 1991. Linseed oil supplementation of the diet of sheep: Effect on the in vitro fermentation of amino acids and proteins by rumen miroorganisms. Anim Feed Sci Technol, 33, 161-171.
  • 22. Machmüller A., Kreuzer M., 1999. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can J Anim Sci,79, 65-72.
  • 23. Lana RP., Russell JB., Van Amburg ME., 1998. The role of pH in regulating methane and ammonia production. J Anim Sci, 76, 2190-2196.
  • 24. van Kessel JAS., Russell JB., 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol Ecol, 20, 205-210.
  • 25. Moate PJ., Williams SRO., Torok VA., Hannah MC., Ribaux BE., Tavendale MH., Eckard RJ., Jacobs JL., Auldist MJ., Wales WJ., 2014. Grape marc reduces methane emissions when fed to dairy cows. J Dairy Sci, 97, 5073-5087.
  • 26. Popova M., Martin C., Eugène M., Mialon MM., Doreau M., Morgav DP., 2011. Effect of fibre- and starch-rich finishing diets on methanogenic archaea diversity and activity in the rumen of feedlot bulls. Anim Feed Sci Tech, 166-167, 113-121.
  • 27. Christophersen CT., Wright ADG., Vercoe PE., 2008. In vitro methane emission and acetate: propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. J Anim Sci, 86, 384-389.
  • 28. Blaxter KL., 1967. Metabolism of Ruminants. Hutchinson and Co. Ltd, London, UK.
  • 29. Boadi D., Benchaar C., Chiquette J., Masse D., 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can J Anim Sci, 84, 319-335.
  • 30. Mutsvangwa T., Edwards IE., Topps JH., Paterson GFM., 1992. The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim Prod, 55, 35-40.
  • 31. Chaucheyras F., Fonty G., Bertin G., Gouet P., 1995. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methonogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol, 61, 3466-3467.
  • 32. Paul SS., Deb SM., Singh D., 2011. Isolation and charecterization of nevel sulphate-reducing Fusobacterium sp. and their effects on in vitro methane emission and digestion of wheat straw by rumen fluid. Anim Feed Sci Tech, 166-167, 132-140.
  • 33. Meral Y., Biricik H., 2013. Ruminantlarda metan emisyonunu azaltmak için kullanılan besleme yöntemleri. VII. Ulusal Hayvan Besleme Kongresi, 26-27 Eylül 2013, Ankara.
  • 34. Sauer FD., Fellner V., Kinsman R., Kramer JK., Jackson HA., Lee AJ., Chen S., 1998. Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J Anim Sci, 76, 906-914.
  • 35. Asanuma NM., Iwamoto M., Hino T., 1999. Effect of the addition of fumarate on methane production by ruminal microorganism in vitro. J Anim Sci, 82, 780-787.
  • 36. Wallece RJ., Wood TA., Rowe A., Price J., Yanez DR., Williams SR., Newbold CJ., 2006. In Greenhouse Gases and Animal Agriculture : An Update. (Ed. Soliva, CR., Takahashi J., Kreuzer M.) 148-151 (Elsevier International Congress Series 1293, Amsterdam, The Netherland).
  • 37. Goel G., Makkar HPS., 2012. Methane mitigation from ruminants using tannins and saponins, a status review. Trop Anim Health Prod, 44, 729-739.
  • 38. Woodward SL., Waghorn GC., Ulyatt MJ., Lassey KR., 2001. Early indications that feeding lotus will reduce methane emissions from ruminants. In: Proceedings of The New Zealand Society of Anim Produc. ACIAR, Adelaide, 23-26.
  • 39. Tana HY., Sieoa CC., Abdullaha N., Lianga JB., Huanga XD., Ho YW., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Tech, 169, 185-193.
  • 40. Pellikaan WF., Strigano E., Leenaars J., Bongers DJGM., van Laar-van Schuppen S., Plant J., Mueller-Harvey L., 2011. Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evalation system (APES). Anim Feed Sci Tech, 166-167, 377-390.
  • 41. Hassanat F., Benchaar C., 2013. Assesment of the effect of condesed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J Sci Food Agric, 93, 332-339.
  • 42. Hosoda K., Nishida T., Park WY., Eruden B., 2005. Influence of Mentha piperita L. (peppermint) supplementation on nutrient digestibility and energy metabolism in lactating dairy cows. Asian-Austr J Anim Sci, 18, 1721-1726.
  • 43. Agarwal N., Shekhar C., Kumar R., Chaudhary LC., Kamra DN., 2009. Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rume liquor. Anim Feed Sci Technol, 148, 321-327.
  • 44. Evans JD., Martin SA., 2000. Effects of thymol on ruminal microorganisms. Curr Microbiol, 41, 336-340.
  • 45. Canbolat Ö., Kalkan H., Karaman Ş., Filya İ., 2011. Esansiyel yağların sindirim, rumen fermantasyonu ve mikrobiyal protein üretimi üzerine etkileri. Kafkas Üniv Vet Fak Derg, 17, 557-565.
  • 46. Klevenhusen F., Zeitz JO., Duval S., Kreuzer M., Soliva CR., 2011. Garlic oil and its principal component dially disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Tech, 166-167, 356-363.
  • 47. van Zijderveld SM., Gerrits WJJ., Dijkstra J., Newbold JR., Hulshof RBA., Perdok HB., 2011. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J Dairy Sci, 94, 4028-4038.
  • 48. Hulshof RBA., Berndt A., Gerrits WJJ., Dijkstra J., van Zijderveld SM., Newbold JR., Perdok HB., 2012. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J Anim Sci, 90, 2317-2323.
  • 49. Nolan JV., Hegarty RS., Hegarty J., Godwin IR., Woodgate R., 2010. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim Produc Sci, 50, 801-806.
  • 50. van Zijderveld SM., Gerrits WJJ., Apajalahti JA., Newbold JR., Dijkstra J., Leng RA., Perdok HB., 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci, 93, 5856-5866.
  • 51. Shima S.,Warkentin E., Thauer RK., Ermler U., 2002. Structure and function of enzymes involved in the methanogenic pathway utiziling carbon dioxide and molecular hydrogen. J Biosci Bioeng, 93, 519-530.
  • 52. Zheming Z., Qingxiang M., Zhongtang Y., 2011. Effects of metahanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in vitro ruminal cultures. Appl Environ Microbiol, 77, 2634-2639.
  • 53. Imming I., 1996. The rumen and hindgut as source of ruminant methanogenesis. Envir Monit Assess, 42, 57-72.
  • 54. Miller TL., Wolin MJ., 2001. Inhibition of growth of methaneproducing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J Dairy Sci, 84, 1445-1448.
  • 55. Knight T., Rominus RS., Dey D., ToOtill C., Naylor G., Evans P., Molano G., Smith A., Tavendale M., Pinares-Patino CS., Clark H., 2011. Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim Feed Sci Tech, 166-167, 101-112.
  • 56. Newbold CJ., Lassalas B., Jouany JP., 1995. The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol, 21, 230-234.
  • 57. Eryavuz A., Dehority BA., 2004. Effect of Yucca schidigera extract on the concentration of rumen microorganisms in sheep. Anim Feed Sci Tech, 117, 215-222.
  • 58. Zhou YY., Mao HL., Jiang F., Wang JK., Liu JX., McSweeney CS., 2011. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Anim Feed Sci Tech, 166-167, 93-100.
  • 59. Yuan ZP., Zhang CM., Zhou L., Zou CX., Guo YQ., Li WT., Liu JX., Wu YM., 2007. Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep. J Anim Feed Sci, 7 (Suppl. 2), 560-565.
  • 60. Guo YQ., Liu JX., Lu Y., Zhu WY., Denman SE., McSweeney CS., 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett Appl Microbiol, 47, 421-426.
  • 61. Callaway TR., Carneiro De Melo AMS., Russell JB., 7997. The effect of nisin and monensin on ruminal fermentation in vitro. Curr Microbiol, 35, 90-96.
  • 62. Lee SS., Hsu JT. Mantovani HC., Russell JB., 2002. The effect of bovicin HC5, a bacteriocin from streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol Lett, 217, 51-55.
  • 63. Ulyatt MJ., Lassey KR., 2001. Methane emission from pastoral system: The stuation in New Zealand, Arc Latinoam Prod Anim, 9, 118-126.

Studies on Reduction of Ruminal Methane Production in Ruminants

Year 2017, Volume: 12 Issue: 3, 327 - 337, 20.12.2017
https://doi.org/10.17094/ataunivbd.368903

Abstract

Methane emitted through rutants in ruminants is induced that both loss
of feed energy in the feed and an ecological problem contributing to global
warming through its greenhouse effect. It is estimated to be about 18% of the
portion originating from ruminates in global warming. Therefore, reduced
methane emission by ruminanats has been useful for both economic and ecologic
aspects. This review deal with on studies to reduce the emission of methane in
ruminants.

References

  • 1. Hegarty RS., Klieve AV., 1999. Opportunities for biological control of ruminal methanogenesis. Aust J Agric Res, 50, 1315-1320.
  • 2. Moss A., Jouany JP., Newbold J., 2000. Methane production by ruminants: Its contribution to global warming. Ann Zootech, 49, 231-253. 3. Görgülü M., Darcan NK., Karakök SG., 2009. Hayvancılık ve Küresel Isınma. V. Ulusal Hayvan Besleme Kongresi 30 Eylül-3 Ekim 2009 Çorlu, Tekirdağ.
  • 4. Johnson KA., Johnson DE., 1995. Methane emisions from cattle. J Anim Sci, 73, 2483-2492.
  • 5. McAllister TA., Okine EK., Mathison GW., Cheng KJ., 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can J Anim Sci, 76, 231-243.
  • 6. Türkiye Cumhuriyeti Resmi Gazetesi, 13.05.2009 tarih ve 27227 sayılı nüshası.
  • 7. IPCC., 2001. Intergovernmental Panel on Climate Change. Climate Change: Synthesis report. A contribution of Working Groups I, II and III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, UK.
  • 8. Akçil E., Denek N., 2013. Farklı seviyelerde okaliptus (Eucalyptus camaldulensis) yaprağının bazı kaba yemlerin in vitro metan gazı üretimi üzerine etkisinin araştırılması. Harran Üniv Vet Fak Derg, 2, 75-81.
  • 9. Dohme F., Machmüller A., Wasserfallen A., Kreuzer M., 2000. Comparative efficiency of various fats rich in medium chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can J Anim Sci, 80, 473-482.
  • 10. McGinn SM., Beauchemin KA., Coates T., Colombatto D., 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci, 82, 3346-3356.
  • 11. Giger-Reverdin S., Morand-Fehr P., Tan G., 2003. Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livest Prod Sci, 82, 73-79.
  • 12. Martin C., Morgavi DP., Doreau M., Jouany JP., 2006. Comment reduire la production de methane chez les ruminants? Fourrages, 187, 283-300.
  • 13. Blaxter KL., Czerkawsky J., 1966. Modification of the methane production of the sheep by supplementation of its diet. J Sci Food Agric, 17, 417-421.
  • 14. Soliva CR., Meile L., Cieslak A., Kreuzer M., Machmüller A., 2004. Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br J Nutr, 92, 689-700.
  • 15. Odongo NE., Or-Rashid MM., Kebreab E., France J., McBride BW., 2007. Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J Dairy Sci, 90, 1851-1858.
  • 16. Martin C., Rouel J., Jouany JP., Doreau M., Chilliard Y., 2008. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J Anim Sci, 86, 2642-2650.
  • 17. Johnson KA., Kincaid RL., Westberg HH., Gasking CT., Lamb BK., Cronth JD., 2002. The effect of oilseeds in diets of lactating cows on milk production and methane emissions. J Anim Sci, 85, 1509-1515.
  • 18. Kim ET., Park CG., Lim DH., Kwon EG., Ki KS., Kim SB., Moon YH., Shin NH., Lee SS., 2014. Effects of coconut materials on in vitro ruminal methanogenesis and fermentation characteristics. Asian-Aust J Anim Sci, 27, 1721-1725.
  • 19. Blanco C., Bodas R., Prieto N., Moran L., Andres S., Lopez S., Giraldez FJ., 2012. Vegetable oil soapstocks reduce methane production and modify ruminal fermentation. Anim Feed Sci Technol, 176, 40-46.
  • 20. Lovett D., Lovell S., Stack L., Callan J., Finlay M., Conolly J., O’Mara FP., 2003. Effect of forage/concenrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest Prod Sci, 84, 135-146.
  • 21. Broudiscou L., Lassalas B., 1991. Linseed oil supplementation of the diet of sheep: Effect on the in vitro fermentation of amino acids and proteins by rumen miroorganisms. Anim Feed Sci Technol, 33, 161-171.
  • 22. Machmüller A., Kreuzer M., 1999. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can J Anim Sci,79, 65-72.
  • 23. Lana RP., Russell JB., Van Amburg ME., 1998. The role of pH in regulating methane and ammonia production. J Anim Sci, 76, 2190-2196.
  • 24. van Kessel JAS., Russell JB., 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol Ecol, 20, 205-210.
  • 25. Moate PJ., Williams SRO., Torok VA., Hannah MC., Ribaux BE., Tavendale MH., Eckard RJ., Jacobs JL., Auldist MJ., Wales WJ., 2014. Grape marc reduces methane emissions when fed to dairy cows. J Dairy Sci, 97, 5073-5087.
  • 26. Popova M., Martin C., Eugène M., Mialon MM., Doreau M., Morgav DP., 2011. Effect of fibre- and starch-rich finishing diets on methanogenic archaea diversity and activity in the rumen of feedlot bulls. Anim Feed Sci Tech, 166-167, 113-121.
  • 27. Christophersen CT., Wright ADG., Vercoe PE., 2008. In vitro methane emission and acetate: propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. J Anim Sci, 86, 384-389.
  • 28. Blaxter KL., 1967. Metabolism of Ruminants. Hutchinson and Co. Ltd, London, UK.
  • 29. Boadi D., Benchaar C., Chiquette J., Masse D., 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can J Anim Sci, 84, 319-335.
  • 30. Mutsvangwa T., Edwards IE., Topps JH., Paterson GFM., 1992. The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim Prod, 55, 35-40.
  • 31. Chaucheyras F., Fonty G., Bertin G., Gouet P., 1995. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methonogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol, 61, 3466-3467.
  • 32. Paul SS., Deb SM., Singh D., 2011. Isolation and charecterization of nevel sulphate-reducing Fusobacterium sp. and their effects on in vitro methane emission and digestion of wheat straw by rumen fluid. Anim Feed Sci Tech, 166-167, 132-140.
  • 33. Meral Y., Biricik H., 2013. Ruminantlarda metan emisyonunu azaltmak için kullanılan besleme yöntemleri. VII. Ulusal Hayvan Besleme Kongresi, 26-27 Eylül 2013, Ankara.
  • 34. Sauer FD., Fellner V., Kinsman R., Kramer JK., Jackson HA., Lee AJ., Chen S., 1998. Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J Anim Sci, 76, 906-914.
  • 35. Asanuma NM., Iwamoto M., Hino T., 1999. Effect of the addition of fumarate on methane production by ruminal microorganism in vitro. J Anim Sci, 82, 780-787.
  • 36. Wallece RJ., Wood TA., Rowe A., Price J., Yanez DR., Williams SR., Newbold CJ., 2006. In Greenhouse Gases and Animal Agriculture : An Update. (Ed. Soliva, CR., Takahashi J., Kreuzer M.) 148-151 (Elsevier International Congress Series 1293, Amsterdam, The Netherland).
  • 37. Goel G., Makkar HPS., 2012. Methane mitigation from ruminants using tannins and saponins, a status review. Trop Anim Health Prod, 44, 729-739.
  • 38. Woodward SL., Waghorn GC., Ulyatt MJ., Lassey KR., 2001. Early indications that feeding lotus will reduce methane emissions from ruminants. In: Proceedings of The New Zealand Society of Anim Produc. ACIAR, Adelaide, 23-26.
  • 39. Tana HY., Sieoa CC., Abdullaha N., Lianga JB., Huanga XD., Ho YW., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Tech, 169, 185-193.
  • 40. Pellikaan WF., Strigano E., Leenaars J., Bongers DJGM., van Laar-van Schuppen S., Plant J., Mueller-Harvey L., 2011. Evaluating effects of tannins on extent and rate of in vitro gas and CH4 production using an automated pressure evalation system (APES). Anim Feed Sci Tech, 166-167, 377-390.
  • 41. Hassanat F., Benchaar C., 2013. Assesment of the effect of condesed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J Sci Food Agric, 93, 332-339.
  • 42. Hosoda K., Nishida T., Park WY., Eruden B., 2005. Influence of Mentha piperita L. (peppermint) supplementation on nutrient digestibility and energy metabolism in lactating dairy cows. Asian-Austr J Anim Sci, 18, 1721-1726.
  • 43. Agarwal N., Shekhar C., Kumar R., Chaudhary LC., Kamra DN., 2009. Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rume liquor. Anim Feed Sci Technol, 148, 321-327.
  • 44. Evans JD., Martin SA., 2000. Effects of thymol on ruminal microorganisms. Curr Microbiol, 41, 336-340.
  • 45. Canbolat Ö., Kalkan H., Karaman Ş., Filya İ., 2011. Esansiyel yağların sindirim, rumen fermantasyonu ve mikrobiyal protein üretimi üzerine etkileri. Kafkas Üniv Vet Fak Derg, 17, 557-565.
  • 46. Klevenhusen F., Zeitz JO., Duval S., Kreuzer M., Soliva CR., 2011. Garlic oil and its principal component dially disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Tech, 166-167, 356-363.
  • 47. van Zijderveld SM., Gerrits WJJ., Dijkstra J., Newbold JR., Hulshof RBA., Perdok HB., 2011. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J Dairy Sci, 94, 4028-4038.
  • 48. Hulshof RBA., Berndt A., Gerrits WJJ., Dijkstra J., van Zijderveld SM., Newbold JR., Perdok HB., 2012. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J Anim Sci, 90, 2317-2323.
  • 49. Nolan JV., Hegarty RS., Hegarty J., Godwin IR., Woodgate R., 2010. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim Produc Sci, 50, 801-806.
  • 50. van Zijderveld SM., Gerrits WJJ., Apajalahti JA., Newbold JR., Dijkstra J., Leng RA., Perdok HB., 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci, 93, 5856-5866.
  • 51. Shima S.,Warkentin E., Thauer RK., Ermler U., 2002. Structure and function of enzymes involved in the methanogenic pathway utiziling carbon dioxide and molecular hydrogen. J Biosci Bioeng, 93, 519-530.
  • 52. Zheming Z., Qingxiang M., Zhongtang Y., 2011. Effects of metahanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in vitro ruminal cultures. Appl Environ Microbiol, 77, 2634-2639.
  • 53. Imming I., 1996. The rumen and hindgut as source of ruminant methanogenesis. Envir Monit Assess, 42, 57-72.
  • 54. Miller TL., Wolin MJ., 2001. Inhibition of growth of methaneproducing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J Dairy Sci, 84, 1445-1448.
  • 55. Knight T., Rominus RS., Dey D., ToOtill C., Naylor G., Evans P., Molano G., Smith A., Tavendale M., Pinares-Patino CS., Clark H., 2011. Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim Feed Sci Tech, 166-167, 101-112.
  • 56. Newbold CJ., Lassalas B., Jouany JP., 1995. The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol, 21, 230-234.
  • 57. Eryavuz A., Dehority BA., 2004. Effect of Yucca schidigera extract on the concentration of rumen microorganisms in sheep. Anim Feed Sci Tech, 117, 215-222.
  • 58. Zhou YY., Mao HL., Jiang F., Wang JK., Liu JX., McSweeney CS., 2011. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Anim Feed Sci Tech, 166-167, 93-100.
  • 59. Yuan ZP., Zhang CM., Zhou L., Zou CX., Guo YQ., Li WT., Liu JX., Wu YM., 2007. Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep. J Anim Feed Sci, 7 (Suppl. 2), 560-565.
  • 60. Guo YQ., Liu JX., Lu Y., Zhu WY., Denman SE., McSweeney CS., 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett Appl Microbiol, 47, 421-426.
  • 61. Callaway TR., Carneiro De Melo AMS., Russell JB., 7997. The effect of nisin and monensin on ruminal fermentation in vitro. Curr Microbiol, 35, 90-96.
  • 62. Lee SS., Hsu JT. Mantovani HC., Russell JB., 2002. The effect of bovicin HC5, a bacteriocin from streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol Lett, 217, 51-55.
  • 63. Ulyatt MJ., Lassey KR., 2001. Methane emission from pastoral system: The stuation in New Zealand, Arc Latinoam Prod Anim, 9, 118-126.
There are 62 citations in total.

Details

Subjects Health Care Administration
Journal Section Derlemeler
Authors

Cavit Arslan This is me

Publication Date December 20, 2017
Published in Issue Year 2017 Volume: 12 Issue: 3

Cite

APA Arslan, C. (2017). Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 12(3), 327-337. https://doi.org/10.17094/ataunivbd.368903
AMA Arslan C. Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. December 2017;12(3):327-337. doi:10.17094/ataunivbd.368903
Chicago Arslan, Cavit. “Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 12, no. 3 (December 2017): 327-37. https://doi.org/10.17094/ataunivbd.368903.
EndNote Arslan C (December 1, 2017) Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 12 3 327–337.
IEEE C. Arslan, “Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 12, no. 3, pp. 327–337, 2017, doi: 10.17094/ataunivbd.368903.
ISNAD Arslan, Cavit. “Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 12/3 (December 2017), 327-337. https://doi.org/10.17094/ataunivbd.368903.
JAMA Arslan C. Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2017;12:327–337.
MLA Arslan, Cavit. “Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 12, no. 3, 2017, pp. 327-3, doi:10.17094/ataunivbd.368903.
Vancouver Arslan C. Ruminantlarda Rumende Oluşan Metan Üretimini Azaltmaya Yönelik Çalışmalar. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2017;12(3):327-3.