Research Article
BibTex RIS Cite

Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi

Year 2018, Volume: 13 Issue: 1, 34 - 41, 25.04.2018
https://doi.org/10.17094/ataunivbd.417125

Abstract

Naringenin oksidatif strese karşı direnci artıran bir flavonoiddir. Bu çalışmada kurşun maruziyeti ile ratların kalp, akciğer, beyin, dalak ve kas dokularında lipid peroksidasyon ve bazı antioksidanların ayrıca bu parametreler üzerine naringeninin etkisinin araştırılması hedeflendi. Naringenin 50 mg/kg dozda mısır yağında çözülerek orogastrik sonda ile kurşun asetat ise günlük 500 ppm olacak sekilde içme suyuna karıştırılarak 4 hafta boyunca verildi. Kurşuna maruz kalan ratların beyin, akciğer, dalak ve kas dokularının MDA düzeylerinde istatistik olarak anlamlı artış (P<0.001), kalp dokusunda ise anlamsız artış saptandı (P>0.05). Kurşun uygulaması beyin, dalak, kas dokusunda GSH-Px aktivitesinde, kalp, akciğer ve kas dokusunda CAT aktivitesinde, akciğer ve kas dokusunda ise GSH konsantrasyonunda istatistik olarak önemli azalmalara sebep oldu (P<0.05). Tek başına naringenin uygulanması MDA’nın kalp ve kasta önemli azalmasına, akciğerde ise önemli artmasına sebep oldu (P<0.05). Kurşunla beraber naringenin kullanılması kalp, akciğer, beyin, kas, dalak dokularında artmış MDA düzeylerini önemli olarak (P<0.05) azaltmasına rağmen akciğer ve dalak dokusunda artan MDA düzeylerini normale döndüremediği görüldü. Kurşunla beraber naringenin ilavesinin bu dokularda genelde azalan GSH-Px, CAT aktivitelerini ise önemli olarak artırdığı (P<0.05) saptandı. Ayrıca kurşunun etkisi ile akciğer ve kasta azalan GSH düzeyleri ve kalpte artan GSH düzeylerinin naringenin uygulanması ile normale döndüğü tespit edildi. Sonuç olarak, kurşun uygulanmasının, özellikle hücre antioksidanlarını tüketerek lipid peroksidasyonunda artışa neden olduğu ve naringenin uygulanmasının, bazı dokularda (beyin, kas) kurşunun sebep olduğu oksidatif stresin engellenmesinde yararlı olabileceği kanısına varıldı.

References

  • 1. Mutlu N., Ersan Y., Nur G., Koç E., 2011. Protective effect of caffeic acid phenethyl ester against lead acetate-induced hepatotoxicity in mice. Kafkas Univ Vet Fak Derg, 17 (Suppl A), 1-5.
  • 2. Assi MA., Hezmee MN., Haron AW., Sabri MY., Rajion MA., 2016. The detrimental effects of lead on human and animal health. Vet World, 9, 660-671.
  • 3. Cheeseman KH., Slater TF., 1993. An introduction to free radical biochemistry. Br Med Bull, 49, 481‐493.
  • 4. Akkuş İ., 1995. Serbest Radikaller ve Fizyopatolojik Etkileri, 32‐37, Mimoza Yay. Konya.
  • 5. Comporti M., 1989. Three models of free radical induced cell injury. Chem Biol Interact, 72, 1‐56.
  • 6. Miller JK., Brzezinska‐Slebodzinska E., 1993. Oxidative stress, antioxidants and animal function. J Dairy Sci, 76, 2812‐2823.
  • 7. Stahl W., Sies H., 1997. Antioxidant defense: vitamins E and C and carotenoids. Diabetes, 46, 14‐18.
  • 8. Omobowale OT., Oyagbemi AA., Akinrinde AA., Saba AB., Daramola OT., Ogunpolu BS., Olopade JO., 2014. Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in Wistar rats. Environ Toxicol Pharmacol, 37, 1202-1211.
  • 9. Kadeyala PK., Sannadi S., Gottipolu RR., 2013. Reversal effect of monoisoamyl dimercaptosuccinic acid (MiADMSA) for arsenic and lead induced perturbations in apoptosis and antioxidant enzymes in developing rat brain. Int J Dev Neurosci, 31, 586-97.
  • 10. Jayaraman J., Veerappan M., Namasivayam N., 2009. Potential beneficial effect of naringenin on lipid peroxidation and antioxidant status in rats with ethanol-induced hepatotoxicity. J Pharm Pharmacol, 61, 1383-1390.
  • 11. Wang J., Yang Z., Lin L., Zhao Z., Liu Z., Liu X., 2012. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res, 146, 354-359.
  • 12. Alcaraz-Contreras Y., Garza-Ocanas L., Carcano-Diaz K., Ramírez-Gómez XS., 2011. Effect of glycine on lead mobilization, lead-induced oxidative stress, and hepatic toxicity in rats. J Toxicol, 2011, 1-7.
  • 13. Xia D., Yu X., Liao S., Shao Q., Mou H., Ma W., 2010. Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. J Ethnopharmacol, 130, 414-420.
  • 14. Upasani CD., Balaraman R., 2003. Protective effect of Spirulina on lead-induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother Res, 17, 330-334.
  • 15. Jain A., Yadav A., Bozhkov AI., Padalko VI., Flora SJ., 2011. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Saf, 74, 607-614.
  • 16. Bennet C., Bettaiya R., Rajanna S., Baker L., Yallapragada PR., Brice JJ., White SL., Bokara KK., 2007. Region specific increase in the antioxidant enzymes and lipidperoxidation products in the brain of rats exposed to lead. Free Radic Res, 41, 267-273.
  • 17. Placer ZA., Cushman LL., Johnson BC., 1966. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem, 16, 359-364.
  • 18. Aebi H., 1984. Catalase in vitro assay methods. Method in Enzymology, 105, 121-126.
  • 19. Lawrence RA., Burk RF., 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun, 71, 952-958.
  • 20. Sedlak J., Lindsay RH., 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem, 25, 192-205.
  • 21. Lowry OH., Rosebrough NJ., Farr AL., Randall RJ., 1951. Protein measurement with folin phenol reagent. J Biol Chem, 193, 265-275.
  • 22. Wang Z., Yan Y., Yu X., Li W., Li B., Qin C., 2016. Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice. Int J Biol Macromol, 83, 442-449.
  • 23. Shahandeh M., Roshan VD., Hosseinzadeh S., Mahjoub S, Sarkisian V., 2013. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate. Neural Regen Res, 8, 714-722.
  • 24. Cole GM., Teter B., Frautschy SA., 2007. Neuroprotective effects of curcumin. Adv Exp Med Biol, 595, 197-212.
  • 25. Soleimani E., Goudarzi I., Abrari K., Lashkarbolouki T., 2016. The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress. Food Chem Toxicol, 96, 263-72.
  • 26. Gutteridge JM., 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem, 41, 1819-1828.
  • 27. Saxena G., Pathak U., Flora SJ., 2005. Beneficial role of monoesters of meso-2,3-dimercaptosuccinic acid in the mobilization of lead and recovery of tissue oxidative injury in rats. Toxicol, 214, 39-56.
  • 28. Christie NT., Costa M., 1984. In vitro assessment of the toxicity of metal compounds : IV. Disposition of metals in cells: Interactions with membranes, glutathione, metallothionein, and DNA. Biol Trace Elem Res, 6, 139-158.
  • 29. Abdel Moneim AE., Dkhil MA., Al-Quraishy S., 2011. Effects of flaxseed oil on lead acetate-induced neurotoxicity in rats. Biol Trace Elem Res, 144, 904-913.
  • 30. Oyagbemi AA., Omobowale TO., Akinrinde AS., Saba AB., Ogunpolu BS., Daramola O., 2015. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ Toxicol, 30, 1235-1243.
  • 31. Kannappan S., Palanisamy N., Anuradha CV., 2010. Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. Eur J Pharmacol, 645, 177-184.
  • 32. Chtourou Y., Fetoui H., Gdoura R., 2014. Protective effects of naringenin on iron-overload-induced cerebral cortex neurotoxicity correlated with oxidative stress. Biol Trace Elem Res, 158, 376-83.
  • 33. Han X., Pan J., Ren D., Cheng Y., Fan P., Lou H., 2008. Naringenin-7-O-glucoside protects against doxorubicin-induced toxicity in H9c2 cardiomyocytes by induction of endogenous antioxidant enzymes. Food Chem Toxicol, 46, 3140-3146.
  • 34. van Acker FA., Schouten O., Haenen GR., van der Vijgh WJ., Bast A., 2000. Flavonoids can replace alpha-tocopherol as an antioxidant. FEBS Lett, 473, 145-148.
  • 35. Fernandez MT., Mira ML., Florêncio MH., Jennings KR., 2002. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J Inorg Biochem, 92, 105-111.
  • 36. Chtourou Y., Fetoui H., Jemai R., Ben Slima A., Makni M., Gdoura R., 2015. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway. Eur J Pharmacol, 746, 96-105.

The Effect of Naringenin on Oxidative Stress in Some Tissues (Heart, Lung, Brain, Spleen, Muscle) of Lead-treated Rats

Year 2018, Volume: 13 Issue: 1, 34 - 41, 25.04.2018
https://doi.org/10.17094/ataunivbd.417125

Abstract

Naringenin, a flavonoid increases resistance against oxidative stress. The present study aims to investigate the effect of lead on lipid peroxidasyonu and some antioxidants in heart, lung, brain, spleen, muscle and the effect of naringenin on these parameters. Naringenin was administered by orogastric gavage (50 mg/kg, dissolved in corn oil) and lead acetate was given as daily 500 parts per million in drinking water for 4 weeks. In the rats exposed to lead, MDA levels in the brain, lungs, spleen and muscle tissues significantly increased (P<0.001), in the heart tended to increase but not significantly (P>0.05). Lead caused a statistically significant decrease in GSH-Px activity of the brain, spleen and muscle tissues, in CAT activity of the heart, lung and muscle tissues, in GSH concentration of the lungs and muscle tissues (P<0.05). The administration of alone naringenin caused a statistically significant decrease in MDA levels in the heart and muscle, but a significant increase in the lung (P<0.05). Although increased MDA levels in the heart, lungs, brain, muscle and spleen tissues were significantly decreased by use of the naringenin together with lead (P<0.05), increased MDA levels in the lungs and spleen tissues could not be recovered to the normal level. Generally the decreased GSH-Px and CAT activities in these tissues due to lead were significanly increased by naringenin supplementation (P<0.05). In addition, the reduced GSH levels in lung and muscle, the inceased GSH levels in heart with effect of lead were returned to the normal by naringenin. Lead particularly causes to an increase in lipid peroxidation by consuming antioxidants of cells. Naringenin was able to prevent as tissue-specific (brain, muscle) the oxidative stress caused by lead.

References

  • 1. Mutlu N., Ersan Y., Nur G., Koç E., 2011. Protective effect of caffeic acid phenethyl ester against lead acetate-induced hepatotoxicity in mice. Kafkas Univ Vet Fak Derg, 17 (Suppl A), 1-5.
  • 2. Assi MA., Hezmee MN., Haron AW., Sabri MY., Rajion MA., 2016. The detrimental effects of lead on human and animal health. Vet World, 9, 660-671.
  • 3. Cheeseman KH., Slater TF., 1993. An introduction to free radical biochemistry. Br Med Bull, 49, 481‐493.
  • 4. Akkuş İ., 1995. Serbest Radikaller ve Fizyopatolojik Etkileri, 32‐37, Mimoza Yay. Konya.
  • 5. Comporti M., 1989. Three models of free radical induced cell injury. Chem Biol Interact, 72, 1‐56.
  • 6. Miller JK., Brzezinska‐Slebodzinska E., 1993. Oxidative stress, antioxidants and animal function. J Dairy Sci, 76, 2812‐2823.
  • 7. Stahl W., Sies H., 1997. Antioxidant defense: vitamins E and C and carotenoids. Diabetes, 46, 14‐18.
  • 8. Omobowale OT., Oyagbemi AA., Akinrinde AA., Saba AB., Daramola OT., Ogunpolu BS., Olopade JO., 2014. Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in Wistar rats. Environ Toxicol Pharmacol, 37, 1202-1211.
  • 9. Kadeyala PK., Sannadi S., Gottipolu RR., 2013. Reversal effect of monoisoamyl dimercaptosuccinic acid (MiADMSA) for arsenic and lead induced perturbations in apoptosis and antioxidant enzymes in developing rat brain. Int J Dev Neurosci, 31, 586-97.
  • 10. Jayaraman J., Veerappan M., Namasivayam N., 2009. Potential beneficial effect of naringenin on lipid peroxidation and antioxidant status in rats with ethanol-induced hepatotoxicity. J Pharm Pharmacol, 61, 1383-1390.
  • 11. Wang J., Yang Z., Lin L., Zhao Z., Liu Z., Liu X., 2012. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res, 146, 354-359.
  • 12. Alcaraz-Contreras Y., Garza-Ocanas L., Carcano-Diaz K., Ramírez-Gómez XS., 2011. Effect of glycine on lead mobilization, lead-induced oxidative stress, and hepatic toxicity in rats. J Toxicol, 2011, 1-7.
  • 13. Xia D., Yu X., Liao S., Shao Q., Mou H., Ma W., 2010. Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. J Ethnopharmacol, 130, 414-420.
  • 14. Upasani CD., Balaraman R., 2003. Protective effect of Spirulina on lead-induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother Res, 17, 330-334.
  • 15. Jain A., Yadav A., Bozhkov AI., Padalko VI., Flora SJ., 2011. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Saf, 74, 607-614.
  • 16. Bennet C., Bettaiya R., Rajanna S., Baker L., Yallapragada PR., Brice JJ., White SL., Bokara KK., 2007. Region specific increase in the antioxidant enzymes and lipidperoxidation products in the brain of rats exposed to lead. Free Radic Res, 41, 267-273.
  • 17. Placer ZA., Cushman LL., Johnson BC., 1966. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem, 16, 359-364.
  • 18. Aebi H., 1984. Catalase in vitro assay methods. Method in Enzymology, 105, 121-126.
  • 19. Lawrence RA., Burk RF., 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun, 71, 952-958.
  • 20. Sedlak J., Lindsay RH., 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem, 25, 192-205.
  • 21. Lowry OH., Rosebrough NJ., Farr AL., Randall RJ., 1951. Protein measurement with folin phenol reagent. J Biol Chem, 193, 265-275.
  • 22. Wang Z., Yan Y., Yu X., Li W., Li B., Qin C., 2016. Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice. Int J Biol Macromol, 83, 442-449.
  • 23. Shahandeh M., Roshan VD., Hosseinzadeh S., Mahjoub S, Sarkisian V., 2013. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate. Neural Regen Res, 8, 714-722.
  • 24. Cole GM., Teter B., Frautschy SA., 2007. Neuroprotective effects of curcumin. Adv Exp Med Biol, 595, 197-212.
  • 25. Soleimani E., Goudarzi I., Abrari K., Lashkarbolouki T., 2016. The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress. Food Chem Toxicol, 96, 263-72.
  • 26. Gutteridge JM., 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem, 41, 1819-1828.
  • 27. Saxena G., Pathak U., Flora SJ., 2005. Beneficial role of monoesters of meso-2,3-dimercaptosuccinic acid in the mobilization of lead and recovery of tissue oxidative injury in rats. Toxicol, 214, 39-56.
  • 28. Christie NT., Costa M., 1984. In vitro assessment of the toxicity of metal compounds : IV. Disposition of metals in cells: Interactions with membranes, glutathione, metallothionein, and DNA. Biol Trace Elem Res, 6, 139-158.
  • 29. Abdel Moneim AE., Dkhil MA., Al-Quraishy S., 2011. Effects of flaxseed oil on lead acetate-induced neurotoxicity in rats. Biol Trace Elem Res, 144, 904-913.
  • 30. Oyagbemi AA., Omobowale TO., Akinrinde AS., Saba AB., Ogunpolu BS., Daramola O., 2015. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ Toxicol, 30, 1235-1243.
  • 31. Kannappan S., Palanisamy N., Anuradha CV., 2010. Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. Eur J Pharmacol, 645, 177-184.
  • 32. Chtourou Y., Fetoui H., Gdoura R., 2014. Protective effects of naringenin on iron-overload-induced cerebral cortex neurotoxicity correlated with oxidative stress. Biol Trace Elem Res, 158, 376-83.
  • 33. Han X., Pan J., Ren D., Cheng Y., Fan P., Lou H., 2008. Naringenin-7-O-glucoside protects against doxorubicin-induced toxicity in H9c2 cardiomyocytes by induction of endogenous antioxidant enzymes. Food Chem Toxicol, 46, 3140-3146.
  • 34. van Acker FA., Schouten O., Haenen GR., van der Vijgh WJ., Bast A., 2000. Flavonoids can replace alpha-tocopherol as an antioxidant. FEBS Lett, 473, 145-148.
  • 35. Fernandez MT., Mira ML., Florêncio MH., Jennings KR., 2002. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J Inorg Biochem, 92, 105-111.
  • 36. Chtourou Y., Fetoui H., Jemai R., Ben Slima A., Makni M., Gdoura R., 2015. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway. Eur J Pharmacol, 746, 96-105.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Araştırma Makaleleri
Authors

Mine Erişir

Publication Date April 25, 2018
Published in Issue Year 2018 Volume: 13 Issue: 1

Cite

APA Erişir, M. (2018). Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 13(1), 34-41. https://doi.org/10.17094/ataunivbd.417125
AMA Erişir M. Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. April 2018;13(1):34-41. doi:10.17094/ataunivbd.417125
Chicago Erişir, Mine. “Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 13, no. 1 (April 2018): 34-41. https://doi.org/10.17094/ataunivbd.417125.
EndNote Erişir M (April 1, 2018) Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 13 1 34–41.
IEEE M. Erişir, “Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 13, no. 1, pp. 34–41, 2018, doi: 10.17094/ataunivbd.417125.
ISNAD Erişir, Mine. “Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 13/1 (April 2018), 34-41. https://doi.org/10.17094/ataunivbd.417125.
JAMA Erişir M. Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2018;13:34–41.
MLA Erişir, Mine. “Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 13, no. 1, 2018, pp. 34-41, doi:10.17094/ataunivbd.417125.
Vancouver Erişir M. Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2018;13(1):34-41.