Review
BibTex RIS Cite

Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri

Year 2020, Volume: 15 Issue: 2, 181 - 186, 27.10.2020
https://doi.org/10.17094/ataunivbd.690314

Abstract

Sepsis, tüm vücutta enflamatuar bir durum ve bilinen veya şüphelenilen bir enfeksiyonun varlığı ile karakterize edilen ciddi bir durumdur. Vücut, bağışıklık sistemi tarafından kan, idrar, akciğerler, cilt veya diğer dokulardaki mikroplara karşı bu enflamatuar yanıtı geliştirebilir. Bu karmaşık patofizyolojinin sonuçları ciddi hipotansiyon, metabolik asidoz, doku hasarı ve çoklu organ yetmezliği, akut solunum sıkıntısı sendromu (ARDS) / akut akciğer hasarı (ALI) ve hatta ölüm gibi farklı şekillerde izlenebilir. Destek tedavileri, antibiyotikler, immünoterapi ajanları ve yeni tedavi seçeneklerine rağmen, sepsis %90’a varan yüksek mortalite oranı gösteren, yoğun bakım ünitelerinde ölüme en çok neden olan bir sağlık sorunu olarak karşımıza çıkmaktadır. Bu nedenle sepsis dünya üzerinde hem insanlarda en çok araştırma yapılan hastalıklardan birisidir, hem de deneysel hayvanlarda en çok çalışılan modellerden birisi olarak bilinmektedir. Aynı zamanda veteriner hekimlikte özellikle koyun gibi hayvanlarda görülen sepsis ve sepsise bağlı komplikasyonlar sıklıkla araştırılmaktadır. Hem klinik çalışma öncesi ilaçların hayvan deneylerinde mutlaka denenmesi ve incelenmesi gerekliliği, hem de hayvan refahını tehdit eden bir hastalık olması sebebiyle, bu yazıda sepsis oluşturmak için hayvanlarda kullanılan modeller (Lipopolisakkarit (LPS) gibi eksojen bir toksinin enjeksiyonu ile oluşturulan sepsis modeli, Fekal sepsis modelleri, eksojen bakterinin infüzyonu veya aşılanması ile oluşturulan sepsis modeli.) hakkında bilgi verilecektir.

References

  • 1. Levy MM., Fink MP., Marshall JC., Abraham E., Angus D., Cook D., Cohen J, Opal SM., Vincent JL., Ramsay G., 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med, 31, 1250- 1256.
  • 2. Gyawali B., Ramakrishna K., Dhamoon AS., 2019. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med, 7, 2050312119835043.
  • 3. Minasyan H., 2017. Sepsis and septic shock: Pathogenesis and treatment perspectives. J Crit Care, 40, 229-242.
  • 4. Kruttgen A., Rose-John S., 2012. Interleukin-6 in Sepsis and Capillary Leakage Syndrome. J Interf Cytok Res, 32, 60-65.
  • 5. Compton CN., Franko AP., Murray MT., Diebel LN., Dulchavsky SA., 1998. Signaling of apoptotic lung injury by lipid hydroperoxides. J Trauma, 44, 783-788.
  • 6. Chang YT., Huang WC., Cheng CC., Ke MW., Tsai JS., Hung YM., Huang NC., Huang MS., Wann SR., 2020. Effects of epinephrine on heart rate variability and cytokines in a rat sepsis model. Bosn J Basic Med Sci, 20, 88-98.
  • 7. Baradaran Rahimi V., Rakhshandeh H., Raucci F., Buono B., Shirazinia R., Samzadeh Kermani A., Maione F., Mascolo N., Askari VR., 2019. Anti- Inflammatory and Anti-Oxidant Activity of Portulaca oleracea Extract on LPS-Induced Rat Lung Injury. Molecules, 24, 139.
  • 8. Zhang H., Sha J., Feng X., Hu X., Chen Y., Li B., Fan H., 2019. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3beta/STAT3- NF-kappaB signaling pathway in rats. Int Immunopharmacol, 74, 105717.
  • 9. Remick DG., Newcomb DE., Bolgos GL., Call DR., 2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock, 13, 110-116.
  • 10. Tracey KJ., Fong Y., Hesse DG., Manogue KR., Lee AT., Kuo GC., Lowry SF., Cerami A., 1987. Anticachectin/ TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature, 330, 662-664.
  • 11. Tiwari MM., Brock RW., Megyesi JK., Kaushal GP., Mayeux PR., 2005. Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol, 289, F1324-1332.
  • 12. Kose D., Cadirci E., Halici Z., Sirin B., Dincer B., 2019. The investigation of possible roles of central 5-HT7 receptors in antipyretic effect mechanism of paracetamol in LPS-induced hyperthermia model of mice. Inflammopharmacology, 27, 1169-1178.
  • 13. Abareshi A., Anaeigoudari A., Norouzi F., Marefati N., Beheshti F., Saeedjalali M., Hosseini M., 2019. The effects of captopril on lipopolysaccharideinduced sickness behaviors in rats. Vet Res Forum, 10, 199-205.
  • 14. İskit A., 2005. Sepsiste Deneysel Modeller. Yoğun Bakım Dergisi, 5, 133-136.
  • 15. Cadirci E., Halici Z., Bayir Y., Albayrak A., Karakus E., Polat B., Unal D., Atamanalp SS., Aksak S., Gundogdu C., 2013. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats. Immunobiology, 218, 1271-1283.
  • 16. Elin RJ., Robinson RA., Levine AS., Wolff SM., 1975. Lack of clinical usefulness of the limulus test in the diagnosis of endotoxemia. N Engl J Med, 293, 521-524.
  • 17. Iskit AB., Guc MO., 2001. The timing of endothelin and nitric oxide inhibition affects survival in a mice model of septic shock. Eur J Pharmacol, 414, 281-287.
  • 18. Kazarian KK., Perdue PW., Lynch W., Dziki A., Nevola J., Lee CH., Hayward I., Williams T., Law WR., 1994. Porcine peritoneal sepsis: modeling for clinical relevance. Shock, 1, 201-212.
  • 19. Freise H., Bruckner UB., Spiegel HU., 2001. Animal models of sepsis. J Invest Surg, 14, 195-212.
  • 20. Bartlett JG., Onderdonk AB., Louie T., Kasper DL., Gorbach SL., 1978. A review. Lessons from an animal model of intra-abdominal sepsis. Arch Surg, 113, 853-857.
  • 21. Wichterman KA., Baue AE., Chaudry IH., 1980. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res, 29, 189-201.
  • 22. Wu XJ., Yan XT., Yang XM., Zhang Y., Wang HY., Luo H., Fang Q., Li H., Li XY., Chen K., Wang YL., Zhang ZZ., Song XM., 2020. GTS-21 ameliorates polymicrobial sepsis-induced hepatic injury by modulating autophagy through alpha7nAchRs in mice. Cytokine, 128, 155019.
  • 23. Piliponsky AM., Shubin NJ., Lahiri AK., Truong P., Clauson M., Niino K., Tsuha AL., Nedospasov SA., Karasuyama H., Reber LL., Tsai M., Mukai K., Galli SJ., 2019. Basophil-derived tumor necrosis factor can enhance survival in a sepsis model in mice. Nat Immunol, 20, 129-140.
  • 24. Ibrahim YF., Moussa RA., Bayoumi AMA., Ahmed AF., 2020. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down regulation of NFkappaB/ JNK: a possible role of P-glycoprotein. Inflammopharmacology, 28, 215-230.
  • 25. Polat B., Cadirci E., Halici Z., Bayir Y., Unal D., Bilgin BC., Yuksel TN., Vancelik S., 2013. The protective effect of amiodarone in lung tissue of cecal ligation and puncture-induced septic rats: a perspective from inflammatory cytokine release and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol, 386, 635-643.
  • 26. Ruiz S., Vardon-Bounes F., Merlet-Dupuy V., Conil JM., Buleon M., Fourcade O., Tack I., Minville V., 2016. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive Care Med Exp, 4, 22.
  • 27. Tang CS., Liu MS., 1996. Initial externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am J Physiol- Regul Integr Comp Physiol, 270, R254-R263.
  • 28. Chen SJ., Wu CC., Yen MH., 1994. Alterations of Ex-Vivo Vascular Reactivity in Intraperitoneal Sepsis. J Cardiovasc Pharmacol, 24, 786-793.
  • 29. Hwang TL., Lau YT., Chen MF., Tang CS., Liu MS., 1993. Biphasic Intracellular Redistribution of Alpha-1-Adrenergic Receptors in Rat-Liver During Sepsis. Am J Physiol, 265, R385-R391.
  • 30. Toscano MG., Ganea D., Gamero AM., 2011. Cecal ligation puncture procedure. J Vis Exp, 7, 2860.
  • 31. Han Y., Li X., Gao S., Liu X., Kang L., Li X., Lang Y., Li X., Sun M., Gai Z., Yu S., 2019. Interleukin 17 is an important pathogenicity gene in pediatric sepsis. J Cell Biochem,120,3664-3671.
  • 32. Doulias T., Quickert S., Weis S., Claus RA., Kontopoulou K., Giamarellos-Bourboulis EJ., Bauer M., Koutelidakis IM., 2018. Low-dose hydrocortisone prolongs survival in a lethal sepsis model in adrenalectomized rats. J Surg Res, 227,72-80.
  • 33. Goldfarb RD., Glock D., Kumar A., Mccarthy RJ., Mei J., Guynn T., Matushek M., Trenholme G., Parrillo JE., 1996. A porcine model of peritonitis and bacteremia simulates human septic shock. Shock, 6, 442-451.
  • 34. Gurtner GC., Robertson CS., Chung SC., Ling TK., Ip SM., Li AK., 1995. Effect of carbon dioxide pneumoperitoneum on bacteraemia and endotoxaemia in an animal model of peritonitis. Br J Surg, 82, 844-848.
  • 35. Aranow JS., Zhuang J., Wang H., Larkin V., Smith M., Fink M.P., 1996. A selective inhibitor of inducible in nitric oxide synthase prolongs survival in a rat model of bacterial peritonitis: comparison with two nonselective strategies. Shock, 5, 116-121.
  • 36. Channabasappa S., Durgaiah M., Chikkamadaiah R., Kumar S., Joshi A., Sriram B., 2018. Efficacy of novel antistaphylococcal ectolysin P128 in a rat model of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother, 62.

Experimental Animal Models for Sepsis

Year 2020, Volume: 15 Issue: 2, 181 - 186, 27.10.2020
https://doi.org/10.17094/ataunivbd.690314

Abstract

Sepsis is a serious condition characterized by an inflammatory condition throughout the body and the presence of a known or suspected infection. The body can improve this inflammatory response by its immune system to microbes in blood, urine, lungs, skin or other tissues. The results of this complex pathophysiology can be monitored in different ways, such as severe hypotension, metabolic acidosis, tissue damage and multiple organ failure, acute respiratory distress syndrome (ARDS) / acute lung injury (ALI), and even death. Despite supportive treatments, antibiotics, immunotherapy agents
and new treatment options, sepsis appears to be the most common health problem in intensive care units with a high mortality rate of up to 90%. For this reason, sepsis is known as both one of the most researched diseases in humans and one of the most studied models in experimental animals. At the same time, sepsis and complications related to sepsis are frequently investigated in veterinary medicine, especially in animals such as sheep. In this article, the information will be given about the models used in animals to create sepsis (Sepsis model created by injection of an exogenous toxin such as lipopolysaccharide (LPS), Fecal sepsis models, sepsis model created by infusion or inoculation of exogenous bacteria), both because of the necessity to try and examine the drugs before the clinical trial in animal experiments and as a disease that threatens animal welfare.

References

  • 1. Levy MM., Fink MP., Marshall JC., Abraham E., Angus D., Cook D., Cohen J, Opal SM., Vincent JL., Ramsay G., 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med, 31, 1250- 1256.
  • 2. Gyawali B., Ramakrishna K., Dhamoon AS., 2019. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med, 7, 2050312119835043.
  • 3. Minasyan H., 2017. Sepsis and septic shock: Pathogenesis and treatment perspectives. J Crit Care, 40, 229-242.
  • 4. Kruttgen A., Rose-John S., 2012. Interleukin-6 in Sepsis and Capillary Leakage Syndrome. J Interf Cytok Res, 32, 60-65.
  • 5. Compton CN., Franko AP., Murray MT., Diebel LN., Dulchavsky SA., 1998. Signaling of apoptotic lung injury by lipid hydroperoxides. J Trauma, 44, 783-788.
  • 6. Chang YT., Huang WC., Cheng CC., Ke MW., Tsai JS., Hung YM., Huang NC., Huang MS., Wann SR., 2020. Effects of epinephrine on heart rate variability and cytokines in a rat sepsis model. Bosn J Basic Med Sci, 20, 88-98.
  • 7. Baradaran Rahimi V., Rakhshandeh H., Raucci F., Buono B., Shirazinia R., Samzadeh Kermani A., Maione F., Mascolo N., Askari VR., 2019. Anti- Inflammatory and Anti-Oxidant Activity of Portulaca oleracea Extract on LPS-Induced Rat Lung Injury. Molecules, 24, 139.
  • 8. Zhang H., Sha J., Feng X., Hu X., Chen Y., Li B., Fan H., 2019. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3beta/STAT3- NF-kappaB signaling pathway in rats. Int Immunopharmacol, 74, 105717.
  • 9. Remick DG., Newcomb DE., Bolgos GL., Call DR., 2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock, 13, 110-116.
  • 10. Tracey KJ., Fong Y., Hesse DG., Manogue KR., Lee AT., Kuo GC., Lowry SF., Cerami A., 1987. Anticachectin/ TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature, 330, 662-664.
  • 11. Tiwari MM., Brock RW., Megyesi JK., Kaushal GP., Mayeux PR., 2005. Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol, 289, F1324-1332.
  • 12. Kose D., Cadirci E., Halici Z., Sirin B., Dincer B., 2019. The investigation of possible roles of central 5-HT7 receptors in antipyretic effect mechanism of paracetamol in LPS-induced hyperthermia model of mice. Inflammopharmacology, 27, 1169-1178.
  • 13. Abareshi A., Anaeigoudari A., Norouzi F., Marefati N., Beheshti F., Saeedjalali M., Hosseini M., 2019. The effects of captopril on lipopolysaccharideinduced sickness behaviors in rats. Vet Res Forum, 10, 199-205.
  • 14. İskit A., 2005. Sepsiste Deneysel Modeller. Yoğun Bakım Dergisi, 5, 133-136.
  • 15. Cadirci E., Halici Z., Bayir Y., Albayrak A., Karakus E., Polat B., Unal D., Atamanalp SS., Aksak S., Gundogdu C., 2013. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats. Immunobiology, 218, 1271-1283.
  • 16. Elin RJ., Robinson RA., Levine AS., Wolff SM., 1975. Lack of clinical usefulness of the limulus test in the diagnosis of endotoxemia. N Engl J Med, 293, 521-524.
  • 17. Iskit AB., Guc MO., 2001. The timing of endothelin and nitric oxide inhibition affects survival in a mice model of septic shock. Eur J Pharmacol, 414, 281-287.
  • 18. Kazarian KK., Perdue PW., Lynch W., Dziki A., Nevola J., Lee CH., Hayward I., Williams T., Law WR., 1994. Porcine peritoneal sepsis: modeling for clinical relevance. Shock, 1, 201-212.
  • 19. Freise H., Bruckner UB., Spiegel HU., 2001. Animal models of sepsis. J Invest Surg, 14, 195-212.
  • 20. Bartlett JG., Onderdonk AB., Louie T., Kasper DL., Gorbach SL., 1978. A review. Lessons from an animal model of intra-abdominal sepsis. Arch Surg, 113, 853-857.
  • 21. Wichterman KA., Baue AE., Chaudry IH., 1980. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res, 29, 189-201.
  • 22. Wu XJ., Yan XT., Yang XM., Zhang Y., Wang HY., Luo H., Fang Q., Li H., Li XY., Chen K., Wang YL., Zhang ZZ., Song XM., 2020. GTS-21 ameliorates polymicrobial sepsis-induced hepatic injury by modulating autophagy through alpha7nAchRs in mice. Cytokine, 128, 155019.
  • 23. Piliponsky AM., Shubin NJ., Lahiri AK., Truong P., Clauson M., Niino K., Tsuha AL., Nedospasov SA., Karasuyama H., Reber LL., Tsai M., Mukai K., Galli SJ., 2019. Basophil-derived tumor necrosis factor can enhance survival in a sepsis model in mice. Nat Immunol, 20, 129-140.
  • 24. Ibrahim YF., Moussa RA., Bayoumi AMA., Ahmed AF., 2020. Tocilizumab attenuates acute lung and kidney injuries and improves survival in a rat model of sepsis via down regulation of NFkappaB/ JNK: a possible role of P-glycoprotein. Inflammopharmacology, 28, 215-230.
  • 25. Polat B., Cadirci E., Halici Z., Bayir Y., Unal D., Bilgin BC., Yuksel TN., Vancelik S., 2013. The protective effect of amiodarone in lung tissue of cecal ligation and puncture-induced septic rats: a perspective from inflammatory cytokine release and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol, 386, 635-643.
  • 26. Ruiz S., Vardon-Bounes F., Merlet-Dupuy V., Conil JM., Buleon M., Fourcade O., Tack I., Minville V., 2016. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive Care Med Exp, 4, 22.
  • 27. Tang CS., Liu MS., 1996. Initial externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am J Physiol- Regul Integr Comp Physiol, 270, R254-R263.
  • 28. Chen SJ., Wu CC., Yen MH., 1994. Alterations of Ex-Vivo Vascular Reactivity in Intraperitoneal Sepsis. J Cardiovasc Pharmacol, 24, 786-793.
  • 29. Hwang TL., Lau YT., Chen MF., Tang CS., Liu MS., 1993. Biphasic Intracellular Redistribution of Alpha-1-Adrenergic Receptors in Rat-Liver During Sepsis. Am J Physiol, 265, R385-R391.
  • 30. Toscano MG., Ganea D., Gamero AM., 2011. Cecal ligation puncture procedure. J Vis Exp, 7, 2860.
  • 31. Han Y., Li X., Gao S., Liu X., Kang L., Li X., Lang Y., Li X., Sun M., Gai Z., Yu S., 2019. Interleukin 17 is an important pathogenicity gene in pediatric sepsis. J Cell Biochem,120,3664-3671.
  • 32. Doulias T., Quickert S., Weis S., Claus RA., Kontopoulou K., Giamarellos-Bourboulis EJ., Bauer M., Koutelidakis IM., 2018. Low-dose hydrocortisone prolongs survival in a lethal sepsis model in adrenalectomized rats. J Surg Res, 227,72-80.
  • 33. Goldfarb RD., Glock D., Kumar A., Mccarthy RJ., Mei J., Guynn T., Matushek M., Trenholme G., Parrillo JE., 1996. A porcine model of peritonitis and bacteremia simulates human septic shock. Shock, 6, 442-451.
  • 34. Gurtner GC., Robertson CS., Chung SC., Ling TK., Ip SM., Li AK., 1995. Effect of carbon dioxide pneumoperitoneum on bacteraemia and endotoxaemia in an animal model of peritonitis. Br J Surg, 82, 844-848.
  • 35. Aranow JS., Zhuang J., Wang H., Larkin V., Smith M., Fink M.P., 1996. A selective inhibitor of inducible in nitric oxide synthase prolongs survival in a rat model of bacterial peritonitis: comparison with two nonselective strategies. Shock, 5, 116-121.
  • 36. Channabasappa S., Durgaiah M., Chikkamadaiah R., Kumar S., Joshi A., Sriram B., 2018. Efficacy of novel antistaphylococcal ectolysin P128 in a rat model of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother, 62.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Beyzagül Erkayman

Publication Date October 27, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

APA Erkayman, B. (2020). Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 15(2), 181-186. https://doi.org/10.17094/ataunivbd.690314
AMA Erkayman B. Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. October 2020;15(2):181-186. doi:10.17094/ataunivbd.690314
Chicago Erkayman, Beyzagül. “Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15, no. 2 (October 2020): 181-86. https://doi.org/10.17094/ataunivbd.690314.
EndNote Erkayman B (October 1, 2020) Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15 2 181–186.
IEEE B. Erkayman, “Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 15, no. 2, pp. 181–186, 2020, doi: 10.17094/ataunivbd.690314.
ISNAD Erkayman, Beyzagül. “Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15/2 (October 2020), 181-186. https://doi.org/10.17094/ataunivbd.690314.
JAMA Erkayman B. Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2020;15:181–186.
MLA Erkayman, Beyzagül. “Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 15, no. 2, 2020, pp. 181-6, doi:10.17094/ataunivbd.690314.
Vancouver Erkayman B. Sepsis Oluşturmak İçin Kullanılan Deneysel Hayvan Modelleri. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2020;15(2):181-6.