Review
BibTex RIS Cite

İkinci beyin: Bağırsak

Year 2020, Volume: 15 Issue: 2, 187 - 195, 27.10.2020
https://doi.org/10.17094/ataunivbd.701620

Abstract

Bağırsak mikrobiyotası konakçılara paralel olarak gelişen ve konakçının fizyolojik ortamına bağlı karmaşık bir ekosistemi temsil etmektedir. Enterik sinir sisteminin 100 milyondan fazla nöron içermesi ve merkezi sinir sisteminden bağımsız işlev  görebilmesi onun ikinci beyin olarak adlandırılmasına da neden olmuştur. Bağırsak mikrobiyotası beyin ve bağırsak arasında bir ilişki oluşturarak insan sağlığı üzerinde önemli bir rol oynar. Hastalıklarla bağırsak mikrobiyotası arasındaki ilişki incelendiğinde bazı hastalıklarda özel bir mikrobiyota olduğu ortaya konmuştur. Bu mikrobiyota sağlıklı bir insanın mikrobiyotasından farklıdır. Obezite, diyabet gibi metabolik hastalıklar ve Parkinson, Alzheimer gibi nörodejeneratif bozukluklarla bağırsak mikrobiyotası arasında bağlantı olduğuna ilişkin güçlü kanıtlar sunulmuştur. Yapılan araştırmalar gastrointestinal sistemde yaşayan faydalı ve zararlı mikroorganizmaların immün sistemi, nöral yolakları ve merkezi sinir sistemini uyardığını ortaya koymaktadır. Bu mikroorganizmalar beyin ve bağırsak için önemli olan gama amino bütirik asit, dopamin ve serotonin gibi nörotransmitter maddeleri üretmektedir. Son yıllarda bağırsak mikrobiyotasına olan ilgi ve bu
doğrultuda yapılan çalışmalar bu bakterilerin çevresel faktörlerden nasıl etkilendiğini ve sinir sistemi üzerinde nasıl etkiler oluşturabildiğini göstermiştir. Çevresel etkenler ve beslenmenin bağırsak mikrobiyotası üzerindeki etkileri de son yıllarda açığa çıkmaya başlamıştır. Bu makalede bağırsak mikrobiyotasının beyin, davranış ve nöropsikiyatrik bozukluklar üzerine etkisi incelenmiştir.

References

  • 1. Haque SZ., Haque M., 2017. The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms–an appraisal. Clin Exp Gastroenterol, 10, 91-103.
  • 2. Ottman N., Smidt H., De Vos WM., Belzer C., 2012. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol, 2, 104.
  • 3. Guinane CM., Cotter PD., 2013. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol, 6, 295-308.
  • 4. Costello EK., Stagaman K., Dethlefsen L., Bohannan BJ., Relman DA., 2012. The application of ecological theory toward an understanding of the human microbiome. Science, 336, 1255-1262.
  • 5. Yoo BB., Mazmanian SK., 2017. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 46, 910- 926.
  • 6. Sender R., Fuchs S., Milo R., 2016. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol, 14, e1002533.
  • 7. Furness JB., 2012. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol, 9, 286-294.
  • 8. Hyland NP., Cryan JF., 2016. Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev Biol, 417, 182-187.
  • 9. Cryan JF., Dinan TG., 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 13, 701-712.
  • 10. Wang HX., Wang YP., 2016. Gut Microbiota-brain Axis. Chin Med J (Engl), 129, 2373-80.
  • 11. Dinan TG., Stanton C., Cryan JF., 2013. Psychobiotics: a novel class of psychotropic. Biol Psychiatry, 74, 720-726.
  • 12. Antonini M., Lo Conte M., Sorini C., Falcone M., 2019. How the interplay between the commensal microbiota, gut barrier integrity and mucosal immunity regulates brain autoimmunity. Front Immunol, 10, 1937.
  • 13. Mccusker RH., Kelley KW., 2013. Immune-neural connections: how the immune system's response to infectious agents influences behavior. J Exp Biol, 216, 84-98.
  • 14. Coureuil M., Lecuyer H., Bourdoulous S., Nassif X., 2017. A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol, 15, 149-159.
  • 15. Nagyoszi P., Wilhelm I., Farkas AE., Fazakas C., Dung NT., Hasko J., Krizbai IA., 2010. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int, 57, 556-564.
  • 16. Boveri M., Kinsner A., Berezowski V., Lenfant AM., Draing C., Cecchelli R., Dehouck MP., Hartung T., Prieto P., Bal-Price A., 2006. Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neurosci, 137, 1193- 1209.
  • 17. Logsdon AF., Erickson MA., Rhea EM., Salameh TS., Banks WA., 2018. Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood), 243, 159-165.
  • 18. Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Toth M., Korecka A., Bakocevic N., Ng LG., Kundu P., Gulyas B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe BT., Diamond B., Pettersson S., 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 6, 263ra158.
  • 19. Chen T., Kim CY., Kaur A., Lamothe L., Shaikh M., Keshavarzian A., Hamaker BR., 2017. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct, 8, 1166-1173.
  • 20. Erny D., Hrabe De Angelis AL., Jaitin D., Wieghofer P., Staszewski O., David E., Keren-Shaul H., Mahlakoiv T., Jakobshagen K., Buch T., Schwierzeck V., Utermohlen O., Chun E., Garrett WS., Mccoy KD., Diefenbach A., Staeheli P., Stecher B., Amit I., Prinz M., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 18, 965-977.
  • 21. Filiano AJ., Gadani SP., Kipnis J., 2017. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci, 18, 375-384.
  • 22. Filiano AJ., Xu Y., Tustison NJ., Marsh RL., Baker W., Smirnov I., Overall CC., Gadani SP., Turner SD., Weng Z., Peerzade SN., Chen H., Lee KS., Scott MM., Beenhakker MP., Litvak V., Kipnis J., 2016. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature, 535, 425-429.
  • 23. Diaz Heijtz R., Wang S., Anuar F., Qian Y., Bjorkholm B., Samuelsson A., Hibberd ML., Forssberg H., Pettersson S., 2011. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA, 108, 3047-3052.
  • 24. Neuman H., Debelius JW., Knight R., Koren O., 2015. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev, 39, 509 521.
  • 25. Roshchina VV., 2010. Evolutionary Considerations of Neurotransmitters in Microbial, Plant, and Animal Cells, in Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Springer New York, 17-52.
  • 26. Takaki M., Mawe GM., Barasch JM., Gershon MD., Gershon MD., 1985. Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neurosci, 16, 223-240.
  • 27. Asano Y., Hiramoto T., Nishino R., Aiba Y., Kimura T., Yoshihara K., Koga Y., Sudo N., 2012. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol, 303, G1288-1295.
  • 28. Pierantozzi M., Pietroiusti A., Brusa L., Galati S., Stefani A., Lunardi G., Fedele E., Sancesario G., Bernardi G., Bergamaschi A., Magrini A., Stanzione P., Galante A., 2006. Helicobacter pylori eradication and l-dopa absorption in patients with PD and motor fluctuations. Neurology, 66, 1824-1829.
  • 29. Feehily C., Karatzas KA., 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol, 114, 11-24.
  • 30. Dahlin M., Elfving A., Ungerstedt U., Amark P., 2005. The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res, 64, 115-125.
  • 31. De Theije CG., Wopereis H., Ramadan M., Van Eijndthoven T., Lambert J., Knol J., Garssen J., Kraneveld AD., Oozeer R., 2014. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun, 37, 197-206.
  • 32. Li Q., Zhou JM., 2016. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neurosci, 324, 131-139.
  • 33. Adams JB., Johansen LJ., Powell LD., Quig D., Rubin RA., 2011. Gastrointestinal flora and gastrointestinal status in children with autism comparisons to typical children and correlation with autism severity. BMC Gastroenterol, 11, 22.
  • 34. Wang L., Christophersen CT., Sorich MJ., Gerber JP., Angley MT., Conlon MA., 2012. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci, 57, 2096-2102.
  • 35. Foley KA., Macfabe DF., Vaz A., Ossenkopp KP., Kavaliers M., 2014. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. Int J Dev Neurosci, 39, 68-78.
  • 36. Macfabe D., 2012. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb Ecol Health Dis, 23, 1-24.
  • 37. Bolte ER., 1998. Autism and Clostridium tetani. Med Hypotheses, 51, 133-144.
  • 38. Felice VD., Quigley EM., Sullivan AM., O'keeffe GW., O'mahony SM., 2016. Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism Relat Disord, 27, 1-8.
  • 39. Park H., Lee JY., Shin CM., Kim JM., Kim TJ., Kim JW., 2015. Characterization of gastrointestinal disorders in patients with parkinsonian syndromes. Parkinsonism Relat Disord, 21, 455-460.
  • 40. Pierantozzi M., Pietroiusti A., Sancesario G., Lunardi G., Fedele E., Giacomini P., Frasca S., Galante A., Marciani MG., Stanzione P., 2001. Reduced L-dopa absorption and increased clinical fluctuations in Helicobacter pylori-infected Parkinson's disease patients. Neurol Sci, 22, 89-91.
  • 41. Dinan TG., Cryan JF., 2015. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care, 18, 552-558.
  • 42. Kalaria RN., 2010. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev, 68 (2), 74-87.
  • 43. Minter MR., Zhang C., Leone V., Ringus DL., Zhang X., Oyler-Castrillo P., Musch MW., Liao F., Ward JF., Holtzman DM., Chang EB., Tanzi RE., Sisodia SS., 2016. Antibiotic-induced perturbations in gut microbial diversity influences neuroinflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep, 6, 30028.
  • 44. Vogt NM., Kerby RL., Dill-Mcfarland KA., Harding SJ., Merluzzi AP., Johnson SC., Carlsson CM., Asthana S., Zetterberg H., Blennow K., Bendlin BB., Rey FE., 2017. Gut microbiome alterations in Alzheimer's disease. Sci Rep, 7, 13537.
  • 45. Harach T., Marungruang N., Duthilleul N., Cheatham V., Mc Coy KD., Frisoni G., Neher JJ., Fak F., Jucker M., Lasser T., Bolmont T., 2017. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep, 7, 41802.

Second brain: Gut

Year 2020, Volume: 15 Issue: 2, 187 - 195, 27.10.2020
https://doi.org/10.17094/ataunivbd.701620

Abstract

Intestinal microbiota represents a complex ecosystem that develops in parallel with the hosts and depends on the physiological environment of the host. The enteric nervous system containing more than 100 million neurons and its ability to function independently from the central nervous system also caused it to be called the second brain. The gut microbiota plays an important role in human health by creating a relationship between the brain and the gut. When the relationship between diseases and intestinal microbiota is examined, it is revealed that there is a special microbiota in some diseases. This microbiota is different from the microbiota of a healthy person. Strong evidence is provided that there is a link between metabolic diseases such as obesity, diabetes, and neurodegenerative disorders such as Parkinson and Alzheimer's, and intestinal microbiota. Research shows that beneficial and harmful microorganisms living in the gastrointestinal tract stimulate the immune system, neural pathways and central nervous system. These microorganisms produce neurotransmitter substances such as gamma amino butyric acid, dopamine and serotonin, which are important for the brain and intestine. In this article, the effects of intestinal microbiota on brain, behavior and neuropsychiatric disorders were investigated.

References

  • 1. Haque SZ., Haque M., 2017. The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms–an appraisal. Clin Exp Gastroenterol, 10, 91-103.
  • 2. Ottman N., Smidt H., De Vos WM., Belzer C., 2012. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol, 2, 104.
  • 3. Guinane CM., Cotter PD., 2013. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol, 6, 295-308.
  • 4. Costello EK., Stagaman K., Dethlefsen L., Bohannan BJ., Relman DA., 2012. The application of ecological theory toward an understanding of the human microbiome. Science, 336, 1255-1262.
  • 5. Yoo BB., Mazmanian SK., 2017. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 46, 910- 926.
  • 6. Sender R., Fuchs S., Milo R., 2016. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol, 14, e1002533.
  • 7. Furness JB., 2012. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol, 9, 286-294.
  • 8. Hyland NP., Cryan JF., 2016. Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev Biol, 417, 182-187.
  • 9. Cryan JF., Dinan TG., 2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 13, 701-712.
  • 10. Wang HX., Wang YP., 2016. Gut Microbiota-brain Axis. Chin Med J (Engl), 129, 2373-80.
  • 11. Dinan TG., Stanton C., Cryan JF., 2013. Psychobiotics: a novel class of psychotropic. Biol Psychiatry, 74, 720-726.
  • 12. Antonini M., Lo Conte M., Sorini C., Falcone M., 2019. How the interplay between the commensal microbiota, gut barrier integrity and mucosal immunity regulates brain autoimmunity. Front Immunol, 10, 1937.
  • 13. Mccusker RH., Kelley KW., 2013. Immune-neural connections: how the immune system's response to infectious agents influences behavior. J Exp Biol, 216, 84-98.
  • 14. Coureuil M., Lecuyer H., Bourdoulous S., Nassif X., 2017. A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol, 15, 149-159.
  • 15. Nagyoszi P., Wilhelm I., Farkas AE., Fazakas C., Dung NT., Hasko J., Krizbai IA., 2010. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int, 57, 556-564.
  • 16. Boveri M., Kinsner A., Berezowski V., Lenfant AM., Draing C., Cecchelli R., Dehouck MP., Hartung T., Prieto P., Bal-Price A., 2006. Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neurosci, 137, 1193- 1209.
  • 17. Logsdon AF., Erickson MA., Rhea EM., Salameh TS., Banks WA., 2018. Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood), 243, 159-165.
  • 18. Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Toth M., Korecka A., Bakocevic N., Ng LG., Kundu P., Gulyas B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe BT., Diamond B., Pettersson S., 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 6, 263ra158.
  • 19. Chen T., Kim CY., Kaur A., Lamothe L., Shaikh M., Keshavarzian A., Hamaker BR., 2017. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct, 8, 1166-1173.
  • 20. Erny D., Hrabe De Angelis AL., Jaitin D., Wieghofer P., Staszewski O., David E., Keren-Shaul H., Mahlakoiv T., Jakobshagen K., Buch T., Schwierzeck V., Utermohlen O., Chun E., Garrett WS., Mccoy KD., Diefenbach A., Staeheli P., Stecher B., Amit I., Prinz M., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 18, 965-977.
  • 21. Filiano AJ., Gadani SP., Kipnis J., 2017. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci, 18, 375-384.
  • 22. Filiano AJ., Xu Y., Tustison NJ., Marsh RL., Baker W., Smirnov I., Overall CC., Gadani SP., Turner SD., Weng Z., Peerzade SN., Chen H., Lee KS., Scott MM., Beenhakker MP., Litvak V., Kipnis J., 2016. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature, 535, 425-429.
  • 23. Diaz Heijtz R., Wang S., Anuar F., Qian Y., Bjorkholm B., Samuelsson A., Hibberd ML., Forssberg H., Pettersson S., 2011. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA, 108, 3047-3052.
  • 24. Neuman H., Debelius JW., Knight R., Koren O., 2015. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev, 39, 509 521.
  • 25. Roshchina VV., 2010. Evolutionary Considerations of Neurotransmitters in Microbial, Plant, and Animal Cells, in Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Springer New York, 17-52.
  • 26. Takaki M., Mawe GM., Barasch JM., Gershon MD., Gershon MD., 1985. Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neurosci, 16, 223-240.
  • 27. Asano Y., Hiramoto T., Nishino R., Aiba Y., Kimura T., Yoshihara K., Koga Y., Sudo N., 2012. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol, 303, G1288-1295.
  • 28. Pierantozzi M., Pietroiusti A., Brusa L., Galati S., Stefani A., Lunardi G., Fedele E., Sancesario G., Bernardi G., Bergamaschi A., Magrini A., Stanzione P., Galante A., 2006. Helicobacter pylori eradication and l-dopa absorption in patients with PD and motor fluctuations. Neurology, 66, 1824-1829.
  • 29. Feehily C., Karatzas KA., 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol, 114, 11-24.
  • 30. Dahlin M., Elfving A., Ungerstedt U., Amark P., 2005. The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res, 64, 115-125.
  • 31. De Theije CG., Wopereis H., Ramadan M., Van Eijndthoven T., Lambert J., Knol J., Garssen J., Kraneveld AD., Oozeer R., 2014. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun, 37, 197-206.
  • 32. Li Q., Zhou JM., 2016. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neurosci, 324, 131-139.
  • 33. Adams JB., Johansen LJ., Powell LD., Quig D., Rubin RA., 2011. Gastrointestinal flora and gastrointestinal status in children with autism comparisons to typical children and correlation with autism severity. BMC Gastroenterol, 11, 22.
  • 34. Wang L., Christophersen CT., Sorich MJ., Gerber JP., Angley MT., Conlon MA., 2012. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci, 57, 2096-2102.
  • 35. Foley KA., Macfabe DF., Vaz A., Ossenkopp KP., Kavaliers M., 2014. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. Int J Dev Neurosci, 39, 68-78.
  • 36. Macfabe D., 2012. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb Ecol Health Dis, 23, 1-24.
  • 37. Bolte ER., 1998. Autism and Clostridium tetani. Med Hypotheses, 51, 133-144.
  • 38. Felice VD., Quigley EM., Sullivan AM., O'keeffe GW., O'mahony SM., 2016. Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism Relat Disord, 27, 1-8.
  • 39. Park H., Lee JY., Shin CM., Kim JM., Kim TJ., Kim JW., 2015. Characterization of gastrointestinal disorders in patients with parkinsonian syndromes. Parkinsonism Relat Disord, 21, 455-460.
  • 40. Pierantozzi M., Pietroiusti A., Sancesario G., Lunardi G., Fedele E., Giacomini P., Frasca S., Galante A., Marciani MG., Stanzione P., 2001. Reduced L-dopa absorption and increased clinical fluctuations in Helicobacter pylori-infected Parkinson's disease patients. Neurol Sci, 22, 89-91.
  • 41. Dinan TG., Cryan JF., 2015. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care, 18, 552-558.
  • 42. Kalaria RN., 2010. Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev, 68 (2), 74-87.
  • 43. Minter MR., Zhang C., Leone V., Ringus DL., Zhang X., Oyler-Castrillo P., Musch MW., Liao F., Ward JF., Holtzman DM., Chang EB., Tanzi RE., Sisodia SS., 2016. Antibiotic-induced perturbations in gut microbial diversity influences neuroinflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep, 6, 30028.
  • 44. Vogt NM., Kerby RL., Dill-Mcfarland KA., Harding SJ., Merluzzi AP., Johnson SC., Carlsson CM., Asthana S., Zetterberg H., Blennow K., Bendlin BB., Rey FE., 2017. Gut microbiome alterations in Alzheimer's disease. Sci Rep, 7, 13537.
  • 45. Harach T., Marungruang N., Duthilleul N., Cheatham V., Mc Coy KD., Frisoni G., Neher JJ., Fak F., Jucker M., Lasser T., Bolmont T., 2017. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep, 7, 41802.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Oğuzcan Koca 0000-0001-5311-3111

Nurcan Dönmez

Publication Date October 27, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

APA Koca, O., & Dönmez, N. (2020). İkinci beyin: Bağırsak. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 15(2), 187-195. https://doi.org/10.17094/ataunivbd.701620
AMA Koca O, Dönmez N. İkinci beyin: Bağırsak. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. October 2020;15(2):187-195. doi:10.17094/ataunivbd.701620
Chicago Koca, Oğuzcan, and Nurcan Dönmez. “İkinci Beyin: Bağırsak”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15, no. 2 (October 2020): 187-95. https://doi.org/10.17094/ataunivbd.701620.
EndNote Koca O, Dönmez N (October 1, 2020) İkinci beyin: Bağırsak. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15 2 187–195.
IEEE O. Koca and N. Dönmez, “İkinci beyin: Bağırsak”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 15, no. 2, pp. 187–195, 2020, doi: 10.17094/ataunivbd.701620.
ISNAD Koca, Oğuzcan - Dönmez, Nurcan. “İkinci Beyin: Bağırsak”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15/2 (October 2020), 187-195. https://doi.org/10.17094/ataunivbd.701620.
JAMA Koca O, Dönmez N. İkinci beyin: Bağırsak. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2020;15:187–195.
MLA Koca, Oğuzcan and Nurcan Dönmez. “İkinci Beyin: Bağırsak”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 15, no. 2, 2020, pp. 187-95, doi:10.17094/ataunivbd.701620.
Vancouver Koca O, Dönmez N. İkinci beyin: Bağırsak. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2020;15(2):187-95.