Research Article
BibTex RIS Cite

Diyabetik ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu

Year 2021, Volume: 16 Issue: 3, 251 - 258, 30.12.2021
https://doi.org/10.17094/ataunivbd.879099

Abstract

Çalışmamızda, diyabetik ve non-diyabetik farelerin midelerinin fundus bölgesinde meydana gelen yapısal değişiklikleri histolojik olarak incelemek ve Hepatosit Büyüme Faktörü (HGF)’nün midedeki immunohistokimyasal dağılımını belirlemek amaçlanmıştır. Çalışmada, 45 adet swiss albino fare, kontrol, sham ve diyabetik olarak üç gruba ayrıldı. Diyabet oluşturulması için 100 mg/kg STZ intraperitoneal (IP) uygulaması ile yapıdı. 200 mg/dl’nin üzerinde kan glikoz düzeyi olan fareler diyabetli olarak kabul edildi. Deneklerin mide dokuları 3., 15. ve 30. günlerde alındı. Mide dokusunun fundus bölgesinin histolojik yapısını incelemek için alınan kesitlere H&E boyaması yapıldı. HGF’nin immunoreaktivitesini belirlemek amacıyla Avidin-Biotin-Peroksidaz Kompleks (ABC) metodu uygulandı. Çalışmada diyabetik grupta diğer gruplara göre canlı ağırlıkta azalma olduğu belirlendi. Diyabetik ratların mide dokusunun histolojik yapısında kontrol grubuna göre bir farklılık görülmedi. Diyabetik, kontrol ve sham gruplarında HGF’nin benzer alanlarda immunolokalizasyon gösterdiği saptandı. HGF immunreaktivitesinin diyabetik grupta kontrol ve sham gruplarına göre daha zayıf bir reaksiyon verdiği tespit edildi. HGF, diyabet ve midenin fundus bölgesinin ilişkisini açıklayan immunohistokimyasal bir araştırmaya rastlanılmadığı için yaptığımız çalışmanın bu ilişkiyi açıklamasına yardımcı olacağını ve bu alanda yapılacak yeni çalışmalara yol göstereceğini düşünmekteyiz.

References

  • 1. Catchpole B., Ristic JM., Fleeman LM., Davison LJ., 2005. Canine Diabetes Mellitus: can old dogs teach us new tricks?. Diabetologia, 48, 1948-1956.
  • 2. Börset M., Hansen HH., Seidel C., Sundan A., Waage A., 1996. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood, 88, 3998-4004.
  • 3. Birchmeier A., Birchmeier W., Gherardi E., Vande Woude GF., 2003. Met, metastasis, motility and more. Nat Rev Mol Cell Biol, 4, 915-925.
  • 4. You WK., McDonald DM., 2008. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep, 41, 833-839.
  • 5. Dai C., Li Y., Yang J., Liu Y., 2003. Hepatocyte growth factor preserves beta cells mass and mitigates hyperglycemia in streptozotocin induced diabetic mice. J Biol Chem, 278, 27080-27087.
  • 6. Rand JS., Fleeman LM., Farrow HA., Appleton DJ., Lederer R., 2004. Canine and feline diabetes mellitus nature or nuture. J Nutr, 134, 2072-2080.
  • 7. Reusch CE., Tschour F., Kley S., Boretti S., Sieber-Ruckstuhl N., 2006. Diabetes mellitus in the cat: A Review. Schweiz Arch Tierheilkd, 148, 130-138.
  • 8. Tang YL., Dong XY., Zeng ZG., Feng Z., 2020. Gene expression-based analysis identified NTNG1 and HGF as biomarkers for diabetic kidney disease. Medicine (Baltimore), 99, e18596.
  • 9. Kastelan S., Oreskovic I., Biscan F., Kastelan H., Gverovic Antunica A., 2020. Inflammatory and angiogenic biomarkers in diabetic retinopathy. Biochem Med, 30, 385-399.
  • 10. Fujita Y., Murakami T., Nakamura A., 2021. Recent advances in biomarkers and regenerative medicine for diabetic neuropathy. Int J Mol Sci, 22, 2301.
  • 11. Oliveira AG., Araujo TG., Carvalho BM., Rocha GZ., Santos A., Saad MJA., 2018. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne), 30, 503.
  • 12. Kanitkar M., Bhonde R., 2004. Existence of islet regenerating factors within the pancreas. Rev Diabet Stud, 1, 185-192.
  • 13. Luna LD., 1968. Manuel of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed., 38-39, McGraw-Hill Book Company, New York.
  • 14. Hsu SM., Raine L., Fanger H., 1981. Use of avidin- biotin- peroxidase cpmplex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem, 29, 577-580.
  • 15. Shu S., Ju G., Fan L., 1988. The glucose oxidase-dan-nickel in peroxidase histochemistry of the nervous system. Neuroscience Lett, 85, 169-171.
  • 16. Jelodar G., Mohammadi M., Akbari A., Nazifi S., 2020. Cyclohexane extract of walnut leaves improves indices of oxidative stress, total homocysteine and lipids profiles in streptozotocin‐induced diabetic rats. Physiol Rep, 8, e14348.
  • 17. Bastaki SMA., Adeghate E., Chandranath IS., Amir N., Tariq S., Hameed RS., Adem A., 2010. Effects of streptozotocin-induced long-term diabetes on parietal cell function and morphology in rats. Mol Cell Biochem, 341, 43-50.
  • 18. O’Reilly D., Long RG., 1987. Diabetes and the gastrointestinal tract. Dig Dis Sci, 5, 57-64.
  • 19. Takehara K., Tashima K., Takeuchi K., 1997. Alterations in duodenal bicarbonate secretion and mucosal susceptibility to acid in diabetic rats. Gastroenterology, 112, 418-428.
  • 20. Lin CY., Yeh GH., Hsu FC., Tsai SC., Lau CP., Pu HF., Yu HL., Tung YF., Wang PS., 1991. Gastric acid secretion in streptozotocin-diabetic female rats. Clin J Physiol, 34, 179-186.
  • 21. Baydoun R., Dunbar JC., 1997. Impaired insulin but normal pentagastrin effect on gastric acid secretion in diabetic rats: a role for nitric oxide. Diabetes Res Clin Pract, 38, 1-8.
  • 22. Feldman M., Schiller LR., 1983. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med, 98, 378-384.
  • 23. Weber JR., Ryan JC., 1998. Effects on the gut of systemic disease and other extraintestinal conditions. In: Scharschmidt BF, Slei-singer MH, Feldman M (eds) Gastrointestinal and liver disease. WB Saunders Co, Philadelphia, pp: 413-416.
  • 24. Grant DS., Kleinman HK., Goldberg ID., Bhargava MM., Nickoloff BJ., Kinsella JL., Polverini P., Rosen EM., 1993. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci, 90, 1937-1941.
  • 25. Ono K., Matsumori A., Shioi T., Furukawa Y., Sasayama S., 1997. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Am Heart Ass, 95, 2552-2558.
  • 26. Mizuno S., Nakamura T., 2005. Prevention of neutrophil extravasation by hepatocyte growth factor leads to attenuations of tubular apoptosis and renal dysfunction in mouse ischemic kidneys. Am J Pathol, 166, 1895-1905

Immunohistochemical Localization of Hepatocyte Growth Factor (HGF) in the Fundus Area of the Stomach of Diabetic and Non-Diabetic Mice

Year 2021, Volume: 16 Issue: 3, 251 - 258, 30.12.2021
https://doi.org/10.17094/ataunivbd.879099

Abstract

Our study has been conducted in order to histologically analyze the morphologic changes that occur in the fundus area of the stomachs of diabetic and non-diabetic mice and designate the immunohistochemical distribution of the hepatocyte growth factor (HGF) in the stomach. Forty-five Swiss albino mice have been divided into control, sham, and diabetic groups for the study. Streptozotocin at the dose of 100mg/kg has been administered intraperitoneally (IP) to the end of inducing diabetes. Mice with blood glucose levels higher than 200mg/dl have been deemed diabetic. Stomach tissues of the specimens were collected on the 3rd, 15th, and 30th days. H&E stain has been performed on the sections in order to examine the histological structure of the fundus area of the stomach. The Avidin-Biotin-Peroxidase Complex (ABC) method has been performed in order to determine the immunoreactivity of HGF. In the study, it has been found that bodyweight had been decreased in the diabetic group compared to other groups. There was no difference in the histological structure of the stomach tissue of diabetic rats compared to the control group. HGF has been observed to demonstrate immunolocalization on similar areas in the diabetic, control, and sham groups. HGF immunoreactivity has been found to react in a milder way in the diabetic group compared to other groups. We think that the study we have conducted will usher in future studies in this field and help explain the relationship between diabetes and the fundus area of the stomach since no immunohistochemical study explaining this relationship has been found in the literature.

References

  • 1. Catchpole B., Ristic JM., Fleeman LM., Davison LJ., 2005. Canine Diabetes Mellitus: can old dogs teach us new tricks?. Diabetologia, 48, 1948-1956.
  • 2. Börset M., Hansen HH., Seidel C., Sundan A., Waage A., 1996. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood, 88, 3998-4004.
  • 3. Birchmeier A., Birchmeier W., Gherardi E., Vande Woude GF., 2003. Met, metastasis, motility and more. Nat Rev Mol Cell Biol, 4, 915-925.
  • 4. You WK., McDonald DM., 2008. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep, 41, 833-839.
  • 5. Dai C., Li Y., Yang J., Liu Y., 2003. Hepatocyte growth factor preserves beta cells mass and mitigates hyperglycemia in streptozotocin induced diabetic mice. J Biol Chem, 278, 27080-27087.
  • 6. Rand JS., Fleeman LM., Farrow HA., Appleton DJ., Lederer R., 2004. Canine and feline diabetes mellitus nature or nuture. J Nutr, 134, 2072-2080.
  • 7. Reusch CE., Tschour F., Kley S., Boretti S., Sieber-Ruckstuhl N., 2006. Diabetes mellitus in the cat: A Review. Schweiz Arch Tierheilkd, 148, 130-138.
  • 8. Tang YL., Dong XY., Zeng ZG., Feng Z., 2020. Gene expression-based analysis identified NTNG1 and HGF as biomarkers for diabetic kidney disease. Medicine (Baltimore), 99, e18596.
  • 9. Kastelan S., Oreskovic I., Biscan F., Kastelan H., Gverovic Antunica A., 2020. Inflammatory and angiogenic biomarkers in diabetic retinopathy. Biochem Med, 30, 385-399.
  • 10. Fujita Y., Murakami T., Nakamura A., 2021. Recent advances in biomarkers and regenerative medicine for diabetic neuropathy. Int J Mol Sci, 22, 2301.
  • 11. Oliveira AG., Araujo TG., Carvalho BM., Rocha GZ., Santos A., Saad MJA., 2018. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne), 30, 503.
  • 12. Kanitkar M., Bhonde R., 2004. Existence of islet regenerating factors within the pancreas. Rev Diabet Stud, 1, 185-192.
  • 13. Luna LD., 1968. Manuel of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed., 38-39, McGraw-Hill Book Company, New York.
  • 14. Hsu SM., Raine L., Fanger H., 1981. Use of avidin- biotin- peroxidase cpmplex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem, 29, 577-580.
  • 15. Shu S., Ju G., Fan L., 1988. The glucose oxidase-dan-nickel in peroxidase histochemistry of the nervous system. Neuroscience Lett, 85, 169-171.
  • 16. Jelodar G., Mohammadi M., Akbari A., Nazifi S., 2020. Cyclohexane extract of walnut leaves improves indices of oxidative stress, total homocysteine and lipids profiles in streptozotocin‐induced diabetic rats. Physiol Rep, 8, e14348.
  • 17. Bastaki SMA., Adeghate E., Chandranath IS., Amir N., Tariq S., Hameed RS., Adem A., 2010. Effects of streptozotocin-induced long-term diabetes on parietal cell function and morphology in rats. Mol Cell Biochem, 341, 43-50.
  • 18. O’Reilly D., Long RG., 1987. Diabetes and the gastrointestinal tract. Dig Dis Sci, 5, 57-64.
  • 19. Takehara K., Tashima K., Takeuchi K., 1997. Alterations in duodenal bicarbonate secretion and mucosal susceptibility to acid in diabetic rats. Gastroenterology, 112, 418-428.
  • 20. Lin CY., Yeh GH., Hsu FC., Tsai SC., Lau CP., Pu HF., Yu HL., Tung YF., Wang PS., 1991. Gastric acid secretion in streptozotocin-diabetic female rats. Clin J Physiol, 34, 179-186.
  • 21. Baydoun R., Dunbar JC., 1997. Impaired insulin but normal pentagastrin effect on gastric acid secretion in diabetic rats: a role for nitric oxide. Diabetes Res Clin Pract, 38, 1-8.
  • 22. Feldman M., Schiller LR., 1983. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med, 98, 378-384.
  • 23. Weber JR., Ryan JC., 1998. Effects on the gut of systemic disease and other extraintestinal conditions. In: Scharschmidt BF, Slei-singer MH, Feldman M (eds) Gastrointestinal and liver disease. WB Saunders Co, Philadelphia, pp: 413-416.
  • 24. Grant DS., Kleinman HK., Goldberg ID., Bhargava MM., Nickoloff BJ., Kinsella JL., Polverini P., Rosen EM., 1993. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci, 90, 1937-1941.
  • 25. Ono K., Matsumori A., Shioi T., Furukawa Y., Sasayama S., 1997. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Am Heart Ass, 95, 2552-2558.
  • 26. Mizuno S., Nakamura T., 2005. Prevention of neutrophil extravasation by hepatocyte growth factor leads to attenuations of tubular apoptosis and renal dysfunction in mouse ischemic kidneys. Am J Pathol, 166, 1895-1905
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Araştırma Makaleleri
Authors

Serap İlhan Aksu

Turgay Deprem 0000-0002-5523-8150

Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 16 Issue: 3

Cite

APA İlhan Aksu, S., & Deprem, T. (2021). Diyabetik ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 16(3), 251-258. https://doi.org/10.17094/ataunivbd.879099
AMA İlhan Aksu S, Deprem T. Diyabetik ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. December 2021;16(3):251-258. doi:10.17094/ataunivbd.879099
Chicago İlhan Aksu, Serap, and Turgay Deprem. “Diyabetik Ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 16, no. 3 (December 2021): 251-58. https://doi.org/10.17094/ataunivbd.879099.
EndNote İlhan Aksu S, Deprem T (December 1, 2021) Diyabetik ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 16 3 251–258.
IEEE S. İlhan Aksu and T. Deprem, “Diyabetik ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 16, no. 3, pp. 251–258, 2021, doi: 10.17094/ataunivbd.879099.
ISNAD İlhan Aksu, Serap - Deprem, Turgay. “Diyabetik Ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 16/3 (December 2021), 251-258. https://doi.org/10.17094/ataunivbd.879099.
JAMA İlhan Aksu S, Deprem T. Diyabetik ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2021;16:251–258.
MLA İlhan Aksu, Serap and Turgay Deprem. “Diyabetik Ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 16, no. 3, 2021, pp. 251-8, doi:10.17094/ataunivbd.879099.
Vancouver İlhan Aksu S, Deprem T. Diyabetik ve Non-Diyabetik Farelerin Midesinin Fundus Bölgesinde Hepatosit Büyüme Faktörü (HGF)’nün İmmunohistokimyasal Lokalizasyonu. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2021;16(3):251-8.