Review
BibTex RIS Cite

MikroRNA Polimorfizmleri ve Kanser

Year 2018, Volume: 1 Issue: 1, 1 - 18, 01.04.2018

Abstract

MikroRNA’lar (miRNA’lar) gen ekspresyon yolaklarını düzenleyerek biyolojik süreçte önemli
bir rol oynamaktadır. miRNA’ların işlevini yerine getirememesi kronik hastalıklardan kansere
kadar birçok patolojik gelişmeye yol açmaktadır. Son zamanlarda yapılan araştırmalar, bu
patolojik gelişmelere miRNA dizilerinde tanımlanan tek nükleotid polimorfizmlerinin (SNP)
yol açabileceğini ileri sürmektedir. miRNA’lar ile ilişkili SNP’lerin (miRSNP) genel etki
mekanizmalarının farklı olması, bu miRSNP’lerin biyolojik etkilerinin ve hastalık patogenezine
olan katkılarının anlaşılmasını zorlaştırmaktadır. Bununla birlikte bu polimorfik varyasyonların
kanser gibi hastalıklardaki rollerinin belirlenmesi, hastalığın tanı ve tedavisine yol gösterici
olması beklenmektedir. Bu derlemede, miRSNP’lerin miRNA biyogenezini, işlevini ve
hedef genini nasıl etkilediği ile çeşitli kanser türlerinin patogenezinde nasıl rol oynadığı
özetlenmektedir.

References

  • 1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281- 97.
  • 2. Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. MicroRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene. 2017.
  • 3. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic acids research. 2013;42(D1):D68-D73.
  • 4. Van Peer G, Lefever S, Anckaert J, Beckers A, Rihani A, Van Goethem A, et al. miRBase Tracker: keeping track of microRNA annotation changes. Database. 2014;2014:bau080.
  • 5. Ardekani AM, Naeini MM. The role of microRNAs in human diseases. Avicenna journal of medical biotechnology. 2010;2(4):161.
  • 6. Wu J, Jiang R. Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases. The Scientific World Journal. 2013;2013.
  • 7. Consortium GP. A global reference for human genetic variation. Nature. 2015;526(7571):68.
  • 8. Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in noncoding regions of the human genome. Epigenetics & chromatin. 2015;8(1):57.
  • 9. Li G, Pan T, Guo D, Li L-C. Regulatory variants and disease: the e-cadherin− 160C/A SNP as an example. Molecular biology international. 2014;2014.
  • 10. Tobias ES, Connor M, Ferguson-Smith M. Tıbbi Genetiğin Esasları. 6. baskı ed. Özbek U, editor. İstanbul: İstanbul Tıp Kitabevi; 2014.
  • 11. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101-8.
  • 12. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research. 2012;22(9):1775-89.
  • 13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-54.
  • 14. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics. 2011;12(2):99-110.
  • 15. Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology. 2014;15(8):509-24.
  • 16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic acids research. 2008;36(suppl 1):D154-D8.
  • 17. Sonkoly E, Pivarcsi A. microRNAs in inflammation. International reviews of immunology. 2009;28(6):535-61.
  • 18. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology. 2010;10(2):111-22.
  • 19. Nakasa T, Nagata Y, Yamasaki K, Ochi M. A mini-review: microRNA in arthritis. Physiological Genomics. 2011;43(10):566-70.
  • 20. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics. 2008;9(2):102-14.
  • 21. Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell. 2013;153(3):516-9. 22. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642-55.
  • 23. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nature reviews Molecular cell biology. 2009;10(2):126-39.
  • 24. Lee Y, Han J, Yeom K-H, Jin H, Kim V, editors. Drosha in primary microRNA processing. Cold Spring Harbor symposia on quantitative biology; 2006: Cold Spring Harbor Laboratory Press.
  • 25. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. nature. 2003;425(6956):415-9.
  • 26. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development. 2003;17(24):3011-6.
  • 27. Meister G. Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics. 2013;14(7):447-59.
  • 28. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20.
  • 29. Melo SA, Kalluri R. Molecular pathways: microRNAs as cancer therapeutics. Clinical Cancer Research. 2012;18(16):4234-9.
  • 30. Cai T, Li J, An X, Yan N, Li D, Jiang Y, et al. Polymorphisms in MIR499A and MIR125A gene are associated with autoimmune thyroid diseases. Molecular and cellular endocrinology. 2017;440:106-15.
  • 31. Ghanbari M, Ikram MA, De Looper HW, Hofman A, Erkeland SJ, Franco OH, et al. Genomewide identification of microRNA-related variants associated with risk of Alzheimer’s disease. Scientific reports. 2016;6:28387.
  • 32. Kim J, Choi GH, Ko KH, Kim JO, Oh SH, Park YS, et al. Association of the single nucleotide polymorphisms in microRNAs 130b, 200b, and 495 with ischemic stroke susceptibility and post-stroke mortality. PloS one. 2016;11(9):e0162519.
  • 33. Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clinical genetics. 2017;92(3):235-42.
  • 34. Morales S, Gulppi F, Gonzalez-Hormazabal P, Fernandez-Ramires R, Bravo T, Reyes JM, et al. Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. BMC genetics. 2016;17(1):109.
  • 35. Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open biology. 2017;7(4):170019.
  • 36. Mullany LE, Herrick JS, Wolff RK, Slattery ML. Single nucleotide polymorphisms within MicroRNAs, MicroRNA targets, and MicroRNA biogenesis genes and their impact on colorectal cancer survival. Genes, Chromosomes and Cancer. 2017;56(4):285-95.
  • 37. Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends in genetics. 2008;24(10):489-97.
  • 38. Salzman DW, Weidhaas JB. SNPing cancer in the bud: microRNA and microRNA-target site polymorphisms as diagnostic and prognostic biomarkers in cancer. Pharmacology & therapeutics. 2013;137(1):55-63.
  • 39. Mishra PJ, Bertino JR. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. 2009.
  • 40. Dzikiewicz-Krawczyk A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Critical reviews in oncology/hematology. 2015;93 (1):1-17.
  • 41. Song F-J, Chen K-X. Single-nucleotide polymorphisms among microRNA: big effects on cancer. Chinese journal of cancer. 2011;30(6):381.
  • 42. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353-8.
  • 43. Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmacogenomics and personalized medicine. 2014;7:173.
  • 44. Torre LA, Bray F, Siegel RL, Ferlay J, LortetTieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015;65(2):87- 108.
  • 45. Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu Xa, et al. Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. International journal of cancer. 2013;133(9):2216-24.
  • 46. Sung H, Lee K-M, Choi J-Y, Han S, Lee J-Y, Li L, et al. Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: a case–control study in Korea. Breast cancer research and treatment. 2011;130(3):939-51.
  • 47. Mashayekhi S, Saeidi Saedi H, Salehi Z, Soltanipour S, Mirzajani E. Effects of miR-27a, miR-196a2 and miR-146a polymorphisms on the risk of breast cancer. British journal of biomedical science. 2018;75(2):76-81.
  • 48. Danesh H, Hashemi M, Bizhani F, Hashemi SM, Bahari G. Association study of miR-100, miR-124- 1, miR-218-2, miR-301b, miR-605, and miR-4293 polymorphisms and the risk of breast cancer in a sample of Iranian population. Gene. 2018;647:73-8.
  • 49. Bodal VK, Sangwan S, Bal MS, Kaur M, Sharma S, Kaur B. Association between Microrna 146a and Microrna 196a2 Genes Polymorphism and Breast Cancer Risk in North Indian Women. Asian Pacific journal of cancer prevention : APJCP. 2017;18(9):2345-8.
  • 50. Chen YC, Hunter DJ. Molecular epidemiology of cancer. CA: a cancer journal for clinicians. 2005;55(1):45-54.
  • 51. Sestak I, Cuzick J, Evans G. Breast Cancer: Epidemiology, Risk Factors and Genetics. ABC of Breast Diseases. 2012;100:41.
  • 52. Zhang B, Song F, Zheng H, Zhang L, Zhao Y, Chen K. SNP rs16917496 within SET8 3’UTR is associated with the age of onset of breast cancer. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2012;34(11):835-7.
  • 53. Forma E, Brys M, Krajewska WM. TopBP1 in DNA damage response.DNA Repair: InTech; 2011.
  • 54. Forma E, Brzeziańska E, Krześlak A, Chwatko G, Jóźwiak P, Szymczyk A, et al. Association between the c.* 229C> T polymorphism of the topoisomerase IIβ binding protein 1 (TopBP1) gene and breast cancer. Molecular biology reports. 2013;40(5):3493-502.
  • 55. Xu Y-j, Leffak M. ATRIP from TopBP1 to ATR—in vitro activation of a DNA damage checkpoint. Proceedings of the National Academy of Sciences. 2010;107(31):13561-2.
  • 56. Glover JM. Insights into the molecular basis of human hereditary breast cancer from studies of the BRCA1 BRCT domain. Familial cancer. 2006;5(1):89-93.
  • 57. Xue L, Lipkin M, Newmark H, Wang J. Influence of dietary calcium and vitamin D on diet-induced epithelial cell hyperproliferation in mice. Journal of the National Cancer Institute. 1999;91(2):176-81.
  • 58. Goodwin PJ, Ennis M, Pritchard KI, Koo J, Hood N. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. Journal of Clinical Oncology. 2009;27(23):3757-63.
  • 59. Gary MT, Tan P-H, Cheung HS, Chu WC, Lam WW. Intermediate to highly suspicious calcification in breast lesions: a radio-pathologic correlation. Breast cancer research and treatment. 2008;110(1):1-7.
  • 60. Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, et al. Functional SNP in the microRNA-367 binding site in the 3′ UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proceedings of the National Academy of Sciences. 2011;108(33):13653-8.
  • 61. Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, et al. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis. 2008;29(7):1394-9.
  • 62. Liu J, Tang X, Li M, Lu C, Shi J, Zhou L, et al. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast cancer research and treatment. 2013;140(1):151-7.
  • 63. Jiang Y, Qin Z, Hu Z, Guan X, Wang Y, He Y, et al. Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility. Carcinogenesis. 2012;34(3):689-93.
  • 64. Zheng H, Song F, Zhang L, Yang D, Ji P, Wang Y, et al. Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQGAP1 gene confer differential predisposition to breast cancer. International journal of oncology. 2011;38(4):1153- 61.
  • 65. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769.
  • 66. Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K. IQGAP1: a key regulator of adhesion and migration. Journal of cell science. 2005;118(10):2085-92.
  • 67. Tchatchou S, Jung A, Hemminki K, Sutter C, Wappenschmidt B, Bugert P, et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis. 2008;30(1):59-64.
  • 68. Fishman J, Osborne MP, Telang NT. The role of estrogen in mammary carcinogenesis. Annals of the New York Academy of Sciences. 1995;768(1):91- 100.
  • 69. Martin G, Davio C, Rivera E, Melito G, Cricco G, Andrade N, et al. Hormone dependence of mammary tumors induced in rats by intraperitoneal NMU injection. Cancer investigation. 1997;15(1):8- 17.
  • 70. Pardini B, Rosa F, Barone E, Di Gaetano C, Slyskova J, Novotny J, et al. Variation within 3’UTRs of base excision repair genes and response to therapy in colorectal cancer patients: a potential modulation of microRNAs binding. Clinical cancer research. 2013:clincanres. 0314.2013.
  • 71. Wyatt MD, Wilson Dr. Participation of DNA repair in the response to 5-fluorouracil. Cellular and molecular life sciences. 2009;66(5):788-99.
  • 72. Ingraham HA, Tseng BY, Goulian M. Mechanism for exclusion of 5-fluorouracil from DNA. Cancer research. 1980;40(4):998-1001. 73. Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer letters. 2012;327(1):73-89.
  • 74. Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, et al. hUNG2 is the major repair enzyme for removal of uracil from U: A matches, U: G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. Journal of Biological Chemistry. 2002;277(42):39926-36.
  • 75. Cho SH, Ko JJ, Kim JO, Jeon YJ, Yoo JK, Oh J, et al. 3’-UTR Polymorphisms in the MiRNA Machinery Genes DROSHA, DICER1, RAN, and XPO5 Are Associated with Colorectal Cancer Risk in a Korean Population. PLoS One. 2015;10(7):e0131125.
  • 76. Mullany LE, Herrick JS, Wolff RK, Buas MF, Slattery ML. Impact of polymorphisms in microRNA biogenesis genes on colon cancer risk and microRNA expression levels: a populationbased, case-control study. BMC medical genomics. 2016;9(1):21.
  • 77. Gao X, Zhu Z, Zhang S. miR-146a rs2910164 polymorphism and the risk of colorectal cancer in Chinese population. Journal of cancer research and therapeutics. 2018;14(Supplement):S97-s9.
  • 78. Chen Y, Du M, Chen W, Zhu L, Wu C, Zhang Z. Polymorphism rs2682818 in miR-618 is associated with colorectal cancer susceptibility in a Han Chinese population. 2018.
  • 79. Zanetti KA, Haznadar M, Welsh JA, Robles AI, Ryan BM, McClary AC, et al. 3’-UTR and functional secretor haplotypes in mannose-binding lectin 2 are associated with increased colon cancer risk in African Americans. Cancer Res. 2012;72(6):1467- 7.
  • 11. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101-8.
  • 12. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research. 2012;22(9):1775-89.
  • 13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-54.
  • 14. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics. 2011;12(2):99-110.
  • 15. Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology. 2014;15(8):509-24.
  • 16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic acids research. 2008;36(suppl 1):D154-D8.

MicroRNA Polymorphisms and Cancer

Year 2018, Volume: 1 Issue: 1, 1 - 18, 01.04.2018

Abstract

MicroRNAs (miRNAs) play an important role in the biological process by regulating gene
expression pathways. Dysfunction of the miRNAs can lead to many pathological developments
from chronic diseases to cancer. Recent research suggests that these pathological developments
may lead to single nucleotide polymorphisms (SNPs) identified in miRNA sequences. The
difference in general effect mechanisms of miRNAs-associated SNPs (miRSNPs) makes it hard
to comprehend the biological effects and potential contribution to disease pathogenesis of these
miRSNPs. Yet, it is expected that the determination of the role these polymorphic variations
play on diseases such as cancer, will be a guiding light on the diagnosis and treatment of these
diseases. In this review, how miRNA NPs affect miRNA biogenesis, the function and target gene
and what role it plays in the pathogenesis of various types of cancer are summarized.

References

  • 1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281- 97.
  • 2. Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. MicroRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene. 2017.
  • 3. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic acids research. 2013;42(D1):D68-D73.
  • 4. Van Peer G, Lefever S, Anckaert J, Beckers A, Rihani A, Van Goethem A, et al. miRBase Tracker: keeping track of microRNA annotation changes. Database. 2014;2014:bau080.
  • 5. Ardekani AM, Naeini MM. The role of microRNAs in human diseases. Avicenna journal of medical biotechnology. 2010;2(4):161.
  • 6. Wu J, Jiang R. Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases. The Scientific World Journal. 2013;2013.
  • 7. Consortium GP. A global reference for human genetic variation. Nature. 2015;526(7571):68.
  • 8. Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in noncoding regions of the human genome. Epigenetics & chromatin. 2015;8(1):57.
  • 9. Li G, Pan T, Guo D, Li L-C. Regulatory variants and disease: the e-cadherin− 160C/A SNP as an example. Molecular biology international. 2014;2014.
  • 10. Tobias ES, Connor M, Ferguson-Smith M. Tıbbi Genetiğin Esasları. 6. baskı ed. Özbek U, editor. İstanbul: İstanbul Tıp Kitabevi; 2014.
  • 11. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101-8.
  • 12. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research. 2012;22(9):1775-89.
  • 13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-54.
  • 14. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics. 2011;12(2):99-110.
  • 15. Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology. 2014;15(8):509-24.
  • 16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic acids research. 2008;36(suppl 1):D154-D8.
  • 17. Sonkoly E, Pivarcsi A. microRNAs in inflammation. International reviews of immunology. 2009;28(6):535-61.
  • 18. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology. 2010;10(2):111-22.
  • 19. Nakasa T, Nagata Y, Yamasaki K, Ochi M. A mini-review: microRNA in arthritis. Physiological Genomics. 2011;43(10):566-70.
  • 20. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics. 2008;9(2):102-14.
  • 21. Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell. 2013;153(3):516-9. 22. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642-55.
  • 23. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nature reviews Molecular cell biology. 2009;10(2):126-39.
  • 24. Lee Y, Han J, Yeom K-H, Jin H, Kim V, editors. Drosha in primary microRNA processing. Cold Spring Harbor symposia on quantitative biology; 2006: Cold Spring Harbor Laboratory Press.
  • 25. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. nature. 2003;425(6956):415-9.
  • 26. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development. 2003;17(24):3011-6.
  • 27. Meister G. Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics. 2013;14(7):447-59.
  • 28. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20.
  • 29. Melo SA, Kalluri R. Molecular pathways: microRNAs as cancer therapeutics. Clinical Cancer Research. 2012;18(16):4234-9.
  • 30. Cai T, Li J, An X, Yan N, Li D, Jiang Y, et al. Polymorphisms in MIR499A and MIR125A gene are associated with autoimmune thyroid diseases. Molecular and cellular endocrinology. 2017;440:106-15.
  • 31. Ghanbari M, Ikram MA, De Looper HW, Hofman A, Erkeland SJ, Franco OH, et al. Genomewide identification of microRNA-related variants associated with risk of Alzheimer’s disease. Scientific reports. 2016;6:28387.
  • 32. Kim J, Choi GH, Ko KH, Kim JO, Oh SH, Park YS, et al. Association of the single nucleotide polymorphisms in microRNAs 130b, 200b, and 495 with ischemic stroke susceptibility and post-stroke mortality. PloS one. 2016;11(9):e0162519.
  • 33. Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clinical genetics. 2017;92(3):235-42.
  • 34. Morales S, Gulppi F, Gonzalez-Hormazabal P, Fernandez-Ramires R, Bravo T, Reyes JM, et al. Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. BMC genetics. 2016;17(1):109.
  • 35. Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open biology. 2017;7(4):170019.
  • 36. Mullany LE, Herrick JS, Wolff RK, Slattery ML. Single nucleotide polymorphisms within MicroRNAs, MicroRNA targets, and MicroRNA biogenesis genes and their impact on colorectal cancer survival. Genes, Chromosomes and Cancer. 2017;56(4):285-95.
  • 37. Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends in genetics. 2008;24(10):489-97.
  • 38. Salzman DW, Weidhaas JB. SNPing cancer in the bud: microRNA and microRNA-target site polymorphisms as diagnostic and prognostic biomarkers in cancer. Pharmacology & therapeutics. 2013;137(1):55-63.
  • 39. Mishra PJ, Bertino JR. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. 2009.
  • 40. Dzikiewicz-Krawczyk A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Critical reviews in oncology/hematology. 2015;93 (1):1-17.
  • 41. Song F-J, Chen K-X. Single-nucleotide polymorphisms among microRNA: big effects on cancer. Chinese journal of cancer. 2011;30(6):381.
  • 42. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353-8.
  • 43. Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmacogenomics and personalized medicine. 2014;7:173.
  • 44. Torre LA, Bray F, Siegel RL, Ferlay J, LortetTieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015;65(2):87- 108.
  • 45. Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu Xa, et al. Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. International journal of cancer. 2013;133(9):2216-24.
  • 46. Sung H, Lee K-M, Choi J-Y, Han S, Lee J-Y, Li L, et al. Common genetic polymorphisms of microRNA biogenesis pathway genes and risk of breast cancer: a case–control study in Korea. Breast cancer research and treatment. 2011;130(3):939-51.
  • 47. Mashayekhi S, Saeidi Saedi H, Salehi Z, Soltanipour S, Mirzajani E. Effects of miR-27a, miR-196a2 and miR-146a polymorphisms on the risk of breast cancer. British journal of biomedical science. 2018;75(2):76-81.
  • 48. Danesh H, Hashemi M, Bizhani F, Hashemi SM, Bahari G. Association study of miR-100, miR-124- 1, miR-218-2, miR-301b, miR-605, and miR-4293 polymorphisms and the risk of breast cancer in a sample of Iranian population. Gene. 2018;647:73-8.
  • 49. Bodal VK, Sangwan S, Bal MS, Kaur M, Sharma S, Kaur B. Association between Microrna 146a and Microrna 196a2 Genes Polymorphism and Breast Cancer Risk in North Indian Women. Asian Pacific journal of cancer prevention : APJCP. 2017;18(9):2345-8.
  • 50. Chen YC, Hunter DJ. Molecular epidemiology of cancer. CA: a cancer journal for clinicians. 2005;55(1):45-54.
  • 51. Sestak I, Cuzick J, Evans G. Breast Cancer: Epidemiology, Risk Factors and Genetics. ABC of Breast Diseases. 2012;100:41.
  • 52. Zhang B, Song F, Zheng H, Zhang L, Zhao Y, Chen K. SNP rs16917496 within SET8 3’UTR is associated with the age of onset of breast cancer. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2012;34(11):835-7.
  • 53. Forma E, Brys M, Krajewska WM. TopBP1 in DNA damage response.DNA Repair: InTech; 2011.
  • 54. Forma E, Brzeziańska E, Krześlak A, Chwatko G, Jóźwiak P, Szymczyk A, et al. Association between the c.* 229C> T polymorphism of the topoisomerase IIβ binding protein 1 (TopBP1) gene and breast cancer. Molecular biology reports. 2013;40(5):3493-502.
  • 55. Xu Y-j, Leffak M. ATRIP from TopBP1 to ATR—in vitro activation of a DNA damage checkpoint. Proceedings of the National Academy of Sciences. 2010;107(31):13561-2.
  • 56. Glover JM. Insights into the molecular basis of human hereditary breast cancer from studies of the BRCA1 BRCT domain. Familial cancer. 2006;5(1):89-93.
  • 57. Xue L, Lipkin M, Newmark H, Wang J. Influence of dietary calcium and vitamin D on diet-induced epithelial cell hyperproliferation in mice. Journal of the National Cancer Institute. 1999;91(2):176-81.
  • 58. Goodwin PJ, Ennis M, Pritchard KI, Koo J, Hood N. Prognostic effects of 25-hydroxyvitamin D levels in early breast cancer. Journal of Clinical Oncology. 2009;27(23):3757-63.
  • 59. Gary MT, Tan P-H, Cheung HS, Chu WC, Lam WW. Intermediate to highly suspicious calcification in breast lesions: a radio-pathologic correlation. Breast cancer research and treatment. 2008;110(1):1-7.
  • 60. Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, et al. Functional SNP in the microRNA-367 binding site in the 3′ UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proceedings of the National Academy of Sciences. 2011;108(33):13653-8.
  • 61. Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, et al. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis. 2008;29(7):1394-9.
  • 62. Liu J, Tang X, Li M, Lu C, Shi J, Zhou L, et al. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast cancer research and treatment. 2013;140(1):151-7.
  • 63. Jiang Y, Qin Z, Hu Z, Guan X, Wang Y, He Y, et al. Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility. Carcinogenesis. 2012;34(3):689-93.
  • 64. Zheng H, Song F, Zhang L, Yang D, Ji P, Wang Y, et al. Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQGAP1 gene confer differential predisposition to breast cancer. International journal of oncology. 2011;38(4):1153- 61.
  • 65. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769.
  • 66. Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K. IQGAP1: a key regulator of adhesion and migration. Journal of cell science. 2005;118(10):2085-92.
  • 67. Tchatchou S, Jung A, Hemminki K, Sutter C, Wappenschmidt B, Bugert P, et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis. 2008;30(1):59-64.
  • 68. Fishman J, Osborne MP, Telang NT. The role of estrogen in mammary carcinogenesis. Annals of the New York Academy of Sciences. 1995;768(1):91- 100.
  • 69. Martin G, Davio C, Rivera E, Melito G, Cricco G, Andrade N, et al. Hormone dependence of mammary tumors induced in rats by intraperitoneal NMU injection. Cancer investigation. 1997;15(1):8- 17.
  • 70. Pardini B, Rosa F, Barone E, Di Gaetano C, Slyskova J, Novotny J, et al. Variation within 3’UTRs of base excision repair genes and response to therapy in colorectal cancer patients: a potential modulation of microRNAs binding. Clinical cancer research. 2013:clincanres. 0314.2013.
  • 71. Wyatt MD, Wilson Dr. Participation of DNA repair in the response to 5-fluorouracil. Cellular and molecular life sciences. 2009;66(5):788-99.
  • 72. Ingraham HA, Tseng BY, Goulian M. Mechanism for exclusion of 5-fluorouracil from DNA. Cancer research. 1980;40(4):998-1001. 73. Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer letters. 2012;327(1):73-89.
  • 74. Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, et al. hUNG2 is the major repair enzyme for removal of uracil from U: A matches, U: G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. Journal of Biological Chemistry. 2002;277(42):39926-36.
  • 75. Cho SH, Ko JJ, Kim JO, Jeon YJ, Yoo JK, Oh J, et al. 3’-UTR Polymorphisms in the MiRNA Machinery Genes DROSHA, DICER1, RAN, and XPO5 Are Associated with Colorectal Cancer Risk in a Korean Population. PLoS One. 2015;10(7):e0131125.
  • 76. Mullany LE, Herrick JS, Wolff RK, Buas MF, Slattery ML. Impact of polymorphisms in microRNA biogenesis genes on colon cancer risk and microRNA expression levels: a populationbased, case-control study. BMC medical genomics. 2016;9(1):21.
  • 77. Gao X, Zhu Z, Zhang S. miR-146a rs2910164 polymorphism and the risk of colorectal cancer in Chinese population. Journal of cancer research and therapeutics. 2018;14(Supplement):S97-s9.
  • 78. Chen Y, Du M, Chen W, Zhu L, Wu C, Zhang Z. Polymorphism rs2682818 in miR-618 is associated with colorectal cancer susceptibility in a Han Chinese population. 2018.
  • 79. Zanetti KA, Haznadar M, Welsh JA, Robles AI, Ryan BM, McClary AC, et al. 3’-UTR and functional secretor haplotypes in mannose-binding lectin 2 are associated with increased colon cancer risk in African Americans. Cancer Res. 2012;72(6):1467- 7.
  • 11. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101-8.
  • 12. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research. 2012;22(9):1775-89.
  • 13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-54.
  • 14. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics. 2011;12(2):99-110.
  • 15. Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology. 2014;15(8):509-24.
  • 16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic acids research. 2008;36(suppl 1):D154-D8.
There are 83 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Rewiev
Authors

Ahu Soyocak

Publication Date April 1, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Soyocak, A. (2018). MikroRNA Polimorfizmleri ve Kanser. Tıp Fakültesi Klinikleri Dergisi, 1(1), 1-18.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png