Research Article
BibTex RIS Cite

Effects of Short-term High Glucose on NIH/3T3 Fibroblast Proliferation, Apoptosis, and Collagen Type I Production

Year 2019, Volume: 2 Issue: 3, 91 - 95, 09.08.2019

Abstract

Objective: To investigate the mechanisms of in vitro high glucose induced model of liver
fibrosis.
Material and methods: The effects of high glucose concentration on fibroblast proliferation
were investigated by BrdU immunostaining. Apoptosis and necrosis levels were analyzed by
flow cytometric assay. The content of collagen type I was measured by Collagen Estimation
Assay through ELISA.
Results: A high glucose medium not only increased NIH/3T3 fibroblast proliferation, but also
increased type I collagen synthesis, showing a similar condition to the fibrosis. Moreover, the
high glucose caused an increased level of cellular apoptosis and necrosis.
Conclusions: High glucose modulates the fibrosis in NIH/3T3 fibroblast cells via inducing the
production of type I collagen while maintains the homeostasis by inducing the apoptosis and
necrosis of cells.

References

  • 1. Tang M, Zhang W, Lin H, et al. High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol Cell Biochem 2007;301:109-14.
  • 2. Friedman SL. The cellular basis of hepatic fibrosis: mechanisms and treatment strategies. New Eng J Med 1993;328:1828-1836.
  • 3. Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. J Hepatol 1998;29:836-847.
  • 4. Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2010;326:1216-19.
  • 5. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-218.
  • 6. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655- 1669.
  • 7. Dranof JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology 2010;51:1438-1444.
  • 8. Liu CH, Hu YY, Wang XL, et al. Effcts of salvianolic acid-A on NIH/3T3 fibroblast proliferation, collagen synthesis and gene expression. World J Gastroenterol 2000;6:361-364.
  • 9. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012;18,1028-1040.
  • 10. Dostal DE, Rothblum KN, Conrad KM, et al. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol Cell Physiol 1992;263:C851-C863.
  • 11. Eghbali M. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 1992;87:183-189.
  • 12. Higuchi C, Tanihata Y, Nishimura H, et al. Effcts of glucose and plasminogen activator inhibitor-1 on collagen metabolism in the peritoneum. Ther Apher Dial 2005;9:173-178.
  • 13. Saed GM, Diamond MP. Effct of glucose on the expression of type I collagen and transforming growth factor-beta1 in cultured human peritoneal fibroblasts. Fertil Steril 2003;79:158-163.
  • 14. Lam S, van der Geest RN, Verhagen NA, et al. Connective tissue growth factor and igf-I are produced by human renal fibroblasts and cooperate in the induction of collagen production by high glucose. Diabetes 2003;52:2975-2983
  • 15. Benazzoug Y, Borchiellini C, Labat-Robert J, et al. Effct of high-glucose concentrations onthe expression of collagens and fibronectin by fibroblasts in culture. Exp Gerontol 1998;33:445- 455.
  • 16. Chen CC, Lau LF. Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. Journal of Cell Communication and Signaling 2010;4:63-69.
  • 17. Johnson A, DiPietro LA. Apoptosis and angiogenesis: an evolving mechanism for fibrosis. The FASEB Journal 2013;27:3893-3901.
  • 18. Liu WL, Wang XX, Mei Z, et al. BNIP3L promotes cardiac fibrosis in cardiac fibroblasts through [Ca2+]i TGF-βSmad2/3 pathway. Scientific Reports 2017;7:1906.
  • 19. Chu Q, Yang K, Wang A. Research progress on oxidative stress and apoptosis. Journal of Hygiene Research 2003;323:276-279.
  • 20. Kanigur Sultuybek G, Soydas T, Yenmis G. NF- κB as the mediator of metformin’s effct on ageing and ageing-related diseases. Clin Exp Pharmacol Physiol 2019;46:413-422.
  • 21. Soydas T, Yaprak Sarac E, Cinar S et al. The protective effcts of metformin in an in vitro model of aging 3T3 fibroblast under the high glucose conditions. J Physiol Biochem. 2018;74:273-281.
  • 22. Moiseeva O, Deschênes‐Simard X, St‐Germain E, et al. Metformin inhibits the senescence‐ associated secretory phenotype by interfering with IKK/NF‐kB activation. Aging Cell. 2013;12:489-498.

Kısa Süreli Yüksek Glikoz Uygulamasının NIH/3T3 Fibroblastlarında Proliferasyon, Apoptoz ve Kollajen Tip I Üretimi Üzerine Etkileri

Year 2019, Volume: 2 Issue: 3, 91 - 95, 09.08.2019

Abstract

Amaç: Yüksek glikoza bağlı karaciğer fibrozis mekanizmalarını in vitro model kullanarak
araştırmak amaçlanmıştır.
Gereç ve yöntem: Yüksek glikoz konsantrasyonunun fibroblast proliferasyonu üzerindeki
etkileri BrdU immünositokimya tekniği ile incelenmiştir. Apoptoz seviyeleri ve nekroz akım
sitometri analizi ile tespit edildi. Kollajen tip I içeriği, ELISA ile ölçüldü.
Bulgular: Yüksek glikoz düzeyi sadece NIH/3T3 fibroblast proliferasyonunu arttırmadı, aynı
zamanda fibrozise benzer bir durumun göstergesi olarak tip I kollajen sentezini de arttırdı.
Ayrıca yüksek glikoz, apoptoz ve nekroz seviyelerinin artmasına da neden olmuştur.
Sonuç: Yüksek glikoz, NIH/3T3 fibroblast hücrelerinde fibrozisi, tip I kollajen üretimini
indükleyerek modüle ederken, hücrelerin apoptoz ve nekrozunu indükleyerek homeostazı korur.

References

  • 1. Tang M, Zhang W, Lin H, et al. High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol Cell Biochem 2007;301:109-14.
  • 2. Friedman SL. The cellular basis of hepatic fibrosis: mechanisms and treatment strategies. New Eng J Med 1993;328:1828-1836.
  • 3. Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. J Hepatol 1998;29:836-847.
  • 4. Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2010;326:1216-19.
  • 5. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-218.
  • 6. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655- 1669.
  • 7. Dranof JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology 2010;51:1438-1444.
  • 8. Liu CH, Hu YY, Wang XL, et al. Effcts of salvianolic acid-A on NIH/3T3 fibroblast proliferation, collagen synthesis and gene expression. World J Gastroenterol 2000;6:361-364.
  • 9. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012;18,1028-1040.
  • 10. Dostal DE, Rothblum KN, Conrad KM, et al. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol Cell Physiol 1992;263:C851-C863.
  • 11. Eghbali M. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 1992;87:183-189.
  • 12. Higuchi C, Tanihata Y, Nishimura H, et al. Effcts of glucose and plasminogen activator inhibitor-1 on collagen metabolism in the peritoneum. Ther Apher Dial 2005;9:173-178.
  • 13. Saed GM, Diamond MP. Effct of glucose on the expression of type I collagen and transforming growth factor-beta1 in cultured human peritoneal fibroblasts. Fertil Steril 2003;79:158-163.
  • 14. Lam S, van der Geest RN, Verhagen NA, et al. Connective tissue growth factor and igf-I are produced by human renal fibroblasts and cooperate in the induction of collagen production by high glucose. Diabetes 2003;52:2975-2983
  • 15. Benazzoug Y, Borchiellini C, Labat-Robert J, et al. Effct of high-glucose concentrations onthe expression of collagens and fibronectin by fibroblasts in culture. Exp Gerontol 1998;33:445- 455.
  • 16. Chen CC, Lau LF. Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. Journal of Cell Communication and Signaling 2010;4:63-69.
  • 17. Johnson A, DiPietro LA. Apoptosis and angiogenesis: an evolving mechanism for fibrosis. The FASEB Journal 2013;27:3893-3901.
  • 18. Liu WL, Wang XX, Mei Z, et al. BNIP3L promotes cardiac fibrosis in cardiac fibroblasts through [Ca2+]i TGF-βSmad2/3 pathway. Scientific Reports 2017;7:1906.
  • 19. Chu Q, Yang K, Wang A. Research progress on oxidative stress and apoptosis. Journal of Hygiene Research 2003;323:276-279.
  • 20. Kanigur Sultuybek G, Soydas T, Yenmis G. NF- κB as the mediator of metformin’s effct on ageing and ageing-related diseases. Clin Exp Pharmacol Physiol 2019;46:413-422.
  • 21. Soydas T, Yaprak Sarac E, Cinar S et al. The protective effcts of metformin in an in vitro model of aging 3T3 fibroblast under the high glucose conditions. J Physiol Biochem. 2018;74:273-281.
  • 22. Moiseeva O, Deschênes‐Simard X, St‐Germain E, et al. Metformin inhibits the senescence‐ associated secretory phenotype by interfering with IKK/NF‐kB activation. Aging Cell. 2013;12:489-498.
There are 22 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research article
Authors

Tuğba Soydaş This is me

Elif Yaprak Saraç This is me

Suzan Çınar This is me

Güven Yenmiş This is me

Sibel Doğan This is me

Seyhun Solakoğlu This is me

Matem Tunçdemir This is me

Gönül Kanıgür Sultuybek This is me

Publication Date August 9, 2019
Acceptance Date June 19, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Soydaş, T., Yaprak Saraç, E., Çınar, S., Yenmiş, G., et al. (2019). Effects of Short-term High Glucose on NIH/3T3 Fibroblast Proliferation, Apoptosis, and Collagen Type I Production. Tıp Fakültesi Klinikleri Dergisi, 2(3), 91-95.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png