Research Article
BibTex RIS Cite

Ostrowski type inequalities via exponentially $s$-convexity on time scales

Year 2022, , 502 - 512, 30.12.2022
https://doi.org/10.31197/atnaa.1021333

Abstract

We introduce the concept of exponentially $s$-convexity in the second sense on a time scale interval. We prove among other things that if $f: [a, b]\to \mathbb{R}$ is an exponentially $s$-convex function, then
\begin{align*}
&\frac{1}{b-a}\int_a^b f(t)\Delta t\\
&\leq \frac{f(a)}{e_{\beta}(a, x_0) (b-a)^{2s}}(h_2(a, b))^s+\frac{f(b)}{e_{\beta}(b, x_0) (b-a)^{2s}}(h_2(b, a))^s,
\end{align*}
where $\beta$ is a positively regressive function. By considering special cases of our time scale, one can derive loads of interesting new inequalities. The results obtained herein are novel to best of our knowledge and they complement existing results in the literature.

References

  • [1] R. P. Agarwal and M. Bohner. Basic calculus on time scales and some of its applications. Results Math., 35(1-2):3-22, 1999.
  • [2] R. Agarwal, M. Bohner, and A. Peterson. Inequalities on time scales: A survey. Math. Inequal. Appl., 4(4):535-557, 2001.
  • [3] M. Bohner and A. Peterson. Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston, 2001.
  • [4] M. Bohner and T. Matthews. Ostrowski inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math., 9(1):8, 2008. Article 6.
  • [5] M. Bohner and S. G. Georgiev, Multivariable dynamic calculus on time scales. Springer, Cham, 2016.
  • [6] M. Bohner, R. A. C. Ferreira and D. F. M. Torres, Integral inequalities and their applications to the calculus of variations on time scales, Math. Inequal. Appl., 13(3):511-522, 2010.
  • [7] S. G. Georgiev, V. Darvish and T. A. Roushan, Some inequalities for exponentially convex functions on time scales, Mathematica Slovaca, 71 (4): 925-940, 2021.
  • [8] S. Hilger, Ein Maβkettenkalkül mit Anwendung Zentrumsmannigfaltigkeiten. PhD thesis, Universitat Würzburg, 1988.
  • [9] N. Mehreen and M. Anwar. Ostrowski type inequalities via some exponentially convex functions with applications, AIMS Mathematics, 5(2) 1476-1483.
  • [10] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s- convex functions in the second sense with applications. J Inequal Appl 2019, 92 (2019). https://doi.org/10.1186/s13660- 019-2047-1
  • [11] E. R. Nwaeze, Generalized weighted trapezoid and Grüss type inequalities on time scales, Aust. J. Math. Anal. Appl., 14(1):Art. 4, 13, 2017.
  • [12] E. R. Nwaeze, Time scale versions of the Ostrowski?Grüss type inequality with a parameter function, J. Math. Inequal., 12, 531-543, 2018.
Year 2022, , 502 - 512, 30.12.2022
https://doi.org/10.31197/atnaa.1021333

Abstract

References

  • [1] R. P. Agarwal and M. Bohner. Basic calculus on time scales and some of its applications. Results Math., 35(1-2):3-22, 1999.
  • [2] R. Agarwal, M. Bohner, and A. Peterson. Inequalities on time scales: A survey. Math. Inequal. Appl., 4(4):535-557, 2001.
  • [3] M. Bohner and A. Peterson. Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston, 2001.
  • [4] M. Bohner and T. Matthews. Ostrowski inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math., 9(1):8, 2008. Article 6.
  • [5] M. Bohner and S. G. Georgiev, Multivariable dynamic calculus on time scales. Springer, Cham, 2016.
  • [6] M. Bohner, R. A. C. Ferreira and D. F. M. Torres, Integral inequalities and their applications to the calculus of variations on time scales, Math. Inequal. Appl., 13(3):511-522, 2010.
  • [7] S. G. Georgiev, V. Darvish and T. A. Roushan, Some inequalities for exponentially convex functions on time scales, Mathematica Slovaca, 71 (4): 925-940, 2021.
  • [8] S. Hilger, Ein Maβkettenkalkül mit Anwendung Zentrumsmannigfaltigkeiten. PhD thesis, Universitat Würzburg, 1988.
  • [9] N. Mehreen and M. Anwar. Ostrowski type inequalities via some exponentially convex functions with applications, AIMS Mathematics, 5(2) 1476-1483.
  • [10] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s- convex functions in the second sense with applications. J Inequal Appl 2019, 92 (2019). https://doi.org/10.1186/s13660- 019-2047-1
  • [11] E. R. Nwaeze, Generalized weighted trapezoid and Grüss type inequalities on time scales, Aust. J. Math. Anal. Appl., 14(1):Art. 4, 13, 2017.
  • [12] E. R. Nwaeze, Time scale versions of the Ostrowski?Grüss type inequality with a parameter function, J. Math. Inequal., 12, 531-543, 2018.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Svetlin Georgiev 0000-0001-8015-4226

Vahid Darvish 0000-0001-8955-4007

Eze Nwaeze 0000-0002-1375-1474

Publication Date December 30, 2022
Published in Issue Year 2022

Cite