Research Article
BibTex RIS Cite

On the nonlinear Volterra equation with conformable derivative

Year 2023, , 292 - 302, 23.07.2023
https://doi.org/10.31197/atnaa.1281575

Abstract

In this paper, we are interested to study a nonlinear Volterra equation with conformable derivative. This kind of such equation has various applications, for example physics, mechanical engineering, heat conduction theory.
First, we show that our problem have a mild soltution which exists locally in time. Then we prove that the convergence of the mild solution when the parameter tends to zero.

Project Number

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2022-44-12.

References

  • [1] T. Abdeljawad, On conformable fractional calculus J. Comput. Appl. Math. 279 (2015), 5766
  • [2] K. Balachandran, J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces Nonlinear Anal. 72 (2010), no. 12, 45874593
  • [3] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative J. Comput. Appl. Math. 264 (2014), 6570
  • [4] A.A. Abdelhakim, J.A. Tenreiro Machado, A critical analysis of the conformable derivative Nonlinear Dynamics, 2019, Volume 95, Issue 4, pp 30633073.
  • [5] A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces Dier. Equ. Dyn. Syst. 27 (2019), no. 1-3, 313325
  • [6] M. Conti, M.E. Marchini, A remark on nonclassical diffusion equations with memory Appl. Math. Optim. 73 (2016), no. 1, 121
  • [7] X. Wang, C. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory Nonlinear Anal. 71 (2009), no. 11, 57335746.
  • [8] E.C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980) 265296 [9] T.W. Ting, Certain non-steady flows of second-order fluids Arch. Rational Mech. Anal., 1963, 14: 126 [10] D. Baleanu, M. Jleli, S. Kumar, B. Samet, A fractional derivative with two singular kernels and application to a heat conduction problem Adv. Difference Equ. 2020, Paper No. 252, 19 pp [11] M. Hajipour, A. Jajarmi, A. Malek, D. Baleanu, Positivity-preserving sixth-order implicit nite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation Appl. Math. Comput. 325 (2018), 146158
  • [12] E. Karapinar, H.D. Binh, N.H. Luc, N.H. Can, On the continuity of the fractional derivative of the time- fractional semilinear pseudo-parabolic systems Adv. Difference Equ. 2021, Paper No. 70, 24 pp.
  • [13] R. S. Adiguzel, U. Aksoy, E. Karapinar, I.M. Erhan, On The Solutions Of Fractional Differential Equations Via Geraghty Type Hybrid Contractions, Appl. Comput. Math., V.20, N.2, 2021,313-333 [14] N.H. Tuan, N.V. Tien, D. O'regan, N.H. Can, V.T. Nguyen, New results on continuity by order of derivative for conformable parabolic equations, FRACTALS, to appear, https://doi.org/10.1142/S0218348X23400145. [15] N.H. Tuan, N.V. Tien, C. Yang, On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative, Math. Biosci. Eng. 19 (2022), no. 11, 1123211259 [16] N.H. Tuan, T.B. Ngoc, D. Baleanu, D. O'Regan, On well-posedness of the sub-diffusion equation with a conformable derivative model, Communications in Nonlinear Science and Numerical Simulation, 89 (2020), 105332, 26 pp.
  • [17] N.A. Tuan, Z. Hammouch, E. Karapinar, N.H. Tuan, On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation Math. Methods Appl. Sci. 44 (2021), no. 18, 1479114806.
  • [18] N.A. Triet, N.A. Tuan, An iterative method for inverse source parabolic equation Lett. Nonlinear Anal. Appl. Volume 1, Issue 2, Pages:7281, Year: 2023
  • [19] N.A. Triet, N.H. Tuan, Global existence for nonlinear bi-parabolic equation under global Lipschitz condition Lett. Nonlinear Anal. Appl. Volume 1, Issue 3, Pages: 89-95, Year: 2023
  • [20] M.L. Heard, S. M.RankinIII, A semilinear parabolic Volterra integro-dierential equation J. Dierential Equations 71 (1988), no. 2, 201233.
  • [21] J.V. C. Sousa, F. G. Rodrigues, E.C. Oliveira, Stability of the fractional Volterra integral-differential equation by means of ψ-Hilfer operator Math. Methods Appl. Sci. 42 (2019), no. 9, 30333043.
  • [22] H.T.K. Van, Non-classical heat equation with singular memory term, Thermal Science, Volume 25, Special issue 2, 2021
Year 2023, , 292 - 302, 23.07.2023
https://doi.org/10.31197/atnaa.1281575

Abstract

Project Number

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2022-44-12.

References

  • [1] T. Abdeljawad, On conformable fractional calculus J. Comput. Appl. Math. 279 (2015), 5766
  • [2] K. Balachandran, J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces Nonlinear Anal. 72 (2010), no. 12, 45874593
  • [3] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative J. Comput. Appl. Math. 264 (2014), 6570
  • [4] A.A. Abdelhakim, J.A. Tenreiro Machado, A critical analysis of the conformable derivative Nonlinear Dynamics, 2019, Volume 95, Issue 4, pp 30633073.
  • [5] A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces Dier. Equ. Dyn. Syst. 27 (2019), no. 1-3, 313325
  • [6] M. Conti, M.E. Marchini, A remark on nonclassical diffusion equations with memory Appl. Math. Optim. 73 (2016), no. 1, 121
  • [7] X. Wang, C. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory Nonlinear Anal. 71 (2009), no. 11, 57335746.
  • [8] E.C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980) 265296 [9] T.W. Ting, Certain non-steady flows of second-order fluids Arch. Rational Mech. Anal., 1963, 14: 126 [10] D. Baleanu, M. Jleli, S. Kumar, B. Samet, A fractional derivative with two singular kernels and application to a heat conduction problem Adv. Difference Equ. 2020, Paper No. 252, 19 pp [11] M. Hajipour, A. Jajarmi, A. Malek, D. Baleanu, Positivity-preserving sixth-order implicit nite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation Appl. Math. Comput. 325 (2018), 146158
  • [12] E. Karapinar, H.D. Binh, N.H. Luc, N.H. Can, On the continuity of the fractional derivative of the time- fractional semilinear pseudo-parabolic systems Adv. Difference Equ. 2021, Paper No. 70, 24 pp.
  • [13] R. S. Adiguzel, U. Aksoy, E. Karapinar, I.M. Erhan, On The Solutions Of Fractional Differential Equations Via Geraghty Type Hybrid Contractions, Appl. Comput. Math., V.20, N.2, 2021,313-333 [14] N.H. Tuan, N.V. Tien, D. O'regan, N.H. Can, V.T. Nguyen, New results on continuity by order of derivative for conformable parabolic equations, FRACTALS, to appear, https://doi.org/10.1142/S0218348X23400145. [15] N.H. Tuan, N.V. Tien, C. Yang, On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative, Math. Biosci. Eng. 19 (2022), no. 11, 1123211259 [16] N.H. Tuan, T.B. Ngoc, D. Baleanu, D. O'Regan, On well-posedness of the sub-diffusion equation with a conformable derivative model, Communications in Nonlinear Science and Numerical Simulation, 89 (2020), 105332, 26 pp.
  • [17] N.A. Tuan, Z. Hammouch, E. Karapinar, N.H. Tuan, On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation Math. Methods Appl. Sci. 44 (2021), no. 18, 1479114806.
  • [18] N.A. Triet, N.A. Tuan, An iterative method for inverse source parabolic equation Lett. Nonlinear Anal. Appl. Volume 1, Issue 2, Pages:7281, Year: 2023
  • [19] N.A. Triet, N.H. Tuan, Global existence for nonlinear bi-parabolic equation under global Lipschitz condition Lett. Nonlinear Anal. Appl. Volume 1, Issue 3, Pages: 89-95, Year: 2023
  • [20] M.L. Heard, S. M.RankinIII, A semilinear parabolic Volterra integro-dierential equation J. Dierential Equations 71 (1988), no. 2, 201233.
  • [21] J.V. C. Sousa, F. G. Rodrigues, E.C. Oliveira, Stability of the fractional Volterra integral-differential equation by means of ψ-Hilfer operator Math. Methods Appl. Sci. 42 (2019), no. 9, 30333043.
  • [22] H.T.K. Van, Non-classical heat equation with singular memory term, Thermal Science, Volume 25, Special issue 2, 2021
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tuan Nguyen Hoang This is me 0000-0003-4354-2937

Hai Nguyen Minh This is me 0000-0003-1468-2463

Nguyen Duc Phuong 0000-0003-3779-197X

Project Number This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2022-44-12.
Early Pub Date August 3, 2023
Publication Date July 23, 2023
Published in Issue Year 2023

Cite