On the nonlinear Volterra equation with conformable derivative
Year 2023,
, 292 - 302, 23.07.2023
Tuan Nguyen Hoang
Hai Nguyen Minh
Nguyen Duc Phuong
Abstract
In this paper, we are interested to study a nonlinear Volterra equation with conformable derivative. This kind of such equation has various applications, for example physics, mechanical engineering, heat conduction theory.
First, we show that our problem have a mild soltution which exists locally in time. Then we prove that the convergence of the mild solution when the parameter tends to zero.
Project Number
This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2022-44-12.
References
- [1] T. Abdeljawad, On conformable fractional calculus J. Comput. Appl. Math. 279 (2015), 5766
- [2] K. Balachandran, J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential
equations in Banach spaces Nonlinear Anal. 72 (2010), no. 12, 45874593
- [3] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative J. Comput.
Appl. Math. 264 (2014), 6570
- [4] A.A. Abdelhakim, J.A. Tenreiro Machado, A critical analysis of the conformable derivative Nonlinear
Dynamics, 2019, Volume 95, Issue 4, pp 30633073.
- [5] A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces
Dier. Equ. Dyn. Syst. 27 (2019), no. 1-3, 313325
- [6] M. Conti, M.E. Marchini, A remark on nonclassical diffusion equations with memory Appl. Math. Optim.
73 (2016), no. 1, 121
- [7] X. Wang, C. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory Nonlinear Anal. 71 (2009), no. 11, 57335746.
- [8] E.C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980) 265296
[9] T.W. Ting, Certain non-steady flows of second-order fluids Arch. Rational Mech. Anal., 1963, 14: 126
[10] D. Baleanu, M. Jleli, S. Kumar, B. Samet, A fractional derivative with two singular kernels and application
to a heat conduction problem Adv. Difference Equ. 2020, Paper No. 252, 19 pp
[11] M. Hajipour, A. Jajarmi, A. Malek, D. Baleanu, Positivity-preserving sixth-order implicit nite difference
weighted essentially non-oscillatory scheme for the nonlinear heat equation Appl. Math. Comput. 325 (2018),
146158
- [12] E. Karapinar, H.D. Binh, N.H. Luc, N.H. Can, On the continuity of the fractional derivative of the time-
fractional semilinear pseudo-parabolic systems Adv. Difference Equ. 2021, Paper No. 70, 24 pp.
- [13] R. S. Adiguzel, U. Aksoy, E. Karapinar, I.M. Erhan, On The Solutions Of Fractional Differential Equations
Via Geraghty Type Hybrid Contractions, Appl. Comput. Math., V.20, N.2, 2021,313-333
[14] N.H. Tuan, N.V. Tien, D. O'regan, N.H. Can, V.T. Nguyen, New results on continuity by order of derivative
for conformable parabolic equations, FRACTALS, to appear, https://doi.org/10.1142/S0218348X23400145.
[15] N.H. Tuan, N.V. Tien, C. Yang, On an initial boundary value problem for fractional pseudo-parabolic equation
with conformable derivative, Math. Biosci. Eng. 19 (2022), no. 11, 1123211259
[16] N.H. Tuan, T.B. Ngoc, D. Baleanu, D. O'Regan, On well-posedness of the sub-diffusion equation with
a conformable derivative model, Communications in Nonlinear Science and Numerical Simulation, 89 (2020),
105332, 26 pp.
- [17] N.A. Tuan, Z. Hammouch, E. Karapinar, N.H. Tuan, On a nonlocal problem for a Caputo time-fractional
pseudoparabolic equation Math. Methods Appl. Sci. 44 (2021), no. 18, 1479114806.
- [18] N.A. Triet, N.A. Tuan, An iterative method for inverse source parabolic equation Lett. Nonlinear Anal.
Appl. Volume 1, Issue 2, Pages:7281, Year: 2023
- [19] N.A. Triet, N.H. Tuan, Global existence for nonlinear bi-parabolic equation under global Lipschitz condition
Lett. Nonlinear Anal. Appl. Volume 1, Issue 3, Pages: 89-95, Year: 2023
- [20] M.L. Heard, S. M.RankinIII, A semilinear parabolic Volterra integro-dierential equation J. Dierential
Equations 71 (1988), no. 2, 201233.
- [21] J.V. C. Sousa, F. G. Rodrigues, E.C. Oliveira, Stability of the fractional Volterra integral-differential equation
by means of ψ-Hilfer operator Math. Methods Appl. Sci. 42 (2019), no. 9, 30333043.
- [22] H.T.K. Van, Non-classical heat equation with singular memory term, Thermal Science, Volume 25, Special
issue 2, 2021
Year 2023,
, 292 - 302, 23.07.2023
Tuan Nguyen Hoang
Hai Nguyen Minh
Nguyen Duc Phuong
Project Number
This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2022-44-12.
References
- [1] T. Abdeljawad, On conformable fractional calculus J. Comput. Appl. Math. 279 (2015), 5766
- [2] K. Balachandran, J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential
equations in Banach spaces Nonlinear Anal. 72 (2010), no. 12, 45874593
- [3] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative J. Comput.
Appl. Math. 264 (2014), 6570
- [4] A.A. Abdelhakim, J.A. Tenreiro Machado, A critical analysis of the conformable derivative Nonlinear
Dynamics, 2019, Volume 95, Issue 4, pp 30633073.
- [5] A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces
Dier. Equ. Dyn. Syst. 27 (2019), no. 1-3, 313325
- [6] M. Conti, M.E. Marchini, A remark on nonclassical diffusion equations with memory Appl. Math. Optim.
73 (2016), no. 1, 121
- [7] X. Wang, C. Zhong, Attractors for the non-autonomous nonclassical diffusion equations with fading memory Nonlinear Anal. 71 (2009), no. 11, 57335746.
- [8] E.C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980) 265296
[9] T.W. Ting, Certain non-steady flows of second-order fluids Arch. Rational Mech. Anal., 1963, 14: 126
[10] D. Baleanu, M. Jleli, S. Kumar, B. Samet, A fractional derivative with two singular kernels and application
to a heat conduction problem Adv. Difference Equ. 2020, Paper No. 252, 19 pp
[11] M. Hajipour, A. Jajarmi, A. Malek, D. Baleanu, Positivity-preserving sixth-order implicit nite difference
weighted essentially non-oscillatory scheme for the nonlinear heat equation Appl. Math. Comput. 325 (2018),
146158
- [12] E. Karapinar, H.D. Binh, N.H. Luc, N.H. Can, On the continuity of the fractional derivative of the time-
fractional semilinear pseudo-parabolic systems Adv. Difference Equ. 2021, Paper No. 70, 24 pp.
- [13] R. S. Adiguzel, U. Aksoy, E. Karapinar, I.M. Erhan, On The Solutions Of Fractional Differential Equations
Via Geraghty Type Hybrid Contractions, Appl. Comput. Math., V.20, N.2, 2021,313-333
[14] N.H. Tuan, N.V. Tien, D. O'regan, N.H. Can, V.T. Nguyen, New results on continuity by order of derivative
for conformable parabolic equations, FRACTALS, to appear, https://doi.org/10.1142/S0218348X23400145.
[15] N.H. Tuan, N.V. Tien, C. Yang, On an initial boundary value problem for fractional pseudo-parabolic equation
with conformable derivative, Math. Biosci. Eng. 19 (2022), no. 11, 1123211259
[16] N.H. Tuan, T.B. Ngoc, D. Baleanu, D. O'Regan, On well-posedness of the sub-diffusion equation with
a conformable derivative model, Communications in Nonlinear Science and Numerical Simulation, 89 (2020),
105332, 26 pp.
- [17] N.A. Tuan, Z. Hammouch, E. Karapinar, N.H. Tuan, On a nonlocal problem for a Caputo time-fractional
pseudoparabolic equation Math. Methods Appl. Sci. 44 (2021), no. 18, 1479114806.
- [18] N.A. Triet, N.A. Tuan, An iterative method for inverse source parabolic equation Lett. Nonlinear Anal.
Appl. Volume 1, Issue 2, Pages:7281, Year: 2023
- [19] N.A. Triet, N.H. Tuan, Global existence for nonlinear bi-parabolic equation under global Lipschitz condition
Lett. Nonlinear Anal. Appl. Volume 1, Issue 3, Pages: 89-95, Year: 2023
- [20] M.L. Heard, S. M.RankinIII, A semilinear parabolic Volterra integro-dierential equation J. Dierential
Equations 71 (1988), no. 2, 201233.
- [21] J.V. C. Sousa, F. G. Rodrigues, E.C. Oliveira, Stability of the fractional Volterra integral-differential equation
by means of ψ-Hilfer operator Math. Methods Appl. Sci. 42 (2019), no. 9, 30333043.
- [22] H.T.K. Van, Non-classical heat equation with singular memory term, Thermal Science, Volume 25, Special
issue 2, 2021