Review
BibTex RIS Cite

Riemannian manifolds are KKM spaces

Year 2019, , 64 - 73, 30.06.2019
https://doi.org/10.31197/atnaa.513857

Abstract

Let (M,g) be a complete, finite-dimensional Riemannian manifold. Based on the fact that any geodesic convex subset of M is a KKM space, we establish the KKM theory on such subsets originated from the Knaster-Kuratowski-Mazurkiewitz theorem in 1929.

References

  • 1] M.A. Alghamdi, W.A. Kirk, and N. Shahzad, Locally nonexpansive mappings in geodesic and length spaces, Top. Appl. 173 (2014) 59–73. [2] Ariza-Ruiz, D., Li, C., and Lopez-Acedo, G. The Schauder fixed point theorem in geodesic spaces, J. Math. Anal. Appl. 417 (2014) 345–360. [3] Chaipunya, P. and Kumam, P. Nonself KKM maps and corresponding theorems in Hadamard manifolds, Appl. Gen. Topol. 16(1) (2015) 37-44. [4] Chen, S.-L., Huang, N.-J., and OoRegan, D. Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds, J. Appl. Math. Vol.2014, Article ID 524698, 12 pages. doi.org/10.1155/2014/524698 [5] Colao, V., Lopez, G., Marino, G., and Martin-Marquez,V. Equilibrium problems in Hadamard manifolds, J. Math. Anal. Appl. 388 (2012) 61–77. [6] Cruz Neto, J.X., Jacinto, F.M.O., Soares, P.A. Jr., and Souza, J.C. On maximal monotonicity of bifunctions on Hadamard manifolds, J. Glob. Optim. (2018) [7] Horvath, C.D. Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse 2 (1993), 253–269. [8] Kim, K.S. Some convergence theorems for contractive type mappings in CAT(0) spaces, Abst. Appl. Anal. vol. 2013, Article ID 381715, 9 pages. doi.org/10.1155/2013/381715. [9] Kim, W.K. Fan-Browder type fixed point theorems and applications in Hadamard manifolds, Nonlinear Funct. Anal. Appl. 23 (2018) 117–127. [10] Kirk, W.A. and Panyanak, B. A concept of convergence in geodesic spaces, Nonlinear Anal. (2007), doi:10.1016/j.na.2007.04.011 [11] Kristály, A. Location of Nash equilibria: A Riemannian geometrical approach, Proc. Amer. Math. Soc. 138(5) (2010) 1803–1810. [12] Kristály, A. Nash-type equilibria on Riemannian manifolds: A variational approach, J. Math.Pures Appl. 101 (2014) 660–688. [13] Kristály, A., Li, C., Lopez-Acedo, G., and Nicolae, A. What do ‘convexitieso imply on Hadamard manifolds? J. Optim. Theory App. 170 (2016) 1068–1074. DOI 10.1007/s10957-015-0780-2 [14] Kumam, P. and Chaipunya, P. Equilibrium problems and proximal algorithms in Hadamard spaces, arXiv:1807.109000vl [math.OC] 28 Jul 2018. [15] Lee, W. Remarks on the KKM theory of Hadamard manifolds and hyperbolic spaces, Nonlinear Funct. Anal. Appl. 20(4) (2015) 579–593. [16] Li, S.-L., Li, C., Liou, Y.-C., and Yao, J.-C. Existence of solutions for variational inequalities on Riemannian manifolds, Nonlinear Anal. 71(11) (2009) 5695–5706. [17] Németh, S.Z. Variational inequalities on Hadamard manifolds, Nonlinear Anal. 52 (2003) 1491–1498. [18] Park, S. Generalizations of the Nash equilibrium theorem in the KKM theory, Takahashi Legacy, Fixed Point Theory Appl. vol.2010, Article ID 234706, 23pp. doi:10.1155 /2010/234706. [19] Park, S. The KKM principle in abstract convex spaces: Equivalent formulations and applications, Nonlinear Anal. 73 (2010) 1028–1042. [20] Park, S. A genesis of general KKM theorems for abstract convex spaces: Revisited, J. Nonlinear Anal. Optim. 4(1) (2013) 127–132. [21] Park, S. Remarks on “Equilibrium problems in Hadamard manifolds" by V. Colao et al., Nonlinear Funct. Anal. Appl. 18(1) (2013) 23–31. [22] Park, S. Review of recent studies on the KKM theory, II, Nonlinear Funct. Anal. Appl. 19(1) (2014) 143–155. [23] Park, S. Generalizations of some KKM type results on hyperbolic spaces, Nonlinear Funct. Anal. Appl. 23(4) (2018) 805–818. [24] Rahimi, R., Farajzadeh, A.P., and Vaezpour, S.M. A new extension of Fan-KKM theory and equilibrium theory on Hadamard manifolds, Azerbaijan J. Math. 7(2) (2017) 88–112. [25] Reich, S. and Shafrir, I. Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990) 537–558. [26] Tang, G.-J. and Huang, N.-J. Existence theorems of the variational-hemivariational inequalities, J. Glob. Optim. (2012) DOI 10.1007/s10898-012-9884. [27] Tang, G.-J., Zhou, L.-W., and Huang, N.-J. The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds, Optim. Lett. 7 (2013) 779–790. DOI 10.1007/s11590-012-0459-7 [28] R. Walter, On the metric projection onto convex sets in Riemannian spaces, Arch. Math., Vol. XXV (1974) 91–98. [29] Z. Yang, Y.J. Pu, Generalized Browder-type fixed point theorem with stronly geodesic convexity on Hadamard manifolds with applications, Indian J. Pure Appl. Math. 43(2) (2012) 129–144. [30] Z. Yang, Y.J. Pu, Existence and stability of solutions for maximal element theorem on Hadamard manifolds with applica- tions, Nonlinear Anal. 75(2) (2012), 516–525. [31] L.-W. Zhou, N.-J. Huang Generalized KKM theorems on Hadamard manifolds with applications, (2009) http://www.paper.edu.cn/index.php/default/releasepaper/ content/200906-669 [32] L.-W. Zhou, N.-J. Huang, Existence of solutions for vector optimization on Hadamard manifolds, J. Optim. Theory Appl. 157(2013), 44–53. DOI 10.1007/s10957-012-0186-3.
Year 2019, , 64 - 73, 30.06.2019
https://doi.org/10.31197/atnaa.513857

Abstract

References

  • 1] M.A. Alghamdi, W.A. Kirk, and N. Shahzad, Locally nonexpansive mappings in geodesic and length spaces, Top. Appl. 173 (2014) 59–73. [2] Ariza-Ruiz, D., Li, C., and Lopez-Acedo, G. The Schauder fixed point theorem in geodesic spaces, J. Math. Anal. Appl. 417 (2014) 345–360. [3] Chaipunya, P. and Kumam, P. Nonself KKM maps and corresponding theorems in Hadamard manifolds, Appl. Gen. Topol. 16(1) (2015) 37-44. [4] Chen, S.-L., Huang, N.-J., and OoRegan, D. Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds, J. Appl. Math. Vol.2014, Article ID 524698, 12 pages. doi.org/10.1155/2014/524698 [5] Colao, V., Lopez, G., Marino, G., and Martin-Marquez,V. Equilibrium problems in Hadamard manifolds, J. Math. Anal. Appl. 388 (2012) 61–77. [6] Cruz Neto, J.X., Jacinto, F.M.O., Soares, P.A. Jr., and Souza, J.C. On maximal monotonicity of bifunctions on Hadamard manifolds, J. Glob. Optim. (2018) [7] Horvath, C.D. Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse 2 (1993), 253–269. [8] Kim, K.S. Some convergence theorems for contractive type mappings in CAT(0) spaces, Abst. Appl. Anal. vol. 2013, Article ID 381715, 9 pages. doi.org/10.1155/2013/381715. [9] Kim, W.K. Fan-Browder type fixed point theorems and applications in Hadamard manifolds, Nonlinear Funct. Anal. Appl. 23 (2018) 117–127. [10] Kirk, W.A. and Panyanak, B. A concept of convergence in geodesic spaces, Nonlinear Anal. (2007), doi:10.1016/j.na.2007.04.011 [11] Kristály, A. Location of Nash equilibria: A Riemannian geometrical approach, Proc. Amer. Math. Soc. 138(5) (2010) 1803–1810. [12] Kristály, A. Nash-type equilibria on Riemannian manifolds: A variational approach, J. Math.Pures Appl. 101 (2014) 660–688. [13] Kristály, A., Li, C., Lopez-Acedo, G., and Nicolae, A. What do ‘convexitieso imply on Hadamard manifolds? J. Optim. Theory App. 170 (2016) 1068–1074. DOI 10.1007/s10957-015-0780-2 [14] Kumam, P. and Chaipunya, P. Equilibrium problems and proximal algorithms in Hadamard spaces, arXiv:1807.109000vl [math.OC] 28 Jul 2018. [15] Lee, W. Remarks on the KKM theory of Hadamard manifolds and hyperbolic spaces, Nonlinear Funct. Anal. Appl. 20(4) (2015) 579–593. [16] Li, S.-L., Li, C., Liou, Y.-C., and Yao, J.-C. Existence of solutions for variational inequalities on Riemannian manifolds, Nonlinear Anal. 71(11) (2009) 5695–5706. [17] Németh, S.Z. Variational inequalities on Hadamard manifolds, Nonlinear Anal. 52 (2003) 1491–1498. [18] Park, S. Generalizations of the Nash equilibrium theorem in the KKM theory, Takahashi Legacy, Fixed Point Theory Appl. vol.2010, Article ID 234706, 23pp. doi:10.1155 /2010/234706. [19] Park, S. The KKM principle in abstract convex spaces: Equivalent formulations and applications, Nonlinear Anal. 73 (2010) 1028–1042. [20] Park, S. A genesis of general KKM theorems for abstract convex spaces: Revisited, J. Nonlinear Anal. Optim. 4(1) (2013) 127–132. [21] Park, S. Remarks on “Equilibrium problems in Hadamard manifolds" by V. Colao et al., Nonlinear Funct. Anal. Appl. 18(1) (2013) 23–31. [22] Park, S. Review of recent studies on the KKM theory, II, Nonlinear Funct. Anal. Appl. 19(1) (2014) 143–155. [23] Park, S. Generalizations of some KKM type results on hyperbolic spaces, Nonlinear Funct. Anal. Appl. 23(4) (2018) 805–818. [24] Rahimi, R., Farajzadeh, A.P., and Vaezpour, S.M. A new extension of Fan-KKM theory and equilibrium theory on Hadamard manifolds, Azerbaijan J. Math. 7(2) (2017) 88–112. [25] Reich, S. and Shafrir, I. Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990) 537–558. [26] Tang, G.-J. and Huang, N.-J. Existence theorems of the variational-hemivariational inequalities, J. Glob. Optim. (2012) DOI 10.1007/s10898-012-9884. [27] Tang, G.-J., Zhou, L.-W., and Huang, N.-J. The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds, Optim. Lett. 7 (2013) 779–790. DOI 10.1007/s11590-012-0459-7 [28] R. Walter, On the metric projection onto convex sets in Riemannian spaces, Arch. Math., Vol. XXV (1974) 91–98. [29] Z. Yang, Y.J. Pu, Generalized Browder-type fixed point theorem with stronly geodesic convexity on Hadamard manifolds with applications, Indian J. Pure Appl. Math. 43(2) (2012) 129–144. [30] Z. Yang, Y.J. Pu, Existence and stability of solutions for maximal element theorem on Hadamard manifolds with applica- tions, Nonlinear Anal. 75(2) (2012), 516–525. [31] L.-W. Zhou, N.-J. Huang Generalized KKM theorems on Hadamard manifolds with applications, (2009) http://www.paper.edu.cn/index.php/default/releasepaper/ content/200906-669 [32] L.-W. Zhou, N.-J. Huang, Existence of solutions for vector optimization on Hadamard manifolds, J. Optim. Theory Appl. 157(2013), 44–53. DOI 10.1007/s10957-012-0186-3.
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Sehie Park This is me

Publication Date June 30, 2019
Published in Issue Year 2019

Cite

Cited By

The rise and fall of L-spaces, II
Advances in the Theory of Nonlinear Analysis and its Application
Sehie PARK
https://doi.org/10.31197/atnaa.847835

The rise and fall of L-spaces
Advances in the Theory of Nonlinear Analysis and its Application
Sehie PARK
https://doi.org/10.31197/atnaa.786151