Research Article
BibTex RIS Cite

Year 2020, Volume: 4 Issue: 4, 394 - 401, 30.12.2020
https://doi.org/10.31197/atnaa.683089

Abstract

References

  • [1] C. O. Alves, F. J. S. A. Corr\^{e}a and G.M. Figueiredo, On class of nonlocal elliptic problem with critical growth, Differ. Equ. Appl. 2(3) (2010), 409-419.
  • [2] A. Azzollini, The elliptic Kirchhoff equation in R^N perturbed by a local nonlinearity, Differ. Integral Equ. 25 (2012), 543-554.
  • [3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), 437-477.
  • [4] M. Ferrar and S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput. 234 (2014), 316-325.
  • [5] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument}, J. Math. Anal. Appl. 401 (2013), 706-713.
  • [6] G. M. Figueiredo and J.R.S. Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical and critical growth, Differ. Integral Equ. 25 (2012), 853-868.
  • [7] M. F. Furtado, L. D. de Oliveira and J. P. P. da Silva, Multiple solutions for a Kirchhoff equation with critical growth, Z. Angew. Math. Phys. 70 (11) (2019), 1-15.
  • [8] A. Hamydy, M. Massar and N. Tsouli, Existence of solutions for p-Kirchhoff type problems with critical exponent, Electron. J. Differ. Equ. 2011 (105) (2011), 1-8.
  • [9] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  • [10] H. Y. Li and J. F. Liao, Existence and multiplicity of solutions for superlinear Kirchhoff-type equations with critical Sobolev exponent in R^N, Comput. Math. Appl. 72 (2016), 2900-2907.
  • [11] P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, part I, II. Rev. Mat. Iberoamericana 1 (1985), 145-201, 45-121.
  • [12] M. Massar, EL. M. Hssini, N. Tsouli and M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8 (2014), 33-51.
  • [13] A. M. Mao and J. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), 1275-1287.
  • [14] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differ. Equ. Appl. 21 (6) (2014), 885-914.
  • [15] E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 341-358.
  • [16] J. Sun and C. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 (2011), 1212-1222.
  • [17] F. Wang and Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Prob. 2012, 6 (2012).

On a fourth-order elliptic Kirchhoff type problem with critical Sobolev exponent

Year 2020, Volume: 4 Issue: 4, 394 - 401, 30.12.2020
https://doi.org/10.31197/atnaa.683089

Abstract

This work is concerned with a class of fourth-order elliptic Kirchhoff type problems involving the critical term. By means of the truncation and the concentration compact argument, for each positive integer k the existence of $k$ pairs nontrivial solutions is established.

Thanks

Thanks for You

References

  • [1] C. O. Alves, F. J. S. A. Corr\^{e}a and G.M. Figueiredo, On class of nonlocal elliptic problem with critical growth, Differ. Equ. Appl. 2(3) (2010), 409-419.
  • [2] A. Azzollini, The elliptic Kirchhoff equation in R^N perturbed by a local nonlinearity, Differ. Integral Equ. 25 (2012), 543-554.
  • [3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), 437-477.
  • [4] M. Ferrar and S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput. 234 (2014), 316-325.
  • [5] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument}, J. Math. Anal. Appl. 401 (2013), 706-713.
  • [6] G. M. Figueiredo and J.R.S. Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical and critical growth, Differ. Integral Equ. 25 (2012), 853-868.
  • [7] M. F. Furtado, L. D. de Oliveira and J. P. P. da Silva, Multiple solutions for a Kirchhoff equation with critical growth, Z. Angew. Math. Phys. 70 (11) (2019), 1-15.
  • [8] A. Hamydy, M. Massar and N. Tsouli, Existence of solutions for p-Kirchhoff type problems with critical exponent, Electron. J. Differ. Equ. 2011 (105) (2011), 1-8.
  • [9] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  • [10] H. Y. Li and J. F. Liao, Existence and multiplicity of solutions for superlinear Kirchhoff-type equations with critical Sobolev exponent in R^N, Comput. Math. Appl. 72 (2016), 2900-2907.
  • [11] P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, part I, II. Rev. Mat. Iberoamericana 1 (1985), 145-201, 45-121.
  • [12] M. Massar, EL. M. Hssini, N. Tsouli and M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8 (2014), 33-51.
  • [13] A. M. Mao and J. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), 1275-1287.
  • [14] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differ. Equ. Appl. 21 (6) (2014), 885-914.
  • [15] E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 341-358.
  • [16] J. Sun and C. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 (2011), 1212-1222.
  • [17] F. Wang and Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Prob. 2012, 6 (2012).
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mohammed Massar

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite