Research Article
BibTex RIS Cite

Katugampola Fractional Differential Equation with Erdelyi-Kober Integral Boundary Conditions

Year 2021, , 215 - 228, 30.06.2021
https://doi.org/10.31197/atnaa.711191

Abstract

In this paper, we study the existence and uniqueness of solutions for nonlinear fractional Katugampola differential equation with Erdely-Kober fractional integral conditions, new existence and uniqueness results are established using Banach's contraction principle, nonlinear contractions, Krasnoselskii's and Leray-Schauder's fixed theorems. Four examples are given in order to clarify theoretical results.

References

  • [1] B. Ahmad, S.K. Ntouyas, J. Tariboon, A. Alsaedi: Caputo type fractional di?erential equations with nonlocal Riemann- Liouville and Erdelyi-Kober integral boundary conditions, Filomat (2017), 4515-4529.
  • [2] B. Ahmad, S.K. Ntouyas, A. Alsaedi: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Difference Equ., 2011, Art. ID 107384, 11 pp.
  • [3] B. Ahmad, S.K. Ntouyas: A four-point nonlocal integral boundary value problem for fractional differential equations of arbitrary order, Electron. J. Qual. Theory Differ. Equ. 22(2011), pp. 1-15.
  • [4] Y. Arioua, B. Basti and N. Benhamidouche: Initial value problem for nonlinear implicit fractional differential equation with Katugampola derivative. Appl. Math. E-Notes, 19(2019), 397-412.
  • [5] B. Basti, Y. Arioua, N. Benhamidouche: Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional Di?erential Equations, Journal of Mathematics and Applications, No 42, pp 35-61 (2019).
  • [6] M. Benchohra, S. Hammani and S.K. Ntouyas: Boundary value problems for differential equation with fractional order and nonlocal conditions, Nonlinear Anal. TMA 71 (2009), 2391-2396.
  • [7] A. Boutiara, M. Benbachir, K. Guerbati: Boundary value problems for hilfer fractional differential equations with katugam- pola fractional integral and anti-periodic conditions, to appear (http://math.ubbcluj.ro/ mathjour/accepted.html).
  • [8] D.W. Boyd and J.S.W. Wong: On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
  • [9] M. Janaki, E. M. Elsayed, K. Kanagarajan: Katugampola-type fractional differential equations with delay and impulses, Open Access Journal of Mathematical and Theoretical Physics, Volume 1 Issue 3 - 2018.
  • [10] M. Janaki, K. kanagarajan, D. Viek: Existence results for Katugampola fractional differential equations via measure of noncompactness, Journal nonlinear Analysis and Applications 2018, No.2(2018)184-191.
  • [11] S.L. Kalla, V.S. Kiryakova: An H-function generalized fractional calculus based upon compositions of Erdelyi-Kober operators in LP; Math. Japonica 35 (1990), 1-21.
  • [12] K. Logeswari, C. Ravichandran: A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana-Baleanu derivative, Physica A: Statistical Mechanics and its Applications, Volume 544, 15 April 2020, 123454.
  • [13] N.I. Mahmudov, S. Emin: Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv Differ Equ 2018, 81 (2018).
  • [14] K. Rajendra Prasad , L. D and M. Khuddush , "Existence and Uniqueness of Positive Solutions for System of (p,q,r)- Laplacian Fractional Order Boundary Value Problems", Advances in the Theory of Nonlinear Analysis and its Application, vol. 5, no. 1, pp. 138-157, Mar. 2021, doi:10.31197/atnaa.703304
  • [15] C. Ravichandran, N. Valliammal, Juan J. Nieto: New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Journal of the Franklin Institute, 356(3), 2019, 1535-1565.
  • [16] A. Saadi and M. Benbachir: Positive solutions for three-point nonlinear fractional boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2011, No. 2, 1-19.
  • [17] F. Si Bachir , A. Said , M. Benbachir and M. Benchohra , "Hilfer-Hadamard Fractional Differential Equations; Existence and Attractivity", Advances in the Theory of Nonlinear Analysis and its Application, vol. 5, no. 1, pp. 49-57, Mar. 2021, doi:10.31197/atnaa.848928
  • [18] I.N. Sneddon, The use in mathematical analysis of Erdelyi-Kober operators and some of their applications, pp. 37-79 in Fractional calculus and its applications (West Haven, Connecticut, 1974), Lecture Notes in Math.
  • [19] N. Thongsalee, S.K. Ntouyas, J. Tariboon: Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober fractional integral conditions, Frac. Calc. Appl. Anal. Volume 19, Issue 2 (2016).
  • [20] N. Valliammal, C. Ravichandran, Ju H. Park: On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, Math. Methods Appl. Sci. 40 (14) (2017), 5044-5055.
  • [21] S. Zeng, D. Baleanu, Y. Bai, G. Wu: Fractional differential equations of Caputo-Katugampola type and numerical solutions, Applied Mathematics and computation 315(2017) 549-554.
Year 2021, , 215 - 228, 30.06.2021
https://doi.org/10.31197/atnaa.711191

Abstract

References

  • [1] B. Ahmad, S.K. Ntouyas, J. Tariboon, A. Alsaedi: Caputo type fractional di?erential equations with nonlocal Riemann- Liouville and Erdelyi-Kober integral boundary conditions, Filomat (2017), 4515-4529.
  • [2] B. Ahmad, S.K. Ntouyas, A. Alsaedi: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Difference Equ., 2011, Art. ID 107384, 11 pp.
  • [3] B. Ahmad, S.K. Ntouyas: A four-point nonlocal integral boundary value problem for fractional differential equations of arbitrary order, Electron. J. Qual. Theory Differ. Equ. 22(2011), pp. 1-15.
  • [4] Y. Arioua, B. Basti and N. Benhamidouche: Initial value problem for nonlinear implicit fractional differential equation with Katugampola derivative. Appl. Math. E-Notes, 19(2019), 397-412.
  • [5] B. Basti, Y. Arioua, N. Benhamidouche: Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional Di?erential Equations, Journal of Mathematics and Applications, No 42, pp 35-61 (2019).
  • [6] M. Benchohra, S. Hammani and S.K. Ntouyas: Boundary value problems for differential equation with fractional order and nonlocal conditions, Nonlinear Anal. TMA 71 (2009), 2391-2396.
  • [7] A. Boutiara, M. Benbachir, K. Guerbati: Boundary value problems for hilfer fractional differential equations with katugam- pola fractional integral and anti-periodic conditions, to appear (http://math.ubbcluj.ro/ mathjour/accepted.html).
  • [8] D.W. Boyd and J.S.W. Wong: On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
  • [9] M. Janaki, E. M. Elsayed, K. Kanagarajan: Katugampola-type fractional differential equations with delay and impulses, Open Access Journal of Mathematical and Theoretical Physics, Volume 1 Issue 3 - 2018.
  • [10] M. Janaki, K. kanagarajan, D. Viek: Existence results for Katugampola fractional differential equations via measure of noncompactness, Journal nonlinear Analysis and Applications 2018, No.2(2018)184-191.
  • [11] S.L. Kalla, V.S. Kiryakova: An H-function generalized fractional calculus based upon compositions of Erdelyi-Kober operators in LP; Math. Japonica 35 (1990), 1-21.
  • [12] K. Logeswari, C. Ravichandran: A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana-Baleanu derivative, Physica A: Statistical Mechanics and its Applications, Volume 544, 15 April 2020, 123454.
  • [13] N.I. Mahmudov, S. Emin: Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv Differ Equ 2018, 81 (2018).
  • [14] K. Rajendra Prasad , L. D and M. Khuddush , "Existence and Uniqueness of Positive Solutions for System of (p,q,r)- Laplacian Fractional Order Boundary Value Problems", Advances in the Theory of Nonlinear Analysis and its Application, vol. 5, no. 1, pp. 138-157, Mar. 2021, doi:10.31197/atnaa.703304
  • [15] C. Ravichandran, N. Valliammal, Juan J. Nieto: New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Journal of the Franklin Institute, 356(3), 2019, 1535-1565.
  • [16] A. Saadi and M. Benbachir: Positive solutions for three-point nonlinear fractional boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2011, No. 2, 1-19.
  • [17] F. Si Bachir , A. Said , M. Benbachir and M. Benchohra , "Hilfer-Hadamard Fractional Differential Equations; Existence and Attractivity", Advances in the Theory of Nonlinear Analysis and its Application, vol. 5, no. 1, pp. 49-57, Mar. 2021, doi:10.31197/atnaa.848928
  • [18] I.N. Sneddon, The use in mathematical analysis of Erdelyi-Kober operators and some of their applications, pp. 37-79 in Fractional calculus and its applications (West Haven, Connecticut, 1974), Lecture Notes in Math.
  • [19] N. Thongsalee, S.K. Ntouyas, J. Tariboon: Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober fractional integral conditions, Frac. Calc. Appl. Anal. Volume 19, Issue 2 (2016).
  • [20] N. Valliammal, C. Ravichandran, Ju H. Park: On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, Math. Methods Appl. Sci. 40 (14) (2017), 5044-5055.
  • [21] S. Zeng, D. Baleanu, Y. Bai, G. Wu: Fractional differential equations of Caputo-Katugampola type and numerical solutions, Applied Mathematics and computation 315(2017) 549-554.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Naas Adjimi This is me 0000-0001-6595-0830

Maamar Benbachır 0000-0003-3519-1153

Publication Date June 30, 2021
Published in Issue Year 2021

Cite

Cited By

Some Generalized Special Functions and their Properties
Advances in the Theory of Nonlinear Analysis and its Application
https://doi.org/10.31197/atnaa.768532