Research Article
BibTex RIS Cite

Finding the Fixed Points Inside Large Mapping Sets: Integral Equations

Year 2017, Volume: 1 Issue: 1, 41 - 47, 30.09.2017
https://doi.org/10.31197/atnaa.379110

Abstract

Let xf(t,x) > 0 for x 6= 0 and let A(t−s) satisfy some classical properties yielding a nice resolvent. Using repeated application of a fixed point mapping and induction we develop an asymptotic formula showing that solutions of the Caputo equation cDqx(t) = −f(t,x(t)), 0 < q < 1, x(0) ∈<, x(0) 6= 0, and more generally of the integral equation x(t) = x(0)−Zt 0 A(t−s)f(s,x(s))ds,x(0) 6= 0, all satisfy x(t) → 0 as t →∞.

References

  • L. C. Becker, T. A. Burton, and I. K. Purnaras, Integral and fractional equations, positive solutions, and Schaefer’s fixed point theorem, Opuscula Math. 36 (2016), 431-458. 2
  • T. A. Burton, Fractional differential equations and Lyapunov functionals, Nonlinear Anal.:TMA 74, (2011), 5648-5662.
  • T. A. Burton, Fractional equations and a theorem of Brouwer-Schauder type, Fixed Point Theory, 14 No. 1 (2013), 91-96.
  • T. A. Burton, Correction of "Fractional equations and a theorem of Brouwer-Schauder type", Fixed Point Theory 16 No. 2 (2015), 233-236.
  • T. A. Burton and Bo Zhang, Fixed points and fractional differential equations:Examples, Fixed Point Theory 14 (2013), 313-326.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Heidelberg, 2010.
  • D. P. Dwiggins, Fixed point theory and integral equations, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 23 (2016), 47-57.
  • G. Gripenberg, On positive, nonincreasing resolvents of Volterra equations, J. Differential Equations 30 (1978), 380-390.
  • R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, Menlo Park, CA, 1971.
  • D. R. Smart, Fixed Point Theorems, Cambridge, 1980.
Year 2017, Volume: 1 Issue: 1, 41 - 47, 30.09.2017
https://doi.org/10.31197/atnaa.379110

Abstract

References

  • L. C. Becker, T. A. Burton, and I. K. Purnaras, Integral and fractional equations, positive solutions, and Schaefer’s fixed point theorem, Opuscula Math. 36 (2016), 431-458. 2
  • T. A. Burton, Fractional differential equations and Lyapunov functionals, Nonlinear Anal.:TMA 74, (2011), 5648-5662.
  • T. A. Burton, Fractional equations and a theorem of Brouwer-Schauder type, Fixed Point Theory, 14 No. 1 (2013), 91-96.
  • T. A. Burton, Correction of "Fractional equations and a theorem of Brouwer-Schauder type", Fixed Point Theory 16 No. 2 (2015), 233-236.
  • T. A. Burton and Bo Zhang, Fixed points and fractional differential equations:Examples, Fixed Point Theory 14 (2013), 313-326.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Heidelberg, 2010.
  • D. P. Dwiggins, Fixed point theory and integral equations, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 23 (2016), 47-57.
  • G. Gripenberg, On positive, nonincreasing resolvents of Volterra equations, J. Differential Equations 30 (1978), 380-390.
  • R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, Menlo Park, CA, 1971.
  • D. R. Smart, Fixed Point Theorems, Cambridge, 1980.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Theodore A. Burton

Ioannis K. Purnaras This is me

Publication Date September 30, 2017
Published in Issue Year 2017 Volume: 1 Issue: 1

Cite